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Thepurpose of this paper is introduce several types of Levitin-Polyakwell-posedness for bilevel vector equilibriumandoptimization
problems with equilibrium constraints. Base on criterion and characterizations for these types of Levitin-Polyak well-posedness we
argue on diameters and Kuratowski’s, Hausdorff ’s, or Istrǎtescus measures of noncompactness of approximate solution sets under
suitable conditions, and we prove the Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems
with equilibrium constraints. Obtain a gap function for bilevel vector equilibrium problems with equilibrium constraints using the
nonlinear scalarization function and consider relations between these types of LP well-posedness for bilevel vector optimization
problems with equilibrium constraints and these types of Levitin-Polyak well-posedness for bilevel vector equilibrium problems
with equilibrium constraints under suitable conditions; we prove the Levitin-Polyak well-posedness for bilevel equilibrium and
optimization problems with equilibrium constraints.

1. Introduction

Well-posedness is one of most important topics for opti-
mization theory and numerical methods of optimization
problems, which guarantees that, for approximating solution
sequences, there is a subsequence which converges to a solu-
tion. The well-posedness of unconstrained and constrained
scalar optimization problems was first introduced and stud-
ied by Tikhonov [1] and Levitin and Polyak [2], respectively.
In Tikhonov well-posedness, which means the existence
and uniqueness of minimizer and the convergence of a
subsequence of each approximation sequence to a solution,
the Tikhonov notation has been more interested; that is,
any algorithm can generate only an approximating sequence
of solutions. Hence, this sequence is applicable only if the
problem under consideration is well posed. The concept of
Tikhonovwell-posedness has also been generalized to several
related problems: variational inequalities, Nash equilibrium
problems, optimization problems with variational inequali-
ties constrains, optimization problemswithNash equilibrium

constrains, optimization problems with Nash equilibrium
constrains [3–12], and so forth.

The study of Levitin-Polyak (LP for short) well-posedness
for scalar convex optimization problems with functional
constraints originates from [13]. Recently, this research was
extended to nonconvex optimization problems with abstract
and functional constraints [14] and nonconvex vector opti-
mization problems with both abstract and functional con-
straints [15]. In 2009, S. J. Li and M. H. Li [16] introduced
and researched two types of LP well-posedness of vector
equilibrium problems with variable domination structures.
In the same year, Huang et al. [17] introduced and researched
the LP well-posedness of vector quasi-equilibrium problems.
Moreover, Li et al. [18] introduced and researched the LP
well-posedness for two types of generalized vector quasi-
equilibrium problems.

Most recently, many papers appeared dealing with bilevel
problems such as mathematical programming with equi-
librium constraints [19, 20], optimization problems with
Nash equilibrium constraints [21], optimization problems
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with variational inequality constraints [4], and optimization
problems with equilibrium constraints [20, 22]. In 2012, Anh
et al. [23] considered the LP well-posedness of bilevel equi-
librium problems with equilibrium constraints (BEPEC) and
bilevel optimization problems with equilibrium constraints
(BOPEC).They introduced a relaxed level closedness and use
it together with pseudomonotonic assumptions to establish
sufficient conditions of LP well-posedness.

The vector equilibrium problem is a unified model of
several classes of problems, for example, vector optimization
problems and vector variational inequality problems [24,
25]. In recent years, many authors have intensively studied
different types of vector equilibrium problem [26–28]. Many
results on existence and stability of solutions for vector equi-
librium problem, generalized vector equilibrium problems,
and generalized quasivector equilibrium problems have been
established [26–31]. Moreover, many authors have investi-
gated the gap functions for vector equilibrium problems,
generalized vector equilibrium problems, and generalized
quasivector equilibrium problems [28].

Motivated and inspired by the above observations, our
consideration of LP well-posedness for bilevel problems is in
this paper. We focus on vector equilibria with equilibrium
constraints and optimization with equilibrium constraints,
as well as an abstract set constraint, and investigate criteria
and characterizations for these types of LP well-posedness
with a gap function for bilevel vector equilibrium problems
with equilibrium constraints and optimization problems
with equilibrium constraints. We propose a generalized level
closedness and use it together to study well-posedness in the
LP sense. However, since the existence topic has been inten-
sively studied for vector equilibrium and bilevel problems,
we focus on LP well-posedness, assuming always that the
mentioned solutions exist.

The layout of the paper is as follows. In Section 2, we
state the bilevel problems under our consideration and recall
notions and preliminaries needed in the sequel. In Section 3,
we study LP well-posedness of bilevel vector equilibrium
problems with equilibrium constraints and optimization
problems with equilibrium constraints on diameters and
measures of noncompactness of approximate solution sets in
the Kuratowski, Hausdorff, or Istrǎtescu sense. In Section 4,
by virtue of a nonlinear scalarization function and a gap
function for bilevel vector quasi-equilibrium problems, we
show equivalent relations between the LP well-posedness
of the optimization problem and the LP well-posedness of
bilevel vector equilibrium problems.The results in this paper
unify, generalize, and extend some known results in [16, 23].

