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This paper investigates robust simultaneous stabilization (RSS) controlmethod for two port-controlledHamiltonian (PCH) systems
and proposes results on the design of simultaneous stabilization controller with parameters for such systems. Firstly, two PCH
systems are studied. Using the dissipative Hamiltonian structural properties, the systems are combined to generate an augmented
PCH system. When there are external disturbances in the systems, a robust controller with parameters is designed for the systems.
Secondly, an algorithm for solving parameters of the controller is proposed with symbolic computation. Finally, an illustrative
example is presented to show that the RSS controller obtained in this paper works very well.

1. Introduction

In recent years, port-controlled Hamiltonian (PCH) sys-
tems have been extensively studied in [1–6]. Indeed, the
Hamiltonian function in PCH systems is considered as the
total energy (sum of potential energy and kinetic energy)
in mechanical systems and is good candidate of Lyapunov
functions for many physical systems. Due to this and its nice
structural properties, PCH systems have drawn a good deal of
attention in practical control designs. Up to now, the energy-
based approach has been used in various control problems
and its applications have been well investigated for a wide
range of physical systems, including power systems and
robotic systems. Cheng et al. [7] considered the stabilization
of excitation control of power systems and proposed the
model of the generalized Hamiltonian systems, which con-
sists of externally supplied energy, dissipation, and internal
energy source. Xin and Kaneda [8, 9] presented a necessary
and sufficient condition for nonexistence of any singular
point in the derived control law and provided a complete
analysis of convergence of energy and the motion of the
Acrobot.

In practical control designs, due to system’s uncertainty,
failure modes, or systems with various modes of operation,
the simultaneous stabilization problem has often to be taken
into account. The problem is concerned with designing a
single controller which can stabilize all the systems simulta-
neously. In this way, the controller implementation cost will
be greatly reduced. So far, many important results have been
obtained for the simultaneous stabilization of linear systems
[10–14]. In general, it is difficult to design a simultaneous
stabilization controller for a class of nonlinear systems, but
it is a work worth doing for many researchers [15–20]. Ho-
Mock-Qai and Dayawansa [15] proposed a new method to
show that, given any countable family of stabilizable nonlin-
ear systems, there is a continuous state feedback law which
simultaneously stabilizes the family.Wang et al. [16] proposed
a number of results on the design of simultaneous stabiliza-
tion controller for the cases of two PCH systems and more
than two PCH systems. Xu et al. [17] presented sufficient con-
ditions for simultaneous stabilization with and without 𝐻

∞

performance. Sun and Wang [18] studied simultaneous sta-
bilization of a class of nonlinear descriptor systems via the
Hamiltonian function method and proposed two new results
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for the simultaneous stabilization and robust simultaneous
stabilization, respectively. Wei et al. [19] designed the parallel
simultaneous stabilization for a set of multi-input nonlinear
PCH systems with actuator saturation. Abdel-Magid et al.
[20] proposed the genetic algorithms for the simultaneous
stabilization of multimachine power systems over a wide
range of operating conditions via single-setting power system
stabilizers.

Controller parameterization is a fundamental problem in
the control theory and has aroused considerable attention
in recent decades. Lu et al. [21] and Isidori and Astolfi [22]
proposed a family of nonlinear 𝐻

∞
controllers via output

feedback. Astolfi [23] presented a family of nonlinear state-
feedback controllers, in which the system state and the exter-
nal disturbance are measurable. Yung et al. [24] extended
the state-space formulas and presented a family of 𝐻

∞
state-

feedback controllers for 𝑛-dimensional nonlinear system. Xu
andHou [25, 26] studied the generalizedHamiltonian system
and proposed a family of parameterized controllers in 𝐻

∞

control and adaptive control. The controllers [21–26] are
intended to solve the control problem for just one system.
There are fewer works for RSS control design of two PCH
systems.

Therefore, how to find a method for designing controller
with parameters to solve RSS problem for two PCH systems is
a challenging issue. In this paper, we investigate RSS problem
for two PCH systems and present a novel, straightforward,
and convenient method to design a controller with param-
eters to insure that two PCH systems are simultaneous sta-
bilization. The proposed method provides support in theory
for the practical application.

The remainder of this paper is organized as follows. In
Section 2, the problem of RSS for PCH systems is formulated.
Themain contribution of this paper is then given in Section 3,
in which a controller with parameters and an algorithm for
solving parameters are provided, respectively. We present a
numerical example for illustrating effectiveness and feasi-
bility of controller in Section 4 and conclusions follow in
Section 5.

