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The global stability of amultigroup SEIR epidemicmodelwith general latency distribution and general incidence rate is investigated.
Under the given assumptions, the basic reproduction numberR

0
is defined and proved as the role of a threshold; that is, the disease-

free equilibrium 𝑃
0
is globally asymptotically stable if R

0
≤ 1, while an endemic equilibrium 𝑃

∗ exists uniquely and is globally
asymptotically stable if R

0
> 1. For the proofs, we apply the classical method of Lyapunov functionals and a recently developed

graph-theoretic approach.

1. Introduction

Mathematical models have become important tools in ana-
lyzing the spread and control of infectious diseases. The SIR
model is one of the most popular ones in this field, for which
the total population is subdivided into three compartments:
susceptible, infectious, and removed. For some diseases, it
is reasonable to include a latent (or exposed) class for those
susceptible individuals who are infected with the disease but
are not yet infectious, which leads to SEIR model [1–6]. Let
𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) be the numbers of individuals in the
susceptible, exposed, infectious, and removed compartments,
respectively, with the total population 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) +

𝐼(𝑡) + 𝑅(𝑡). Suppose that 𝑑 > 0 represents the constant
recruitment rate and the natural mortality rate. Assuming
mass action for the disease transmission and letting 𝛽 > 0

denote the effective contact rate, the rate of change of 𝑆(𝑡) is

𝑆
󸀠
(𝑡) = 𝑑 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) . (1)

Taking into consideration a general exposed distribution, van
den Driessche et al. [5] formulated and studied the following
model:

𝑆
󸀠
(𝑡) = 𝑑 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,

𝐸 (𝑡) = ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑃 (𝑡 − 𝑢) d𝑢,

𝑅
󸀠
(𝑡) = 𝑟𝐼 (𝑡) − 𝑑𝑅 (𝑡) ,

𝐼 (𝑡) = 𝑁 − 𝑆 (𝑡) − 𝐸 (𝑡) − 𝑅 (𝑡) ,

(2)

where 𝑟 ≥ 0 is the rate at which infective individuals recover.
𝑁 is constant total populations. It is assumed in [5] that
individuals rarely die of the disease and the disease-induced
death is negligible, which ensures a constant population; that
is, 𝑁(𝑡) = 𝑁 ⋅ 𝑃(𝑡) denotes the probability (without taking
death into account) that an exposed individual still remains
in the exposed class 𝑡 time units after entering the exposed
class and it satisfies the following.

(A
1
) 𝑃 : [0,∞) → [0, 1] is nonincreasing, piecewise

continuous with possibly finitely many jumps and satisfies
𝑃(0
+
) = 1, lim

𝑡→∞
𝑃(𝑡) = 0 with ∫

∞

0
𝑃(𝑢)𝑑𝑢 being positive

and finite.
In fact, the integral term in model (2) is in the sense of

Riemann-Stieltjes integrals; the second equation of (2) takes
the following form:

𝐸
󸀠
(𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐸 (𝑡)

+ ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢,

(3)
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where 𝑑
𝑡
𝑃(𝑡 − 𝑢) = 𝑑𝑃(𝑡 − 𝑢)/𝑑𝑡. It follows from total

population size 𝑁 which is constant that the rate of change
of 𝐼 is governed by

𝐼
󸀠
(𝑡) = −∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢 − (𝑑 + 𝑟) 𝐼 (𝑡) .

(4)

Thus, model (2) can be written as the system

𝑆
󸀠
(𝑡) = 𝑑 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,

𝐸
󸀠
(𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐸 (𝑡)

+ ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢,

𝐼
󸀠
(𝑡) = − ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢

− (𝑑 + 𝑟) 𝐼 (𝑡) ,

𝑅
󸀠
(𝑡) = 𝑟𝐼 (𝑡) − 𝑑𝑅 (𝑡) .

(5)

Recently, a model of this type including the possibility of
disease relapse has been proposed in [5, 6] to study the
transmission and spread of some infectious diseases such
as herpes, and its global dynamics have been completely
investigated in [5, 7].

Heterogeneity in the host population can result from dif-
ferent contactmodes such as those among children and adults
for childhood diseases (e.g., measles andmumps) or different
behaviors such as the numbers of sexual partners for some
sexually transmitted infections (e.g., herpes and condyloma
acuminatum). Taking into consideration different contact
patterns, distinct number of sexual partners, or different
geography and so forth, it is more proper to divide individual
hosts into groups. Therefore, lots of multigroup models have
been proposed in the literature to describe the transmission
of infectious disease in heterogeneity environment (see [8–17]
and references cited therein).