2. Preliminaries
Let (𝑋, 𝑑) and 𝑍 be locally convex Hausdorff topological
vector spaces, where 𝑑 is a metric which is compatible with
the topology of 𝑋. Throughout this paper, suppose 𝐶 : 𝑋 ×

𝑍 → 2𝑍 is a set-valued mapping such that, for any 𝑥 ∈

𝑋, 𝐶(𝑥) is a pointed, closed, and convex cone in 𝑍 with
nonempty interior int𝐶(𝑥), where 𝐶(𝑥) depends on 𝑥. We
also assume that 𝑒 : 𝑋 → 𝑍 is a continuous vector-valued
mapping and satisfies that, for any 𝑥 ∈ 𝑋, 𝑒(𝑥) ∈ int𝐶(𝑥).

Let 𝑓 : 𝑋 × 𝑋 × 𝑍 → 𝑍 be a vector-valued mapping and
𝐾
𝑖
: 𝑋 × 𝑍 → 2𝑋, 𝑖 = 1, 2. The constraints appear in this

paper are solution sets of the following (parametric) vector
quasi-equilibrium problem, for each 𝑧 ∈ 𝑍:

(VQEP
𝑧
) find 𝑥 ∈ 𝐾

1 (𝑥, 𝑧) s.t. 𝑓 (𝑥, 𝑦, 𝑧) ∉ − int𝐶 (𝑥) ,

∀𝑦 ∈ 𝐾
2 (𝑥, 𝑧) .

(1)

Instead of writing {(VQEP
𝑧
) | 𝑧 ∈ 𝑍} for the family of quasi-

equilibrium problems, that is, the parametric problem, we
will simply write (VQEP) in the sequel. Let 𝑆 : 𝑍 → 2

𝑋 be
the solution map of (VQEP). Let 𝑌 = 𝑋×𝑍, 𝐹 : 𝑌 ×𝑌 → 𝑍,
and 𝑔 : 𝑋 × 𝑍 → 𝑍 be two functions with 𝑔(𝑥, 𝑧) ∈ 𝐷.
We consider the following bilevel vector equilibriumproblem
with equilibrium constraints:

(BVEPEC) finding 𝑦 ∈ gr𝑆 s.t.,

𝐹 (𝑦, 𝑦) ∉ − int𝐶 (𝑦) , ∀𝑦 ∈ gr𝑆,
(2)

where gr𝑆 denotes the graph of 𝑆; that is, gr𝑆 := {(𝑥, 𝑧) | 𝑥 ∈

𝑆(𝑧)}. We denote by Ω the set of solutions of (BVEPEC).
We first defined LP well-posedness notions.

Definition 1. A sequence {𝑥∗
𝑛
} = {(𝑥

𝑛
, 𝑧
𝑛
)} ⊂ 𝑋 × 𝑍 is called

type I LP approximating sequence for (BVEPEC) if and only if
there exists a sequence of nonnegative real number {𝜖

𝑛
} with

𝜖
𝑛
→ 0 such that

𝑑 (𝑥
∗

𝑛
, gr𝑆) ≤ 𝜖

𝑛
; (3)

𝐹 (𝑥
∗

𝑛
, 𝑦
∗
) + 𝜖
𝑛
𝑒 (𝑥
∗

𝑛
) ∉ − int𝐶 (𝑥∗

𝑛
)

∀𝑦 ∈ gr𝑆 (𝑧) , 𝑧 ∈ 𝑍, where 𝑦∗ = (𝑦, 𝑧) ;
(4)

{𝑥
𝑛
} is an approximating sequence for the parametric

problem (VQEP) corresponding to {𝑧
𝑛
} .

(5)

Definition 2. A sequence {𝑥∗
𝑛
} = {(𝑥

𝑛
, 𝑧
𝑛
)} ⊂ 𝑋 × 𝑍 is called

type II LP approximating sequence for (BVEPEC) if and only
if there exists a sequence of nonnegative real number {𝜖

𝑛
}with

𝜖
𝑛
→ 0 such that (3)–(5) hold and for any 𝑛 ∈ N there exists

{𝑦∗
𝑛
} ∈ gr𝑆 such that

𝐹 (𝑥
∗

𝑛
, 𝑦
∗

𝑛
) − 𝜖
𝑛
𝑒 (𝑥
𝑛
) ∈ −𝐶 (𝑥

𝑛
) . (6)

Definition 3. Problems (BVEPEC) is called type I (resp., type
II) LP well-posed if and only if

(i) the solution set of (BVEPEC) is nonempty;
(ii) for any type I (resp., type II), LP approximating

sequence of (BVEPEC) has a subsequence converging
to a solution.