2. Problem Formulation

Consider the following two dissipative PCH systems:

∑

1

:

{{

{{

{

𝑥̇ = [𝐽
1

(𝑥) − 𝑅
1

(𝑥)]
𝜕𝐻
1

(𝑥)

𝜕𝑥
+ 𝑔
1

(𝑥) 𝑢 + 𝑔
1

(𝑥) 𝜔,

𝑦 = 𝑔
𝑇

1
(𝑥)

𝜕𝐻
1

(𝑥)

𝜕𝑥
,

(1)

∑

2

:

{{{

{{{

{

̇𝜉 = [𝐽
2

(𝜉) − 𝑅
2

(𝜉)]
𝜕𝐻
2

(𝜉)

𝜕𝜉
+ 𝑔
2

(𝜉) 𝑢 + 𝑔
2

(𝜉) 𝜔,

𝜂 = 𝑔
𝑇

2
(𝜉)

𝜕𝐻
2

(𝜉)

𝜕𝜉
,

(2)

where 𝑥, 𝜉 ∈ R𝑛 and 𝑦, 𝜂 ∈ R𝑚 are the states vector
and outputs of the two systems, respectively; 𝑢 ∈ R𝑚 is
the controller with parameters; 𝜔 ∈ R𝑠 is the disturbance;

𝐽
𝑖
(𝑥) = −𝐽

𝑇

𝑖
(𝑥) ∈ R𝑛×𝑛, 0 ≤ 𝑅

𝑖
(𝑥) ∈ R𝑛×𝑛, 𝑔

𝑖
(𝑥) ∈ R𝑛×𝑚,

and 𝑔
𝑖
(𝑥) ∈ R𝑛×𝑠 are sufficiently smooth functions; 𝐻

𝑖
(𝑥) is

the Hamiltonian function which has a local minimum at the
equilibrium 𝑥

(𝑖)

𝑒
, 𝑖 = 1, 2, 𝑥

(1)

𝑒
= 𝑥
0
, 𝑥
(2)

𝑒
= 𝜉
0
.

Assumption 1. 𝐻(𝑥
(𝑖)

) ∈ 𝐶
2 and the Hessian matrix

Hess(𝐻(𝑥
(𝑖)

0
)) > 0 for systems (1) and (2).

Given a disturbance attenuation level 𝛾 > 0, choose

𝑧 = Λ (𝑔
𝑇

1
(𝑥)

𝜕𝐻
1

(𝑥)

𝜕𝑥
+ 𝑔
𝑇

2
(𝜉)

𝜕𝐻
2

(𝜉)

𝜕𝜉
) (3)

as the penalty function, whereΛ ∈ R𝑠×𝑚 is a weightingmatrix
with full column rank and satisfies 𝜆(Λ

𝑇

Λ) ≤ 1, where 𝜆(⋅)

denotes the eigenvalue of a matrix.Then, our objective of this
section is described as follows.

RSS Control. Design an 𝐿
2
feedback controller 𝑢 = 𝛼(𝑥, 𝜉)

(𝛼(𝑥
0
, 𝜉
0
) = 0), such that

(R1) the 𝐿
2
gain (from 𝜔 to 𝑧) of the closed-loop system is

less than 𝛾;
(R2) systems (1) and (2) are simultaneously asymptotically

stable when 𝜔 vanishes.

hold simultaneously.
In the end, we give a definition and a lemma required in

next section.

Definition 2 (see [27]). System (1) is called zero-energy-
gradient (ZEG) observable with respect to 𝑦 if 𝑦(𝑡) = 0 and
𝜔(𝑡) = 0, ∀𝑡 ≥ 0, implies ∇𝐻(𝑥(𝑡)) = 0, ∀𝑡 ≥ 0; system
(1) is called ZEG detectable with respect to 𝑦 if 𝑦(𝑡) = 0 and
𝜔(𝑡) = 0, ∀𝑡 ≥ 0, implies lim

𝑡→∞
∇𝐻(𝑥(𝑡)) = 0; system (1)

is called generalized ZEG observable (detectable) if 𝑦(𝑡) = 0,
𝑧(𝑡) = 0, and 𝜔(𝑡) = 0, ∀𝑡 ≥ 0, implies ∇𝐻(𝑥(𝑡)) = 0, ∀𝑡 ≥ 0

(lim
𝑡→∞

∇𝐻(𝑥(𝑡)) = 0).

Lemma 3 (see [27]). Consider a nonlinear system

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝜔, 𝑓 (𝑥
0
) = 0

𝑧 = ℎ (𝑥) ,

(4)

where 𝑥 ∈ R𝑛 is the state vector, 𝜔 ∈ R𝑠 is the disturbances, 𝑧 ∈

R𝑞 is the penalty. If there exists the function𝑉(𝑥) ≥ 0 (𝑉(𝑥
0
) =

0), such that HJI inequality

(
𝜕𝑉

𝜕𝑥
)

𝑇

𝑓 (𝑥) +
1

2𝛾2
(

𝜕𝑉

𝜕𝑥
)

𝑇

𝑔 (𝑥) 𝑔(𝑥)
𝑇

(
𝜕𝑉

𝜕𝑥
)

+
1

2
ℎ(𝑥)
𝑇

ℎ (𝑥) ≤ 0

(5)

holds, it is implied that the 𝐿
2
gain of the closed-loop system (2)

(from 𝜔 to 𝑧) is bounded by 𝛾 (𝛾 > 0); that is,

∫

𝑇

0

‖𝑧‖
2

𝑑𝑡 ≤ ∫

𝑇

0

𝛾
2

‖𝜔‖
2

𝑑𝑡. (6)
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3. Main Results

In this section, we propose an 𝐻
∞
controller with parameters

for systems (1) and (2) and an algorithm for solving param-
eters. The parameterization methods suggest a framework to
solve the RSS control problem of two PCH systems.