In multigroup epidemic models, a heterogeneous host
population is divided into several homogeneous groups
according tomodes of transmission, contact patterns, or geo-
graphic distributions, so that within-group and intergroup
interactions can be modeled separately. In this paper, we
formulate a multigroup SEIR epidemic model with general
exposed distribution and general incidence rates. The pop-
ulation is divided into 𝑛 distinct groups (𝑛 ≥ 2). For 1 ≤

𝑘 ≤ 𝑛, the 𝑘th group is further partitioned into four compart-
ments: susceptible, exposed, infectious, and recovered, whose
numbers of individuals at time 𝑡 are denoted by 𝑆

𝑘
(𝑡), 𝐸
𝑘
(𝑡),

𝐼
𝑘
(𝑡), and 𝑅

𝑘
(𝑡), respectively. Within the 𝑘th group, 𝜑

𝑘
(𝑆
𝑘
)

represents the growth rate of 𝑆
𝑘
, which includes both the

production and the natural death of susceptible individuals.
In [18], Zhang et al. studied a multigroup SEIR epi-

demic model with general exposed distribution and general
incidence rates. By using the well-known “linear chain
trick,” the authors reformulate the model into an equivalent
ordinary differential equations system. The global stability

results of equilibria are obtained by constructing suitable
Lyapunov functionals for general incidence rate function
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡), 𝐼
𝑗
(𝑡)). In [19], Hattaf et al. introduced a general

incidence rate 𝑓(𝑆, 𝐼)𝐼 in a delayed SIR epidemic model.
Motivated by these facts, in this paper, we incorporate

the general incidence rate presented in [19] to the following
system of differential and integral equations:

𝑆
󸀠

𝑘
(𝑡) = 𝜑

𝑘
(𝑆
𝑘 (𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡) ,

𝐸
󸀠

𝑘
(𝑡)

=

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡)

−

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢) 𝑒
−𝛿𝑘(𝑡−𝑢)𝑔

𝑘
(𝑡 − 𝑢) d𝑢

− 𝛿
𝑘
𝐸
𝑘
(𝑡) ,

𝐼
󸀠

𝑘
(𝑡) =

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢) 𝑒
−𝛿𝑘(𝑡−𝑢)𝑔

𝑘
(𝑡 − 𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘 (𝑡) ,

𝑅
󸀠

𝑘
(𝑡) = 𝛾

𝑘
𝐼
𝑘
(𝑡) − 𝛿

𝑘
𝑅
𝑘
(𝑡) ,

(6)

where 𝑔
𝑗
(𝑡) = −𝑃

󸀠

𝑗
(𝑡), the nonlinear term 𝑓

𝑘𝑗
(𝑆
𝑘
(𝑡), 𝐼
𝑗
(𝑡))𝐼
𝑗
(𝑡)

represents the cross-infection from group 𝑗 to group 𝑘, 𝛿
𝑘

denotes the natural death rates of exposed and infectious
classes in the 𝑘th group, and 𝛾

𝑘
denotes the production of

the recovered individuals from infectious ones in the 𝑘th
group. All constants 𝛿

𝑘
, 𝛾
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are assumed to

be positive.
The organization of this paper is as follows; in the next

section, we give some preliminaries of our main model. In
Section 3, we prove the global asymptotic stability of the
disease-free equilibrium 𝑃

0
for R

0
≤ 1 using the classical

method of Lyapunov.The existence of endemic equilibrium is
also proved. In Section 4, we prove global asymptotic stability
of an endemic equilibrium 𝑃

∗ for R
0
> 1 using the graph-

theoretic approach.

2. Preliminaries

Since the variables 𝐸
𝑘
and 𝑅

𝑘
do not appear in the first and

third equations of (6), we can only consider the reduced
system as follows:

𝑆
󸀠

𝑘
(𝑡) = 𝜑

𝑘
(𝑆
𝑘
(𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡) ,

𝐼
󸀠

𝑘
(𝑡) =

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢) 𝑒
−𝛿𝑘(𝑡−𝑢)𝑔

𝑘
(𝑡 − 𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
(𝑡) .