Recall now some notions. Let 𝑋 and 𝑍 be as above and
let 𝑇 : 𝑋 → 2

𝑍 be a multifunction. 𝑇 is called lower
semicontinuous (lsc) at 𝑥

0
if and only if 𝑇(𝑥

0
) ∩ 𝑈 ̸= 0.
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For some open subsets, 𝑈 ⊆ 𝑍 implies the existence of a
neighborhood𝑁 of 𝑥

0
such that 𝑇(𝑥)∩𝑈 ̸= 0 for all 𝑥 ∈ 𝑁. 𝑇

is upper semicontinuous (usc) at 𝑥
0
if and only if, for each

open subset 𝑈 ⊇ 𝑇(𝑥
0
), there is a neighborhood 𝑁 of 𝑥

0

such that 𝑈 ⊇ 𝑇(𝑁). 𝑇 is called closed at 𝑥
0
if and only if,

for each net (𝑥
𝛼
, 𝑦
𝛼
) ∈ gr𝑇 with (𝑥

𝛼
, 𝑦
𝛼
) → (𝑥

0
, 𝑦
0
), one

has 𝑦
0
∈ 𝑇(𝑥

0
). We say that 𝑇 satisfies a certain property in a

subset 𝐴 ⊆ 𝑋 if and only if 𝑇 satisfies it at every point of 𝐴.
If 𝐴 = dom𝑇 := {𝑥 | 𝑇(𝑥) ≐ 0}, we omit “in dom𝑇” in the
saying. The following assertions are known:

(i) 𝑇 is lsc at 𝑥
0
if and only if ∀𝑥

𝛼
→ 𝑥
0
, ∀𝑦 ∈ 𝑇(𝑥

0
),

∃𝑦
𝛼
∈ 𝑇(𝑥

𝛼
), and 𝑦

𝛼
→ 𝑦;

(ii) 𝑇 is closed if and only if gr𝑇 is closed;
(iii) 𝑇 is usc at 𝑥

0
if 𝑇(𝐴) is compact for any compact

subset 𝐴 of dom𝑇 and 𝑇 is closed at 𝑥
0
;

(iv) 𝑇 is usc at 𝑥
0
if 𝑍 is compact and 𝑇 is closed at 𝑥

0
.

Definition 4 (see [23]). Let𝑋 and𝑌 be topological spaces, and
𝑓 : 𝑋 → R.

(i) 𝑓 is called upper 0-level closed at 𝑥
0
∈ 𝑋 if and only

if, for any sequence {𝑥
𝑛
} converging to 𝑥

0
,

[𝑓 (𝑥
𝑛
) ≥ 0, ∀𝑛] 󳨐⇒ [𝑓 (𝑥

0
) ≥ 0] . (7)

(ii) 𝑓 is called lower 0-level closed at 𝑥
0
∈ 𝑋 if and only

if, for any sequence {𝑥
𝑛
} converging to 𝑥

0
,

[𝑓 (𝑥
𝑛
) ≤ 0, ∀𝑛] 󳨐⇒ [𝑓 (𝑥

0
) ≤ 0] . (8)

Definition 5. Let𝑋 be Hausdorff topological spaces and let𝑍
be a topological vector space 𝑓 : 𝑋 → 𝑍. The function 𝑓 is
called upper 0-level closed at 𝑥

0
∈ 𝑋×𝑌 if and only if, for any

{𝑥
𝑛
} converging to 𝑥

0
,

[𝑓 (𝑥
𝑛
) ∉ − int𝐶, ∀𝑛] 󳨐⇒ [𝑓 (𝑥

0
) ∉ − int𝐶] . (9)

Definition 6 (see [32]). Let 𝐴, 𝐵 be nonempty subsets of
metric space𝑋.TheHausdorff distanceH(⋅, ⋅) between𝐴 and
𝐵 is defined by

H (𝐴, 𝐵) = max {𝛿 (𝐴, 𝐵) , 𝛿 (𝐵, 𝐴)} , (10)

where 𝛿(𝐴, 𝐵) = sup
𝑎∈𝐴

𝑑(𝑎, 𝐵) with 𝑑(𝑎, 𝐵) = inf
𝑏∈𝐵

𝑑(𝑎, 𝑏).
Let {𝐴

𝑛
} be a sequence of nonempty subsets of 𝑋. We say

that {𝐴
𝑛
} converges to 𝐴 in the sense of Hausdorff metric if

H(𝐴
𝑛
, 𝐴) → 0. It is easy to see that 𝛿(𝐴

𝑛
, 𝐴) → 0 if and

only if 𝑑(𝑎
𝑛
, 𝐴) → 0 for all selection 𝑎

𝑛
∈ 𝐴
𝑛
. For more

details on this topic, we refer the readers to [32].

3. Bilevel Vector Equilibrium Problems with
Equilibrium Constraints (BVEPEC)

In this section, we give some criteria and characterizations
for LP well-posedness of (BVEPEC) using noncompactness.
Now, we need the following notions of measures of noncom-
pactness.

Definition 7. Let 𝑀 be a nonempty subset of a metric space
𝑋.

(i) The Kuratowski measure of𝑀 is

𝜇 (𝑀)

= inf {𝜖 > 0 | 𝑀 ⊆

𝑛

⋃
𝑘=1

𝑀
𝑘
,

diam𝑀
𝑘
≤ 𝜖, 𝑘 = 1, . . . , 𝑛, for some 𝑛 ∈ N} .

(11)

(ii) The Hausdorff measure of𝑀 is

𝜂 (𝑀) = inf {𝜖 > 0 | 𝑀 ⊆

𝑛

⋃
𝑘=1

𝐵 (𝑥
𝑘
, 𝜖) ,

𝑥
𝑘
∈ 𝑋, for some 𝑛 ∈ N} .