3.1. RSS of Two PCH Systems

Theorem 4. Considering systems (1) and (2), with the penalty
function (3) and the given level 𝛾 > 0, assume that systems (1)
and (2) are generalized ZEG detectable (when 𝜔 = 0). If

(i) there exists a symmetric matrix 𝐾 ∈ R𝑚×𝑚, satisfying

𝐾(Λ
𝑇

Λ + (1/𝛾
2

)𝐼
𝑚

) = (Λ
𝑇

Λ + (1/𝛾
2

)𝐼
𝑚

)𝐾, such that

𝑅̃
1

(𝑥) = 𝑅
1

(𝑥) + 𝐾
11

(𝑥, 𝑥) −
1

2𝛾2
𝑔
1

(𝑥) 𝑔
𝑇

1
(𝑥)

−
1

2
𝑔
1

(𝑥) Λ
𝑇

Λ𝑔
𝑇

1
(𝑥) ≥ 0,

𝑅̃
2

(𝜉) = 𝑅
2

(𝜉) − 𝐾
22

(𝜉, 𝜉) −
1

2𝛾2
𝑔
2

(𝜉) 𝑔
𝑇

2
(𝜉)

−
1

2
𝑔
2

(𝜉) Λ
𝑇

Λ𝑔
𝑇

2
(𝜉) ≥ 0,

(7)

where 𝐾
𝑖𝑗

(𝑥, 𝜉) = (1/2)𝑔
𝑖
(𝑥)𝐾(Λ

𝑇

Λ + (1/𝛾
2

))𝑔
𝑇

𝑗
(𝜉),

𝑖, 𝑗 = 1, 2;

(ii)

𝑔
1
𝑔
𝑇

2
= 0, 𝑔

1
𝑔
𝑇

2
= 0; (8)

(iii)

[
𝜕𝐻
𝑇

1
(𝑥)

𝜕𝑥
𝑔
1

(𝑥) +
𝜕𝐻
𝑇

2
(𝜉)

𝜕𝜉
𝑔
2

(𝜉)] Φ (𝑥, 𝜉) ≤ 0 (9)

hold simultaneously, then

𝑢 =
1

2
𝐾 (Λ
𝑇

Λ +
1

𝛾2
𝐼
𝑚

)

× (−𝑔
𝑇

1
(𝑥)

𝜕𝐻
1

(𝑥)

𝜕𝑥
+ 𝑔
𝑇

2
(𝜉)

𝜕𝐻
2

(𝜉)

𝜕𝜉
) + Φ (𝑥, 𝜉)

(10)

is an 𝐿
2
disturbance attenuation controller, such that

both R1 and R2 hold simultaneously for systems (1) and
(2), where Φ(𝑥, 𝜉) ∈ R𝑚×1 and 𝐼

𝑚
is an 𝑚 × 𝑚 unit

matrix.

Proof. Substituting controller (10) into systems (1) and (2), we
obtain the following closed-loop systems:

𝑥̇ = [𝐽
1

(𝑥) − 𝑅
1

(𝑥)]
𝜕𝐻
1

(𝑥)

𝜕𝑥

+ 𝑔
1

(𝑥) [
1

2
𝐾 (Λ
𝑇

Λ +
1

𝛾2
𝐼
𝑚

)

× (−𝑔
𝑇

1
(𝑥)

𝜕𝐻
1

(𝑥)

𝜕𝑥
+ 𝑔
𝑇

2
(𝜉)

𝜕𝐻
2

(𝜉)

𝜕𝜉
)

+ Φ (𝑥, 𝜉)] + 𝑔
1

(𝑥) 𝜔,

̇𝜉 = [𝐽
2

(𝜉) − 𝑅
2

(𝜉)]
𝜕𝐻
2

(𝜉)

𝜕𝜉

+ 𝑔
2

(𝜉) [
1

2
𝐾 (Λ
𝑇

Λ +
1

𝛾2
𝐼
𝑚

)

× (−𝑔
𝑇

1
(𝑥)

𝜕𝐻
1

(𝑥)

𝜕𝑥
+ 𝑔
𝑇

2
(𝜉)

𝜕𝐻
2

(𝜉)

𝜕𝜉
)

+ Φ (𝑥, 𝜉)] + 𝑔
2

(𝜉) 𝜔.