(7)
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The incidence function 𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) in (7) is assumed to be

continuously differentiable in the interior ofR2
+
and to satisfy

the following hypotheses:

(S
1
) 𝑓
𝑘𝑗
(0, 𝐼
𝑗
) = 0, for all 𝐼

𝑗
≥ 0;

(S
2
) 𝜕𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
)/𝜕𝑆
𝑘
> 0, for all 𝑆

𝑘
> 0 and 𝐼

𝑗
≥ 0;

(S
3
) 𝜕𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
)/𝜕𝐼
𝑗
≤ 0, for all 𝑆

𝑘
≥ 0 and 𝐼

𝑗
≥ 0;

assume that the functions 𝜑
𝑘
satisfy the following

conditions:
(S
4
) 𝜑
𝑘
are local Lipschitz on [0,∞) with 𝜑

𝑘
(0) > 0, and

there is a unique positive solution 𝜉 = 𝑆
0

𝑘
for the

equation 𝜑
𝑘
(𝜉) = 0; 𝜑

𝑘
(𝑆
𝑘
) > 0 for 0 ≤ 𝑆

𝑘
< 𝑆
0

𝑘
, and

𝜑
𝑘
(𝑆
𝑘
) < 0 for 𝑆

𝑘
> 𝑆
0

𝑘
.

Typical examples of 𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) satisfying (S

1
)–(S
3
) include

common incidence functions such as

𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) = 𝑆
𝑘
𝐼
𝑗 [20, 2, 3] , 𝑓

𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) = 𝑆
𝑞

𝑘
𝐼
𝑗 [21] ,

𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) =

𝜂𝑆
𝑘
𝐼
𝑗

1 + 𝜃𝑆
𝑘

[1] .

(8)

The class of 𝜑
𝑘
(𝑆
𝑘
) that satisfies (S

4
) includes both 𝜆

𝑘
− 𝑑
𝑆

𝑘
𝑆
𝑘

and 𝜆
𝑘
−𝑑
𝑆

𝑘
𝑆
𝑘
+𝑟
𝑘
𝑆
𝑘
(1−𝑆
𝑘
/𝑁
𝑘
), which have been widely used

in the literature of population dynamics [1, 8].
For model (7), the existence, uniqueness, and continuity

of solutions follow from the theory for integrodifferential
equations in [22]. It can be easily verified that every solution
of (7) with nonnegative initial conditions remains nonneg-
ative. It follows from (S

4
) and the first equation in (7) that

𝑆
󸀠

𝑘
(𝑡) ≤ 𝜑

𝑘
(𝑆
𝑘
(𝑡)), and thus

lim sup
𝑡→∞

𝑆
𝑘
(𝑡) ≤ 𝑆

0

𝑘
, for 1 ≤ 𝑘 ≤ 𝑛. (9)

From the biological significance, we only need to consider (7)
in the following region:

Γ := { (𝑆
1
, 𝐼
1
, 𝑆
2
, 𝐼
2
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

∈ R
2𝑛

+
: 𝑆
𝑘
, 𝐼
𝑘
≥ 0, 𝑆
𝑘
+ 𝐼
𝑘
≤ 𝑆
0

𝑘
, 1 ≤ 𝑘 ≤ 𝑛} .

(10)

Indeed, one can easily verify that the set Γ is positively
invariant with respect to (7).

It is clear that system (7) has a disease-free equilibrium
𝑃
0

= (𝑆
0

1
, 0, 𝑆
0

1
, 0, . . . , 𝑆

0

𝑛
, 0) in Γ. Next, we will give some

notations which will be useful for our main results.
Let

𝐽 (𝜉) = ∫

∞

𝜉

𝑔
𝑘
(𝑢) 𝑒
−𝛿𝑘𝑢d𝑢,

𝑄
𝑘
= 𝐽 (0) = ∫

∞

0

𝑔
𝑘
(𝑢) 𝑒
−𝛿𝑘𝑢d𝑢.

(11)

It can be verified that 𝑄
𝑘
∈ (0, 1).

For finite time 𝑡, system (7) may not have an endemic
equilibrium. If system (7) has an endemic equilibrium, the
endemic equilibrium must satisfy the limiting system

𝑆
󸀠

𝑘
(𝑡) = 𝜑

𝑘
(𝑆
𝑘
(𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡) ,

𝐼
󸀠

𝑘
(𝑡) =

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢))

× 𝐼
𝑗
(𝑡 − 𝑢) 𝑒

−𝛿𝑘𝑢𝑔
𝑘
(𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘 (𝑡) .

(12)

Since the limiting system (12) contains an infinite delay,
its associated initial condition needs to be restricted in an
appropriate fading memory space. For any 𝜎

𝑘
∈ (0, 𝛿

𝑘
),

define the following Banach space of fadingmemory type (see
[23, 24] and references therein):

𝐶
𝑘
= {𝜙

𝑘
∈ 𝐶 ((−∞, 0] ,R) : 𝜙𝑘 (𝑠) 𝑒

𝜎𝑘𝑠

is uniformly continuous on (−∞, 0] ,

sup
𝑠≤0

󵄨󵄨󵄨󵄨𝜙𝑘 (𝑠)
󵄨󵄨󵄨󵄨 𝑒
𝜎𝑘𝑠 < ∞} ,

𝑌
Δ
= {𝜙
𝑘
∈ 𝐶
𝑘
: 𝜙
𝑘 (𝑠) ≥ 0 ∀𝑠 ≤ 0}

(13)

with norm ‖𝜙‖
𝑘
= sup

𝑠≤0
|𝜙(𝑠)|𝑒

𝜎𝑘𝑠. Let 𝜓
𝑡
∈ 𝐶
𝑖
and 𝑡 > 0 be

such that 𝜓
𝑡
(𝑠) = 𝜓(𝑡 + 𝑠), 𝑠 ∈ (−∞, 0].

Let 𝜙
𝑘
, 𝜓
𝑘

∈ 𝐶
𝑘
such that 𝜙

𝑘
(𝑠), 𝜓
𝑘
(𝑠) ≥ 0 for

all 𝑠 ∈ (−∞, 0]. We consider solutions of system (12),
(𝑆
1𝑡
, 𝐼
1𝑡
, . . . , 𝑆

𝑛𝑡
, 𝐼
𝑛𝑡
), with initial conditions
(𝜙
1
, 𝜓
1
, 𝜙
2
, 𝜓
2
, . . . , 𝜙

𝑛
, 𝜓
𝑛
) . (14)

The standard theory of functional differential equations [24]
implies (𝑆

1𝑡
, 𝐼
1𝑡
, . . . , 𝑆

𝑛𝑡
, 𝐼
𝑛𝑡
) ∈ 𝐶

𝑘
for all 𝑡 > 0. We study

system (12) in the following phase space:

Xg =

𝑛

∏

𝑘=1

(R × 𝐶
𝑘
) . (15)

It can be verified that solutions of (12) in Xg with initial
conditions (14) remain nonnegative.

An equilibrium 𝑃
∗

= (𝑆
∗

1
, 𝐼
∗

1
, 𝑆
∗

2
, 𝐼
∗

2
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
) in the

interior of Γ is called an endemic equilibrium of system (12),
where 𝑆∗

𝑘
, 𝐼
∗

𝑘
> 0 satisfy the equilibrium equations

𝜑
𝑘
(𝑆
∗

𝑘
) =

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
,

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑄
𝑘
= (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
∗

𝑘
.

(16)

Set𝑅
0
= 𝜌(𝑀

0
) to denote the special radius of thematrix𝑀0,

where

𝑀
0
= (

𝑓
𝑘𝑗
(𝑆
0

𝑘
, 0)𝑄
𝑘

𝛿
𝑘
+ 𝛾
𝑘

)

𝑛×𝑛

. (17)
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The parameter 𝑅
0
is defined as the basic reproduction

number [25, 26]. Since it can be verified that system (7)
satisfies conditions (𝐴

1
)–(𝐴
5
) of Theorem 2 of [26], we have

the following lemma.

Lemma 1. For system (7), the disease-free equilibrium 𝑃
0
is

locally asymptotically stable if R
0
< 1 while it is unstable if

R
0
> 1.

3. Global Stability of
the Disease-Free Equilibrium

Theorem 2. Assume that the functions 𝜑
𝑘
and 𝑓

𝑘𝑗
satisfy

(S
1
)–(S
4
), and𝑀0 is irreducible.

(i) If R
0
≤ 1, then 𝑃

0
is the unique equilibrium of system

(7), and 𝑃
0
is globally asymptotically stable in Γ.

(ii) If R
0

> 1, then 𝑃
0
is unstable and system (7) is

uniformly persistent.