(12)

(iii) The Istrǎtescu measure of𝑀 is

𝜄 (𝑀) = inf {𝜖 > 0 | 𝑀 have no infinite

𝜖- discrete subset} .
(13)

The following inequalities are obtained in [33]:

𝜂 (𝑀) ≤ 𝜄 (𝑀) ≤ 𝜇 (𝑀) ≤ 2𝜂 (𝑀) . (14)

The measures 𝜇, 𝜂, and 𝜄 share many common properties and
we will use 𝛾 in the sequel to denote that either one of them
𝛾 is a regular measure [34, 35]; that is, it enjoys the following
properties:

(i) 𝛾(𝑀) = +∞ if and only if the set𝑀 is unbounded;

(ii) 𝛾(𝑀) = 𝛾(cl𝑀);

(iii) if 𝛾(𝑀) = 0, then𝑀 is a totally bounded set;

(iv) if 𝑋 is a complete space and if {𝐴
𝑛
} is a sequence of

closed subset of 𝑋 such that 𝐴
𝑛+1

⊆ 𝐴
𝑛
for each

𝑛 ∈ N and lim
𝑛→+∞

H(𝐴
𝑛
, 𝐾) = 0, where H is the

Hausdorff metric;

(v) if𝑀 ⊆ 𝑁, then 𝛾(𝑀) ≤ 𝛾(𝑁).

As above, 𝑆(𝑧) denotes the solution set of (VQEP
𝑧
). For

positive 𝜖, the 𝜖-solution set of (VQEP
𝑧
) is defined by

𝑆 (𝑧, 𝜖) = {𝑥 ∈ 𝐾1 (𝑥, 𝑧) | 𝑓 (𝑥, 𝑦, 𝑧) + 𝜖𝑒 (𝑥) ∉ − int𝐶 (𝑥) ,

∀𝑦 ∈ 𝐾
2 (𝑥, 𝑧)} .

(15)
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For positive 𝜉 and 𝜖, the corresponding approximate solution
sets for (BVEPEC) are defined, respectively, by

Γ
1 (𝜉, 𝜖) := {𝑥

∗
= (𝑥, 𝑧) ∈ 𝐾1 (𝑥, 𝑧) × 𝑍 | 𝑑 (𝑥

∗
, gr𝑆) ≤ 𝜖,

𝐹 (𝑥
∗
, 𝑦
∗
) + 𝜖𝑒 (𝑥) ∉ − int𝐶 (𝑥) , ∀𝑦∗ ∈ gr𝑆,

𝑓 (𝑥, 𝑦, 𝑧) + 𝜉𝑒 (𝑥) ∉ − int𝐶 (𝑥) ,

∀𝑦 ∈ 𝐾
2 (𝑥, 𝑧)}

Γ
2 (𝜉, 𝜖) := {𝑥

∗
= (𝑥, 𝑧) ∈ 𝐾1 (𝑥, 𝑧) × 𝑍 | 𝑑 (𝑥

∗
, gr𝑆) ≤ 𝜖,

𝐹 (𝑥
∗
, 𝑦
∗
) + 𝜖𝑒 (𝑥) ∉ − int𝐶 (𝑥) , ∀𝑦∗ ∈ gr𝑆,

𝑓 (𝑥, 𝑦, 𝑧) + 𝜉𝑒 (𝑥) ∉ − int𝐶 (𝑥) ,

∀𝑦 ∈ 𝐾
2 (𝑥, 𝑧) , 𝐹 (𝑥

∗
, 𝑦
∗
) − 𝜖𝑒 (𝑥) ∈ −𝐶 (𝑥)} .

(16)

In terms of a measure 𝛾 ∈ {𝜇, 𝜂, 𝜄} of noncompactness we
have the following result.

Theorem8. Let𝑋 and𝑍 be complete and 𝛾 ∈ {𝜇, 𝜂, 𝜄}. Assume
that

(i) in𝑋 × 𝑍, 𝐾
1
is closed and 𝐾

2
is lsc;

(ii) 𝑓 is upper 0-level closed in 𝐾
1
(𝑋, 𝑍) × 𝐾

2
(𝑋, 𝑍) × 𝑍;

(iii) 𝐹(⋅, 𝑦∗) is upper 0-level closed in𝑋×𝑍, for all𝑦∗ ∈ gr𝑆;

(iv) the mapping 𝑊 : 𝑋 × 𝑍 → 2𝑍 defined by 𝑊(𝑥) =

𝑍 \ − int𝐶(𝑥) is closed.

Then, (BVEPEC) is type I LP well posed if and only if

𝛾 (Γ
1 (𝜉, 𝜖)) 󳨀→ 0 (resp., 𝛾 (Γ

3 (𝜉, 𝜖)) 󳨀→ 0) 󳨀→ 0

as (𝜉, 𝜖) 󳨀→ (0, 0) .
(17)

Proof. By the relationship (14), the proof is similar for the
three mentioned measures of noncompactness. We discuss
only the case 𝛾 = 𝜇, the Kuratowski measure. Assume that
(BVEPEC) is type I LP well posed. The solution set Ω of
(BVEPEC) clearly the relationΩ ⊆ Γ

1
(𝜉, 𝜖). Hence,

H (Γ
1 (𝜉, 𝜖) , Ω) = max {𝛿 (Γ

1 (𝜉, 𝜖) , Ω) , 𝛿 (Ω, Γ1 (𝜉, 𝜖))}

= 𝛿 (Γ
1 (𝜉, 𝜖) , Ω) .