(11)

From systems (1) and (2), system (11) and the penalty
function (3) can be rewritten as an augmented PCH system
(12):

𝑋̇ = [𝐽 (𝑋) − 𝑅 (𝑋)]
𝜕𝐻 (𝑋)

𝜕𝑋
+ 𝐺 (𝑋) V + 𝐺 (𝑋) 𝜔

= 𝑓 (𝑋) + 𝐺 (𝑋) 𝜔,

𝑌 = 𝑀 (𝑋)
𝜕𝐻 (𝑋)

𝜕𝑋
,

𝑧 = Λ𝐺
𝑇

(𝑋)
𝜕𝐻 (𝑋)

𝜕𝑋
:= ℎ (𝑋) ,

(12)

where 𝑋 = [𝑥
𝑇

, 𝜉
𝑇

]
𝑇, 𝑌 = [𝑦

𝑇

, 𝜂
𝑇

]
𝑇, 𝐻(𝑋) = 𝐻

1
(𝑥) + 𝐻

2
(𝜉),

V = Φ(𝑥, 𝜉)

𝜕𝐻 (𝑋)

𝜕𝑋
=

[
[

[

𝜕𝐻
1

(𝑥)

𝜕𝑥
𝜕𝐻
2

(𝜉)

𝜕𝜉

]
]

]

,

𝐽 (𝑋) = [
𝐽
1

(𝑥) 𝐾
12

(𝑥, 𝜉)

−𝐾
21

(𝜉, 𝑥) 𝐽
2

(𝜉)
] ,

𝑅 (𝑋) = [
𝑅
1

(𝑥) + 𝐾
11

(𝑥, 𝑥) 0

0 𝑅
2

(𝜉) − 𝐾
22

(𝜉, 𝜉)
] ,

𝐺 (𝑋) = [
𝑔
1

(𝑥)

𝑔
2

(𝜉)
] , 𝐺 (𝑋) = [

𝑔
1

(𝑥)

𝑔
2

(𝜉)
] ,

𝑀 (𝑋) = [
𝑔
𝑇

1
(𝑥) 0

0 𝑔
𝑇

2
(𝜉)

] .

(13)
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Consider the candidate Lyapunov function 𝑉(𝑋) =

𝐻(𝑋) − 𝑐 ≥ 0, where 𝑐 = 𝐻(𝑋
0
). With Lemma 3 and the con-

ditions of the theorem, we have

(
𝜕𝑉

𝜕𝑋
)

𝑇

𝑓 (𝑋) +
1

2𝛾2
(

𝜕𝑉

𝜕𝑋
)

𝑇

𝐺 (𝑋) 𝐺
𝑇

(𝑋) (
𝜕𝑉

𝜕𝑋
)

+
1

2
ℎ
𝑇

(𝑋) ℎ (𝑋)

= −(
𝜕𝐻

𝜕𝑋
)

𝑇

𝑅 (𝑋)
𝜕𝐻

𝜕𝑋

+ (
𝜕𝐻

𝜕𝑋
)

𝑇

𝐺 (𝑋) ] +
1

2𝛾2
(

𝜕𝐻

𝜕𝑋
)

𝑇

𝐺 (𝑋) 𝐺
𝑇

(𝑋) (
𝜕𝐻

𝜕𝑋
)

+
1

2
ℎ
𝑇

(𝑋) ℎ (𝑋)

= − [∇𝐻
𝑇

1
∇𝐻
𝑇

2
]

× [
𝑅
1

+ 𝐾
11

0

0 𝑅
2

− 𝐾
22

] [
∇𝐻
1

∇𝐻
2

]

+ [∇𝐻
𝑇

1
∇𝐻
𝑇

2
] [

𝑔
1

𝑔
2

] Φ (𝑥, 𝜉)

+
1

2𝛾2
[∇𝐻
𝑇

1
∇𝐻
𝑇

2
] [

𝑔
1

𝑔
2

] [𝑔
𝑇

1
𝑔
𝑇

2
] [

∇𝐻
1

∇𝐻
2

]

+
1

2
[∇𝐻
𝑇

1
∇𝐻
𝑇

2
] [

𝑔
1

𝑔
2

] Λ
𝑇

Λ [𝑔
𝑇

1
𝑔
𝑇

2
] [

∇𝐻
1

∇𝐻
2

]

= − (∇𝐻
𝑇

1
(𝑅
1

+ 𝐾
11

) ∇𝐻
1

+ ∇𝐻
𝑇

2
(𝑅
2

− 𝐾
22

) ∇𝐻
2
)

+ (∇𝐻
𝑇

1
𝑔
1

+ ∇𝐻
𝑇

2
𝑔
2
) Φ (𝑥, 𝜉)

+
1

2𝛾2
(∇𝐻
𝑇

1
𝑔
1
𝑔
𝑇

1
∇𝐻
1

+ ∇𝐻
𝑇

2
𝑔
2
𝑔
𝑇

1
∇𝐻
1

+∇𝐻
𝑇

1
𝑔
1
𝑔
𝑇

2
∇𝐻
2

+ ∇𝐻
𝑇

2
𝑔
2
𝑔
𝑇

2
∇𝐻
2
)