Proof. It follows from the Perron-Frobenius theorem (see
Theorem 2.1.4 in [27]) that the nonnegative irreducible
matrix 𝑀

0 has a positive eigenvector (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) such

that

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀

0
) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀
0
. (18)

Now, we construct a Lyapunov functional

𝑉
𝑃0
=

𝑛

∑

𝑘=1

𝜔
𝑘

𝛿
𝑘
+ 𝛾
𝑘

𝐼
𝑘
. (19)

Differentiating𝑉
𝑃0
along the solution of system (7) and under

(S
2
) and (S

3
), we obtain

𝑉
󸀠

𝑃0
=

𝑛

∑

𝑘=1

𝜔
𝑘
[

1

𝛿
𝑘
+ 𝛾
𝑘

×

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢)

× 𝑒
−𝛿𝑘(𝑡−𝑢)𝑔

𝑘
(𝑡 − 𝑢) d𝑢

−𝐼
𝑘
(𝑡) ]

≤

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
− 𝐼
𝑘
(𝑡)]

]

≤

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
0

𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
− 𝐼
𝑘
(𝑡)]

]

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) [𝑀
0
𝐼 − 𝐼]

= [𝜌 (𝑀
0
) − 1] (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝐼,

(20)

where 𝐼 = (𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇. Suppose that 𝜌(𝑀0) < 1. Then,

𝑉
󸀠

𝑃0
= 0 if and only if 𝐼 = 0. Suppose that 𝜌(𝑀0) = 1. Then, it

follows from (20) that 𝑉󸀠
𝑃0
= 0 implies

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
]

]

=

𝑛

∑

𝑘=1

𝜔
𝑘
𝐼
𝑘
(𝑡) . (21)

If 𝑆
𝑘

̸= 𝑆
0

𝑘
, then

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
]

]

≤

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
0

𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
]

]

≤ (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀
0
𝐼

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀

0
) 𝐼

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝐼,

(22)

which implies that (21) has only the trivial solution 𝐼 = 0.
Therefore, 𝑉󸀠

𝑃0
= 0 if and only if 𝐼

𝑘
= 0 or 𝑆

𝑘
= 𝑆
0

𝑘
provided

𝜌(𝑀
0
) = 1. It can be verified that the only compact invariant

subset of the set where 𝑉
󸀠

𝑃0
= 0 is the singleton {𝑃

0
}. By

LaSalle’s Invariance Principle, 𝑃
0
is globally asymptotically

stable in Γ if 𝜌(𝑀0) ≤ 1.
IfR
0
> 1 and 𝐼 ̸= 0, it is easy to see that

[𝜌 (𝑀
0
) − 1] (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝐼 > 0. (23)

It follows from the continuity that 𝑉󸀠
𝑃0

> 0 holds in a small
neighborhood of 𝑃

0
. This implies that 𝑃

0
is unstable. Using a

uniform persistence result from [28] and similar arguments
as in [4, 10, 13, 16, 17], we know that, ifR

0
> 1, the instability

of 𝑃
0
implies the uniform persistence of (7) in Γ; that is, there

exists a positive constant 𝜖 > 0 such that

lim inf
𝑡→∞

𝑆
𝑘
(𝑡) ≥ 𝜖, lim inf

𝑡→∞

𝐼
𝑘
(𝑡) ≥ 𝜖, 𝑘 = 1, 2, . . . , 𝑛.

(24)

The uniform persistence of system (7) together with the
uniform boundedness of solutions in Γ, which follows from
the positive invariance of Γ, implies the existence of an
endemic equilibrium 𝑃

∗ in Γ (see Theorem 2.8.6 of [29] or
Theorem D.3 of [30]). Summarizing the statements above, if
R
0
> 1, system (7) is uniformly persistent and there exists

at least one endemic equilibrium 𝑃
∗ in Γ. This completes the

proof.

4. Global Stability of an Endemic Equilibrium

Denote

𝐻(𝑢) = 𝑢 − 1 − ln 𝑢, ∀𝑢 > 0. (25)
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Obviously, 𝐻 : R+ → R+ attains its strict global minimum
at 𝑢 = 1 and𝐻(1) = 0.

To get the global stability of 𝑃∗, we make the following
assumptions:

(S
5
) (𝜑
𝑘
(𝑆
𝑘
) − 𝜑
𝑘
(𝑆
∗

𝑘
))(𝑆
𝑘
− 𝑆
∗

𝑘
) ≤ 0 for 𝑆

𝑘
≥ 0;

(S
6
) (𝜑
𝑘
(𝑆
𝑘
) − 𝜑
𝑘
(𝑆
∗

𝑘
))[𝑓
𝑘𝑘
(𝑆
𝑘
, 𝐼
∗

𝑘
) − 𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)] < 0 for

𝑆
𝑘

̸= 𝑆
∗

𝑘
;

(S
7
) (((𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
)𝐼
𝑗
)/(𝑓
𝑘𝑘
(𝑆
𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)𝐼
∗

𝑗
))

− 1)(1 − ((𝑓
𝑘𝑘
(𝑆
𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
))/(𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
𝑘
,

𝐼
𝑗
)))) ≤ 0 for 𝑆

𝑘
, 𝐼
𝑗
> 0.