(18)

Let {𝑥∗
𝑁
} = {(𝑥

𝑛
, 𝑧
𝑛
)} be in Ω. Since {𝑥∗

𝑛
} is an approximating

sequence, it has a subsequence converging to some points of
Ω. Therefore,Ω is compact.

Assume that Ω ⊆ ⋃
𝑛

𝑘=1
𝑀
𝑘
with diam𝑀

𝑘
≤ 𝜖, ∀𝑘 =

1, . . . , 𝑛. Setting 𝑁
𝑘
= {𝑧 ∈ 𝑋 | 𝑑(𝑧,𝑀

𝑘
) ≤ H(Γ

1
(𝜉, 𝜖), Ω)},

it obvious that Γ
1
(𝜉, 𝜖) ⊆ ⋃

𝑛

𝑘=1
𝑁
𝑘
and diam𝑁

𝑘
≤ 𝜖 +

2H(Γ
1
(𝜉, 𝜖), Ω). Since Ω is compact and 𝜇(Ω) = 0, then we

get

𝜇 (Γ
1 (𝜉, 𝜖)) ≤ 2H (Γ

1 (𝜉, 𝜖) , Ω) + 𝜇 (Ω) = 2𝛿 (Γ1 (𝜉, 𝜖) , Ω) .

(19)

Next, we show thatH(Γ
1
(𝜉, 𝜖), Ω) → 0 as (𝜉, 𝜖) → (0, 0). By

contradiction, suppose the existence of 𝜌 > 0, (𝜉, 𝜖) → (0, 0)

and 𝑥
𝑛
∈ Γ
1
(𝜉
𝑛
, 𝜖
𝑛
) such that 𝑑(𝑥

𝑛
, Ω) ≥ 𝜌, ∀𝑛 ∈ N. This con-

tradicts the type I LPwell-posedness. So,H(Γ
1
(𝜉, 𝜖), Ω) → 0

as (𝜉, 𝜖) → (0, 0). It follows that (17) holds.
Conversely, first, we show that for all 𝜉, 𝜖 > 0, Γ

1
(𝜉, 𝜖) is

closed. Assume that 𝜇(Γ
1
(𝜉, 𝜖)) → 0 as (𝜉, 𝜖) → (0, 0). Let

{𝑥
∗

𝑛
} = {(𝑥

𝑛
, 𝑧
𝑛
)} ⊂ Γ

1
(𝜉, 𝜖) with {𝑥∗

𝑛
} → 𝑥

∗
:= (𝑥, 𝑧). Then,

for all 𝑦∗ ∈ gr𝑆 and 𝑦
𝑛
∈ 𝐾
2
(𝑥
𝑛
, 𝑧
𝑛
),

𝑑 (𝑥
∗

𝑛
, gr𝑆) ≤ 𝜖;

𝐹 (𝑥
∗

𝑛
, 𝑦
∗
) + 𝜖𝑒 (𝑥

∗

𝑛
) ∉ − int𝐶 (𝑥∗

𝑛
) ,

𝑓 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) + 𝜉𝑒 (𝑥

𝑛
) ∉ − int𝐶 (𝑥

𝑛
) .

(20)

As 𝐾
1
is closed at (𝑥, 𝑧), we have 𝑥 ∈ 𝐾

1
(𝑥, 𝑧). From (20), we

obtain that 𝑑(𝑥∗, gr𝑆) ≤ 𝜖. By the upper 0-level closedness of
𝐹 in first argument and assumption (iv), one obtain

𝐹 (𝑥
∗
, 𝑦
∗
) + 𝜖𝑒 (𝑥

∗
) ∈ 𝑊 (𝑥

∗
) ; (21)

that is,

𝐹 (𝑥
∗
, 𝑦
∗
) + 𝜖𝑒 (𝑥

∗
) ∉ − int𝐶 (𝑥∗) , ∀𝑦

∗
∈ gr𝑆. (22)

Next, we show by contrapositive that 𝑓(𝑥, 𝑦, 𝑧) + 𝜉𝑒(𝑥) ∉

− int𝐶(𝑥), ∀𝑦 ∈ 𝐾
2
(𝑥, 𝑧). Suppose that there exist 𝑦 ∈

𝐾
2
(𝑥, 𝑧) such that 𝑓(𝑥, 𝑦, 𝑧) + 𝜉𝑒(𝑥) ∈ − int𝐶(𝑥). Since 𝐾

2

is lsc at (𝑥, 𝑧), there exist 𝑦
𝑛
∈ 𝐾
2
(𝑥, 𝑧) such that 𝑦

𝑛
→ 𝑦. By

upper 0-level closedness of 𝑓 at (𝑥, 𝑦, 𝑧), there is 𝑛
0
∈ N such

that

𝑓 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) + 𝜉𝑒 (𝑥

𝑛
) ∈ − int𝐶 (𝑥

𝑛
) , ∀𝑛 ≥ 𝑛

0
. (23)

That is a contradiction. Thus, we have

𝑓 (𝑥, 𝑦, 𝑧) + 𝜉𝑒 (𝑥) ∉ − int𝐶 (𝑥) , ∀𝑦 ∈ 𝐾
2 (𝑥, 𝑧) . (24)

Therefore, 𝑥∗ ∈ Γ
1
(𝜉, 𝜖) and so Γ

1
(𝜉, 𝜖) is closed.