+
1

2
(∇𝐻
𝑇

1
𝑔
1
Λ
𝑇

Λ𝑔
𝑇

1
∇𝐻
1

+ ∇𝐻
𝑇

2
𝑔
2
Λ
𝑇

Λ𝑔
𝑇

1
∇𝐻
1

+∇𝐻
𝑇

1
𝑔
1
Λ
𝑇

Λ𝑔
𝑇

2
∇𝐻
2

+ ∇𝐻
𝑇

2
𝑔
2
Λ
𝑇

Λ𝑔
𝑇

2
∇𝐻
2
)

= −∇𝐻
𝑇

1
(𝑅
1

+ 𝐾
11

−
1

2𝛾2
𝑔
1
𝑔
𝑇

1
−

1

2
𝑔
1
Λ
𝑇

Λ𝑔
𝑇

1
) ∇𝐻
1

− ∇𝐻
𝑇

2
(𝑅
2

− 𝐾
22

−
1

2𝛾2
𝑔
2
𝑔
𝑇

2
−

1

2
𝑔
2
Λ
𝑇

Λ𝑔
𝑇

2
) ∇𝐻
2

+ (∇𝐻
𝑇

1
𝑔
1

+ ∇𝐻
𝑇

2
𝑔
2
) Φ (𝑥, 𝜉) ≤ 0.

(14)

According to the lemma, the 𝐿
2
gain of system (12) (from 𝜔

to 𝑧) is no more than 𝛾 and R1 holds.

Next, we prove that system (12) is asymptotically stable
when 𝜔 = 0. When 𝜔 = 0, it is easy to know from (12) that

𝑉̇ (𝑋) = (
𝜕𝑉

𝜕𝑋
)

𝑇

[𝐽 (𝑋) − 𝑅 (𝑋)] (
𝜕𝑉

𝜕𝑋
) + (

𝜕𝑉

𝜕𝑋
)

𝑇

𝐺 (𝑋) V

= −(
𝜕𝐻 (𝑋)

𝜕𝑋
)

𝑇

𝑅 (𝑋) (
𝜕𝐻 (𝑋)

𝜕𝑋
)

+ (
𝜕𝐻 (𝑋)

𝜕𝑋
)

𝑇

𝐺 (𝑋) V

= − [∇𝐻
𝑇

1
∇𝐻
𝑇

2
] [

𝑅
1

+ 𝐾
11

0

0 𝑅
2

− 𝐾
22

]

× [
∇𝐻
1

∇𝐻
2

] + [∇𝐻
𝑇

1
∇𝐻
𝑇

2
] [

𝑔
1

𝑔
2

] Φ (𝑥, 𝜉)

= −∇𝐻
𝑇

1
(𝑅
1

+ 𝐾
11

−
1

2𝛾2
𝑔
1
𝑔
𝑇

1
−

1

2
𝑔
1
Λ
𝑇

Λ𝑔
𝑇

1
) ∇𝐻
1

−
1

2𝛾2
∇𝐻
𝑇

1
𝑔
1
𝑔
𝑇

1
∇𝐻 −

1

2
∇𝐻
𝑇

1
𝑔
1
Λ
𝑇

Λ𝑔
𝑇

1
∇𝐻

− ∇𝐻
𝑇

2
(𝑅
2

− 𝐾
22

−
1

2𝛾2
𝑔
2
𝑔
𝑇

2
−

1

2
𝑔
2
Λ
𝑇

Λ𝑔
𝑇

2
) ∇𝐻
2

−
1

2𝛾2
∇𝐻
𝑇

2
𝑔
2
𝑔
𝑇

2
∇𝐻
2

−
1

2
∇𝐻
𝑇

2
𝑔
2
Λ
𝑇

Λ𝑔
𝑇

2
∇𝐻
2

+ (∇𝐻
𝑇

1
𝑔
1

+ ∇𝐻
𝑇

2
𝑔
2
) Φ (𝑥, 𝜉) ≤ 0.

(15)

Thus, the solution of the closed-loop system converges to the
largest invariant set contained in

𝑆 := {𝑋 : 𝑉̇ (𝑋) = 0}

⊂ {𝑋 : 𝑦 = 𝑔
𝑇

1
∇𝐻
1

≡ 0, 𝜂 = 𝑔
𝑇

2
∇𝐻
2

≡ 0,

𝑔
𝑇

1
∇𝐻
1

≡ 0, 𝑔
𝑇

2
∇𝐻
2

≡ 0,

∀𝑡 ≥ 0} .

(16)

From the fact that system (12) is generalized ZEG detectable,
we know that𝑔

𝑇

1
∇𝐻
1

≡ 0,𝑔𝑇
1

∇𝐻
1

≡ 0 ⇒ 𝑥 → 𝑥
0

(𝑡 → ∞),
and 𝑔

𝑇

2
∇𝐻
2

≡ 0, 𝑔
𝑇

2
∇𝐻
2

≡ 0 ⇒ 𝜉 → 𝜉
0

(𝑡 → ∞). Hence,
the largest invariant set contains only one point; that is,
𝑋
0

= [𝑥
𝑇

0
, 𝜉
𝑇

0
]
𝑇 which is the equilibrium point. From LaSalle’s

invariance principle, the closed-loop system (12) is asymptot-
ically stable at its equilibrium and R2 holds. This completes
the proof.