Secondly, we show that

Ω = ⋂

𝜉,𝜖>0

Γ
1 (𝜉, 𝜖) . (25)

It is obvious that Ω ⊂ ⋂
𝜉,𝜖>0

Γ
1
(𝜉, 𝜖). Now, suppose that

(𝜉
𝑛
, 𝜖
𝑛
) → (0, 0) and 𝑥∗ ∈ ⋂

𝜉,𝜖>0
Γ
1
(𝜉
𝑛
, 𝜖
𝑛
). Thus, we have

𝑑 (𝑥
∗
, gr𝑆) ≤ 𝜖

𝑛
; (26)

𝐹 (𝑥
∗
, 𝑦
∗
) + 𝜖
𝑛
𝑒 (𝑥
∗
) ∉ − int𝐶 (𝑥∗) , ∀𝑦

∗
∈ gr𝑆, (27)

𝑓 (𝑥, 𝑦, 𝑧) + 𝜉
𝑛
𝑒 (𝑥) ∉ − int𝐶 (𝑥) , ∀𝑦 ∈ 𝐾

2 (𝑥, 𝑧) . (28)

By (27) and (28) and closedness of𝑊(𝑥∗), we obtain

𝐹 (𝑥
∗
, 𝑦
∗
) ∈ 𝑊 (𝑥

∗
) , ∀𝑦

∗
∈ gr𝑆,

𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝑊 (𝑥) , ∀𝑦 ∈ 𝐾
2 (𝑥, 𝑧) .

(29)

That is, 𝑥∗ ∈ Γ
1
(𝜉, 𝜖). Hence, (25) holds.
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Weknow that𝜇(Γ
1
(𝜉, 𝜖)) → 0 as (𝜉, 𝜖) → (0, 0).Then, by

properties of 𝜇, we see that Ω is compact andH(Γ
1
(𝜉, 𝜖)) →

0 as (𝜉, 𝜖) → (0, 0). Let {𝑥∗
𝑛
} = {(𝑥

𝑛
, 𝑧
𝑛
)} be a type I

LP approximating solution sequence for (BVEPEC). There
is {(𝜉
𝑛
, 𝜖
𝑛
)} → (0, 0) such that, for all 𝑦∗ ∈ gr𝑆 and 𝑦 ∈

𝐾
2
(𝑥, 𝑧),

𝑑 (𝑥
∗

𝑛
, gr𝑆) ≤ 𝜖

𝑛
;

𝐹 (𝑥
∗

𝑛
, 𝑦
∗
) + 𝜖
𝑛
𝑒 (𝑥
∗

𝑛
) ∉ − int𝐶 (𝑥∗

𝑛
) ,

𝑓 (𝑥
𝑛
, 𝑦, 𝑧
𝑛
) + 𝜉
𝑛
𝑒 (𝑥
𝑛
) ∉ − int𝐶 (𝑥

𝑛
) .

(30)

Therefore, 𝑥∗
𝑛
∈ Γ
1
(𝜉
𝑛
, 𝜖
𝑛
). It follows that, from 𝜇(Γ

1
(𝜉, 𝜖)) →

0 as (𝜉, 𝜖) → (0, 0),

𝑑 (𝑥
∗

𝑛
, Ω) ≤ H (Γ

1 (𝜉, 𝜖) , Ω) 󳨀→ 0. (31)

By the compactness of Ω, there is a subsequence of {𝑥
𝑛
}

convergent to some points of Ω. Hence, (BVEPEC) is type
I LP well posed. This completes the proof.

Similar to Theorem 8, we can prove that the following
results.

Theorem9. Let𝑋 and𝑍 be complete and 𝛾 ∈ {𝜇, 𝜂, 𝜄}. Assume
that

(i) in𝑋 × 𝑍, 𝐾
1
is closed and 𝐾

2
is lsc;

(ii) 𝑓 is upper 0-level closed in 𝐾
1
(𝑋, 𝑍) × 𝐾

2
(𝑋, 𝑍) × 𝑍;

(iii) 𝐹(⋅, 𝑦∗) is upper 0-level closed in𝑋×𝑍, for all𝑦∗ ∈ 𝑔𝑟𝑆;
(iv) the mapping 𝑊 : 𝑋 × 𝑍 → 2𝑍 defined by 𝑊(𝑥) =

𝑍 \ − int𝐶(𝑥) is closed;
(v) the set-valued mapping 𝐶 : 𝑋 × 𝑍 → 2𝑍 is closed;
(vi) for any 𝑥 ∈ Ω, 𝐹(𝑥∗, 𝑦∗) ∈ −𝜕𝐶 and ∃𝑦∗ ∈ 𝑔𝑟𝑆 and

for any 𝑥 ∈ 𝑆, 𝑓(𝑥, 𝑦, 𝑧) ∈ −𝜕𝐶 and ∃𝑦 ∈ 𝐾
2
(𝑥, 𝑧).

Then, (BVEPEC) is type II LP well posed if and only if
𝛾(Γ
2
(𝜉, 𝜖)) → 0 (𝑟𝑒𝑠𝑝., 𝛾(Γ

4
(𝜉, 𝜖)) → 0) → 0 as (𝜉, 𝜖) →

(0, 0).

4. Optimization Problem with Equilibrium
Constraints (OPEC)

In this section, we will present the criteria and characteriza-
tion for four types of (BVEPEC) and introduce a gap function
for (BVEPEC) using the nonlinear scalarization function
and then we investigate the equivalent relations between the
LP well-posedness for bilevel vector optimization problem
with equilibrium constraints (BVOPEC) and the LP well-
posedness for vector equilibrium problem with equilibrium
constraints (BVEPEC). Now, consider the following opti-
mization problem with equilibrium constraints.

Let 𝑆 : 𝑍 → 2
𝑋 be the solution map of (VQEP). Let

𝜙 : 𝑋 × 𝑍 → 𝑅, where 𝑅 = (−∞, +∞]. The bilevel
vector optimization problem with equilibrium constraints is
as follows:

(BVOPEC) minimize 𝜙 (𝑥, 𝑧) s.t., 𝑥∗ := (𝑥, 𝑧) ∈ gr𝑆.
(32)

Note that 𝑧 is a parameter of the vector quasi-equilibrium
problem defining the constraint, but it is a component of
the decision variable (𝑥, 𝑧) of (BVEPEC) and (BVOPEC) and
these problems are not parametric.

Definition 10. A sequence {𝑥∗
𝑛
} = {(𝑥

𝑛
, 𝑧
𝑛
)} ⊂ 𝑋 × 𝑍 is called

type I LP minimizing sequence for (BVOPEC) if and only if

𝑑 (𝑥
∗

𝑛
, gr𝑆) 󳨀→ 0; (33)

lim sup
𝑛→∞

𝜙 (𝑥
∗

𝑛
) ≤ V∗; (34)

{𝑥
𝑛
} is an approximating sequence for (QEP)

corresponding to {𝑧
𝑛
} .

(35)

Definition 11. A sequence {𝑥∗
𝑛
} = {(𝑥

𝑛
, 𝑧
𝑛
)} ⊂ 𝑋 × 𝑍 is called

type II LP minimizing sequence for (BVOPEC) if and only if
(33) and (35) hold and

lim
𝑛→∞

𝜙 (𝑥
∗

𝑛
) = V∗. (36)

Definition 12. Problems (BVOPEC) is called type I (resp., type
II) LP well posed if and only if

(i) the solution set of (BVOPEC) is nonempty;
(ii) for any type I (resp., type II), LPminimizing sequence

of (BVOPEC) has a subsequence converging to a
solution.

Now, we recall the definition of nonlinear scalarization
function introduced by Chen et al. [36].

The nonlinear scalarization function 𝜉
𝑒
: 𝑍 → R is

defined by

𝜉
𝑒 (𝑥) = min {𝜆 ∈ R : 𝑥 − 𝜆𝑒 (𝑥) ∈ −𝐶 (𝑥)} . (37)

Definition 13. A mapping 𝜙 : 𝑌 → R ∪ {+∞} is called a gap
function for (BVEPEC) if

(i) 𝜙(𝑥) ≥ 0, ∀𝑥 ∈ 𝑌;
(ii) 𝜙(𝑥∗) = 0, ∀𝑥∗ ∈ gr𝑆 if and only if 𝑥∗ ∈ Ω.

We introduced the following gap function defined by

𝜙
∗
(𝑥) = sup

𝑦∈gr𝑆
{−𝜉
𝑒
(𝐹 (𝑥, 𝑦))} , ∀𝑥 ∈ gr𝑆. (38)

Remark 14. (i) By Definition 4, it is easy to see that 𝜙∗(𝑥)
is a gap function for (EPEC). Moreover, if Ω ̸= 0, then
Dom(𝜙∗(𝑥)) ∩ gr𝑆 ̸= 0.

(ii) By Definition 4, it is clear that 𝑥
0
∈ Ω if and only if 𝑥

0

minimizes 𝜙∗(𝑥) over gr𝑆 with 𝜙∗(𝑥
0
) = 0.

Now, we prove the following lemma.

Lemma 15. Let for any 𝑥 ∈ 𝑔𝑟𝑆, 𝐹(𝑥, 𝑥) ∈ −𝜕𝐶(𝑥), where
𝜕𝐶(𝑥) is the topological boundary of 𝐶(𝑥) and 𝐹(⋅, 𝑦) is upper
0-level closed on𝑋 × 𝑍, for all 𝑦 ∈ 𝑔𝑟𝑆. Then, the mapping 𝜙∗
defined by (38) is lower 0-level closed on 𝑋 × 𝑍.
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Proof. Suppose that {𝑥∗
𝑛
} ∈ gr𝑆 satisfies 𝑥∗

𝑛
→ 𝑥∗ ∈ gr𝑆 and

𝜙∗(𝑥∗
𝑛
) ≤ 𝑏, ∀𝑛 ∈ N. Follows from (38)