Remark 5. (1) Conditions (7) and (8) in Theorem 4 are not
restrictive and can be easily satisfied in many systems.

(2) Φ(𝑥, 𝜉) is a polynomial vector with parameters. We
can obtain the parameters ofΦ(𝑥, 𝜉) via solving condition (9).

(3) The proposed parameterization method can be used
for a nonlinear control system, and of course the first step
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in applying the method is to express the nonlinear system as
a dissipative Hamiltonian system based on dissipative Hamil-
tonian realization methods [28, 29].

(4) The current studies of the proposed parameterization
method merely remain in theory, but it will be used for
practical applications such as multimachine power systems
[20], because of the broad applicability of the method for
nonlinear control system.

3.2. Solving Parameters Algorithm (SP). From condition (7),
we can obtain the 𝛾

∗. Let 𝛾 ≥ 𝛾
∗ such that condition (7) holds.

Then we propose an algorithm to find parameters ranges
of controller (10) via solving the parameters of Φ(𝑥, 𝜉) in
condition (9). The SP algorithm now proceeds as follows.

(S1) Set Φ(𝑥, 𝜉) = [Φ
1
(𝑥), Φ

2
(𝜉)]
𝑇 and suppose a positive

integer 𝑟, which is the degree of polynomial vector
Φ(𝑥, 𝜉). Write Φ

𝑖
(𝑥
𝑖
) = ∑

𝑗=𝑙

𝑗=1,𝑟
𝑎
𝑖𝑗

𝑝
𝑟
(𝑥
𝑖
), where 𝑙 =

∑
𝑟

𝑐(𝑛+𝑟−1, 𝑟), 𝑝
𝑟
(𝑥) = ∏

𝑛

𝑖=1
𝑥
𝑟𝑖

𝑖
, and 𝑛 is the number

of state variable.
(S2) Let 𝑆 = −[(𝜕𝐻

𝑇

1
(𝑥)/𝜕𝑥)𝑔

1
(𝑥) + (𝜕𝐻

𝑇

2
(𝜉)/

𝜕𝜉)𝑔
2
(𝜉)]Φ(𝑥, 𝜉).

(S3) The influence of high order items can be ignored
because this paper considers locally asymptotically
stable for system. Choose all terms of deg (𝑆) ≥ 3 and
deg (𝑆) = 1 from 𝑆 and let the coefficients of these
terms be zero. So obtain a set of equations 𝐴.

(S3.1) Observe equations 𝐴. Let some parameters be
zero and substitute them into𝐴.Then obtain the
simplified equations 𝐴

󸀠.
(S3.2) Obtain a set of parameters solution 𝑈

1
via

solving𝐴
󸀠 by using cylindrical algebraic decom-

position (CAD) algorithm [30].
(S3.3) Substitute 𝑈

1
into 𝑆 and obtain a new polyno-

mial 𝑆, which is a quadratic form.

(S4) Rewrite 𝑆 as coefficient matrix 𝑀, and all principal
minors of 𝑀 must be positive semidefinite [31].
Choose all principal minors of 𝑀 and obtain inequal-
ities 𝐵.

(S4.1) Observe inequalities 𝐵. Let some parameters be
zero and substitute them into𝐵.Then obtain the
simplified inequalities 𝐵

󸀠.
(S4.2) Obtain a set of parameters solution 𝑈

2
via

solving 𝐵
󸀠 by using CAD algorithm.

(S5) Let 𝑈 = 𝑈
1

∪ 𝑈
2
and substitute 𝑈 into controller

(7) and thus obtain the polynomial controller with
parameters. This completes the algorithm.

Remark 6. (1) The SP algorithm starts from 𝑟 = 1 normally.
(2) The CAD algorithm is given by semialgebraic-set-

tools of regular-chains in Maple 16.
(3) It is merely to simplify computation that we let some

parameters be zero before using CAD algorithm. However,
these parameters are not necessarily zero. So the set of

parameters solution obtained by SP algorithm is a subset of
solutions.

4. Numerical Experiments

Consider the following PCH systems with external distur-
bances described as

𝐽
1

(𝑥) = [

[

0 𝑥
1

0

−𝑥
1

0 −𝑥
2

0 𝑥
2

0

]

]

, 𝑔
1

= [

[

1 −1

0 0

−1 1

]

]

,

𝑔
1

= [

[

1 1

0 0

1 1

]

]

,

𝑅
1

(𝑥) = Diag {3, 1, 3} , 𝐻
1

(𝑥) =
1

2
(𝑥
2

1
+ 2𝑥
2

2
+ 𝑥
2

3
) ,

𝐽
2

(𝜉) = [

[

0 −𝜉
2

2𝜉
3

𝜉
2

0 0

−2𝜉
3

0 0

]

]

, 𝑔
2

= [

[

1 1

1 1

0 0

]

]

,

𝑔
2

= [

[

1 −1

−1 1

0 0

]

]

,

𝑅
2

(𝜉) = Diag {5, 5, 5} , 𝐻
2

(𝜉) =
1

2
(𝜉
2

1
+ 𝜉
2

2
+ 𝜉
2

3
) .