𝜙
∗
(𝑥
𝑛
)
∗
= sup
𝑦∈gr𝑆

{−𝜉
𝑒
(𝐹 (𝑥
∗

𝑛
, 𝑦))} ≤ 0. (39)

Then, 𝜉
𝑒
(𝐹(𝑥∗
𝑛
, 𝑦)) ≥ 0, ∀𝑦 ∈ gr𝑆. By the upper closed 0-level

of 𝐹 in first argument, we know that

𝜉
𝑒
𝐹 (𝑥
∗
, 𝑦) ≥ 0, ∀𝑦 ∈ gr𝑆. (40)

That is,

𝜙
∗
(𝑥
∗
) = sup
𝑦∈gr𝑆

{−𝜉
𝑒
(𝐹 (𝑥
∗
, 𝑦))} ≤ 0. (41)

Then, we have that 𝜙∗(𝑥∗) is lower closed 0-level. This
completes the proof.

Theorem 16. Suppose that the assumptions of Lemma 15 are
satisfied. Then the following results hold:

(i) (BVEPEC) is the type I LP well-posedness if and only
if (BVOPEC) is the type I LP well-posedness with the
function 𝜙 defined by (38).

(ii) (BVEPEC) is the type II LP well-posedness if and only
if (BVOPEC) is the type II LP well-posedness with the
function 𝜙 defined by (38).

Proof. (i) We know that 𝜙∗ is a gap function of (BVEPEC),
and 𝑥∗ ∈ Ω if and only if 𝑥∗ ∈ gr𝑆 with V = 𝜙∗(𝑥∗) = 0.
Assume that {𝑥∗

𝑛
} = {(𝑥

𝑛
⋅ 𝑧
𝑛
)} is any type I LP approximating

solution sequence for (BVEPEC). Then, there exist {𝜖
𝑛
} > 0

with 𝜖
𝑛
→ 0 such that

𝑑 (𝑥
∗

𝑛
, gr𝑆) ≤ 𝜖

𝑛
; (42)

𝐹 (𝑥
∗

𝑛
, 𝑦
∗
) + 𝜖𝑒 (𝑥

∗

𝑛
) ∉ − int𝐶 (𝑥∗

𝑛
) , ∀𝑦

∗
∈ gr𝑆, (43)

𝑓 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) + 𝜉𝑒 (𝑥

𝑛
) ∉ − int𝐶 (𝑥

𝑛
) , ∀𝑦

𝑛
∈ 𝐾
2
(𝑥
𝑛
, 𝑧
𝑛
) .

(44)

It follows from (43) that

𝜉
𝑒
(𝐹 (𝑥
∗

𝑛
, 𝑦
∗
)) ≥ −𝜖

𝑛
, ∀𝑦

∗
∈ gr𝑆. (45)

Then, we obtain

𝜙 (𝑥
∗

𝑛
) = sup {−𝜉

𝑒
(𝐹 (𝑥
∗

𝑛
, 𝑦
∗
))} ≤ 𝜖

𝑛
, ∀𝑦

∗
∈ gr𝑆. (46)

Hence,

lim sup
𝑛→∞

𝜙 (𝑥
∗

𝑛
) ≤ 0, since 𝜖

𝑛
󳨀→ 0. (47)

Therefore, {𝑥
𝑛
} is a type I LP minimizing sequence for

(BVOPEC).
Conversely, assume that {𝑥∗

𝑛
} is any type I LP mini-

mizing sequence for (BVOPEC). Then, 𝑑(𝑥∗
𝑛
, gr𝑆) → 0,

lim sup
𝑛→∞

𝜙(𝑥∗
𝑛
) ≤ 0, and 𝑓(𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) + 𝜉

𝑛
𝑒(𝑥
𝑛
) ∉

− int𝐶(𝑥
𝑛
), ∀𝑦
𝑛
∈ 𝐾
2
(𝑥, 𝑧). Then, there exist {𝜖

𝑛
} > 0 with

𝜖
𝑛
→ 0 satisfying 𝑑(𝑥∗

𝑛
, gr𝑆) ≤ 𝜖

𝑛
;

𝜙 (𝑥
∗

𝑛
) = sup {−𝜉

𝑒
(𝐹 (𝑥
∗

𝑛
, 𝑦
∗
))} ≤ 𝜖

𝑛
, ∀𝑦

∗
∈ gr𝑆. (48)

Then, we get 𝜉
𝑒
(𝐹(𝑥∗
𝑛
, 𝑦∗)) ≥ −𝜖

𝑛
or, equivalently,

𝐹 (𝑥
∗

𝑛
, 𝑦
∗
) + 𝜖
𝑛
𝑒 (𝑥
∗

𝑛
) ∉ − int𝐶 (𝑥∗

𝑛
) , ∀𝑦 ∈ gr𝑆. (49)

Hence, {𝑥∗
𝑛
} is a type I LP approximating solution sequence

for (BVEPEC). It follows that (BVEPEC) is the type I LP well-
posedness if and only if (BVOPEC) is the type I LP well-
posedness with the function 𝜙.

The proof of (ii) is similar to (i) and we are omitted. This
completes the proof.
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