(17)

4.1. Controller Design and Solving Parameters. From system
(17), it is easy to get

Hess (𝐻 (𝑥
0
)) = [

[

1 0 0

0 2 0

0 0 1

]

]

> 0, (18)

Hess (𝐻 (𝜉
0
)) = [

[

1 0 0

0 1 0

0 0 1

]

]

> 0. (19)

So the assumption holds.
Given a disturbance attenuation level 𝛾 > 0, choose

𝑧 = Λ (𝑔
𝑇

1
∇𝐻
1

+ 𝑔
𝑇

2
∇𝐻
2
) . (20)

Let 𝐾 = [
1 0

0 −1
], Λ = [

√3/2 0

0 √3/2

].
Then, 𝐾

𝑇

𝐾 = [
1 0

0 1
], Λ
𝑇

Λ = [
3/4 0

0 3/4
],

𝐾 (Λ
𝑇

Λ +
1

𝛾2
𝐼
𝑚

) = (Λ
𝑇

Λ +
1

𝛾2
𝐼
𝑚

) 𝐾

=

[
[
[

[

3

4
+

1

𝛾2
0

0 −
3

4
−

1

𝛾2

]
]
]

]

.

(21)
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A straightforward computation shows that when 𝛾 ≥ 2

𝑅̃
1

(𝑥) =

[
[
[
[
[

[

9

4
−

1

𝛾2
0

3

4
−

1

𝛾2

0 1 0

3

4
−

1

𝛾2
0

9

4
−

1

𝛾2

]
]
]
]
]

]

≥ 0,

𝑅̃
2

(𝜉) =

[
[
[
[
[

[

17

4
−

1

𝛾2
−

3

4
+

1

𝛾2
0

−
3

4
+

1

𝛾2

17

4
−

1

𝛾2
0

0 0 5

]
]
]
]
]

]

≥ 0,

𝑔
1
𝑔
𝑇

2
= [

[

0 0 0

0 0 0

0 0 0

]

]

, 𝑔
1
𝑔
𝑇

2
= [

[

0 0 0

0 0 0

0 0 0

]

]

.

(22)

From system (17), we have [−𝑔
𝑇

1
∇𝐻
1

+ 𝑔
𝑇

2
∇𝐻
2
] =

[−𝑥
1

+ 𝑥
3

+ 𝜉
1

+ 𝜉
2

𝑥
1

− 𝑥
3

+ 𝜉
1

+ 𝜉
2
]
𝑇 and obtain that

𝑢 =

[
[
[

[

(
3

8
+

1

2𝛾2
) (−𝑥

1
+ 𝑥
3

+ 𝜉
1

+ 𝜉
2
)

(−
3

8
−

1

2𝛾2
) (𝑥
1

− 𝑥
3

+ 𝜉
1

+ 𝜉
2
)

]
]
]

]

+ Φ (𝑥, 𝜉) . (23)

Let Φ(𝑥, 𝜉) = [
Φ1(𝑥)

Φ2(𝜉)
]. We know 𝑛 = 6 in system (12) and

let 𝑟 = 1. We have Φ
1
(𝑥) = 𝑎

1
𝑥
1

+ 𝑎
2
𝑥
2

+ 𝑎
3
𝑥
3
, Φ
2
(𝜉) =

𝑏
1
𝜉
1

+ 𝑏
2
𝜉
2

+ 𝑏
3
𝜉
3
, where 𝑎

𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, 3, are the parameters.

From system (17), we obtain that [∇𝐻
𝑇

1
𝑔
1

+ ∇𝐻
𝑇

2
𝑔
2
] =

[𝑥
1

− 𝑥
3

+ 𝜉
1

+ 𝜉
2

−𝑥
1

+ 𝑥
3

+ 𝜉
1

+ 𝜉
2
].

Let 𝑆 = −[∇𝐻
𝑇

1
𝑔
1

+ ∇𝐻
𝑇

2
𝑔
2
]Φ(𝑥, 𝜉), and we have

𝑆 = −𝑎
1
𝑥
2

1
− 𝑎
2
𝑥
1
𝑥
2

− (𝑎
3

− 𝑎
1
) 𝑥
1
𝑥
3

− (𝑎
1

− 𝑏
1
) 𝑥
1
𝜉
1

− (𝑎
1

− 𝑏
2
) 𝑥
1
𝜉
2

+ 𝑏
3
𝑥
1
𝜉
3

+ 𝑎
2
𝑥
2
𝑥
3

− 𝑎
2
𝑥
2
𝜉
1

− 𝑎
2
𝑥
2
𝜉
2

+ 𝑎
3
𝑥
2

3
− (𝑎
3

+ 𝑏
1
) 𝑥
3
𝜉
1

− (𝑎
3

+ 𝑏
2
) 𝑥
3
𝜉
2

− 𝑏
3
𝑥
3
𝜉
3

− 𝑏
1
𝜉
2

1

− (𝑏
1

+ 𝑏
2
) 𝜉
1
𝜉
2

− 𝑏
3
𝜉
1
𝜉
3

− 𝑏
2
𝜉
2

2
− 𝑏
3
𝜉
2
𝜉
3
.

(24)

𝑆 is a quadratic form and can be rewritten as a coefficient
matrix (multiply constant 2 for simplifying computation):

𝑀 =

[
[
[
[
[
[
[

[

−2𝑎
1

−𝑎
2

−𝑎
3

+ 𝑎
1

−𝑎
1

+ 𝑏
1

−𝑎
1

+ 𝑏
2

𝑏
3

−𝑎
2

0 𝑎
2

−𝑎
2

−𝑎
2

0

−𝑎
3

+ 𝑎
1

𝑎
2

2𝑎
3

−𝑎
3

− 𝑏
1

−𝑎
3

− 𝑏
2

−𝑏
3

−𝑎
1

+ 𝑏
1

−𝑎
2

−𝑎
3

− 𝑏
1

−2𝑏
1

−𝑏
1

− 𝑏
2

−𝑏
3

−𝑎
1

+ 𝑏
2

−𝑎
2

−𝑎
3

− 𝑏
2

−𝑏
1

− 𝑏
2

−2𝑏
2

−𝑏
3

𝑏
3

0 −𝑏
3

−𝑏
3

−𝑏
3

0

]
]
]
]
]
]
]

]

.

(25)

All principal minors of 𝑀 must be positive semidefinite.
We have inequalities 𝐵 from 𝑀. From 𝐵, we can easily obtain
that 𝑎

1
≤ 0, 𝑎

3
≥ 0. Substitute 𝑈

1
= {𝑎
2

= 0, 𝑏
3

=

0} into inequalities 𝐵 to simplify computation; we obtain
simplified inequalities 𝐵

󸀠. Solving inequalities 𝐵
󸀠 by using

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

5

Time (s)

x1
x2

x3

x

Figure 1: Swing curves of 𝑥.

CAD algorithm, we obtain a series of sets. Choose some sets,
which satisfy inequalities 𝐵

󸀠, and organize them. We have

𝑈 = {𝑎
3

= −𝑎
1
, 𝑏
1

= 𝑎
1
, 𝑏
2

= 𝑎
1
} ∪ 𝑈
1
. (26)

Substitute 𝑈 into controller (23):

𝑢 =

[
[
[

[

(
3

8
+

1

2𝛾2
) (−𝑥

1
+ 𝑥
3

+ 𝜉
1

+ 𝜉
2
)

(−
3

8
−

1

2𝛾2
) (𝑥
1

− 𝑥
3

+ 𝜉
1

+ 𝜉
2
)

]
]
]

]

+ [
𝑎
1
𝑥
1

− 𝑎
1
𝑥
3

𝑎
1
𝜉
1

+ 𝑎
1
𝜉
2

] ,

(27)

where 𝑎
1

≤ 0.
So we have the controller with parameters for system (17).

The controller (27) has a rather simple form.

4.2. Simulations and Results. In order to evaluate the robust-
ness of controller (27), we set the parameters of system (17)
as 𝛾 = √5 and the parameters of controller as 𝑎

1
= −1. We

obtain the controller as follows:

𝑢 =

[
[
[
[

[

59

40
(−𝑥
1

+ 𝑥
3
) +

19

40
(𝜉
1

+ 𝜉
2
)

19

40
(−𝑥
1

+ 𝑥
3
) −

59

40
(𝜉
1

+ 𝜉
2
)

]
]
]
]

]

. (28)

To illustrate the effectiveness of controller (28), we carry
out some numerical simulations with the following choices:
𝑥(0) = [−4, 2, 5]

𝑇, 𝜉(0) = [3, 4, −2]
𝑇. To test the robustness of

the controller with respect to external disturbances, a square
disturbance 𝜔 = [2, 4]

𝑇 is added to systems in the time
duration [1.5 ∼ 2.5 𝑠]. The simulation results are shown in
Figures 1, 2, and 3, which are the responses of the state and
control signal, respectively.

From Figures 1, 2, and 3, we know that controller (28) is
very effective in simultaneously stabilization systems (1) and
(2).
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Figure 2: Swing curves of 𝜉.
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5. Conclusions

In this paper, we have investigated the RSS problem for
two PCH systems and proposed a RSS controller with
parameters design method. A controller with parameters has
been obtained using Hamiltonian function method and an
algorithm for solving parameters of the controller has been
proposed with symbolic computation. The study of illustra-
tive example with simulations has shown that the RSS con-
troller obtained in this paper has been efficient in 𝐻

∞
control

for two PCH systems.
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