Theorem 3. Assume that the functions 𝜑
𝑘
and 𝑓

𝑘𝑗
satisfy

(S
1
)–(S
7
), and the matrix 𝑀

0 is irreducible. If R
0
> 1, then

there is a unique endemic equilibrium 𝑃
∗ for system (12), and

𝑃
∗ is globally asymptotically stable in the interior of Γ.

Proof. Define a Lyapunov functional as

𝑉
𝑃
∗ = 𝑄

𝑘
∫

𝑆𝑘(𝑡)

𝑆
∗

𝑘

𝑓
𝑘𝑘
(𝜂, 𝐼
∗

𝑘
) − 𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝜂, 𝐼
∗

𝑘
)

d𝜂

+ 𝐼
∗

𝑘
𝐻(

𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

) + 𝑉
+
,

(26)

where

𝑉
+
=

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡 − 𝑢) , 𝐼𝑗 (𝑡 − 𝑢)) 𝐼𝑗 (𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢.

(27)

First, we calculate the derivative of 𝑉
+
; then, we have

𝑉
󸀠

+

=

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

d
d𝑡

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

= −

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

d
d𝑢

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

= −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(S∗
𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

×𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡 − 𝑢) , 𝐼𝑗 (𝑡 − 𝑢)) 𝐼𝑗 (𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

𝑢=0

+

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡 − 𝑢) , 𝐼𝑗 (𝑡 − 𝑢)) 𝐼𝑗 (𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝐽 (𝑢)

=

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

)

−

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑔
𝑘 (𝑢) 𝑒

−𝛿𝑘𝑢

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

=

𝑛

∑

𝑗=1

𝑄
𝑘
(𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡) − 𝑓

𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× ln
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

)

−

𝑛

∑

𝑗=1

∫

∞

0

𝑔
𝑘
(𝑢) 𝑒
−𝛿𝑘𝑢

× [

[

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

− 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
.

× ln
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

]

]

d𝑢.

(28)

Calculating the time derivative of 𝑉
𝑃
∗ along the solution of

system (12), we have

𝑉
󸀠

𝑃
∗ = 𝑄

𝑘
(1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘 (𝑡) , 𝐼

∗

𝑘
)
)

× [

[

𝜑
𝑘
(𝑆
𝑘 (𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡)

]

]

+ (1 −
𝐼
∗

𝑘

𝐼
𝑘
(𝑡)

)

× [

[

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) ,

𝐼
𝑗 (𝑢)) 𝐼𝑗 (𝑢) 𝑒

−𝛿𝑘(𝑡−𝑢)𝑔
𝑘 (𝑡 − 𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
(𝑡) ]

]

+ 𝑉
󸀠

+
.

(29)
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Using equilibrium equations (16), we have

𝑉
󸀠

𝑃
∗ = 𝑄

𝑘
(𝜑
𝑘
(𝑆
𝑘
(𝑡)) − 𝜑

𝑘
(𝑆
∗

𝑘
)) (1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)
)

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
−

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

−

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘 (𝑡) , 𝐼

∗

𝑘
)

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)

+

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢))

× 𝐼
𝑗
(𝑡 − 𝑢) 𝑒

−𝛿𝑘𝑢𝑔
𝑘
(𝑢) d𝑢

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑒
−𝛿𝑘𝑢𝑔
𝑘 (𝑢) d𝑢

−
𝐼
∗

𝑘

𝐼
𝑘
(𝑡)

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢))

× 𝐼
𝑗
(𝑡 − 𝑢) 𝑒

−𝛿𝑘𝑢𝑔
𝑘
(𝑢) d𝑢

+

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑒
−𝛿𝑘𝑢𝑔
𝑘
(𝑢) d𝑢 + 𝑉

󸀠

+
.

(30)

Using 𝑉󸀠
+
, we rewrite (30) as

𝑉
󸀠

𝑃
∗ = 𝑄

𝑘
(𝜑
𝑘
(𝑆
𝑘
(𝑡)) − 𝜑

𝑘
(𝑆
∗

𝑘
)) (1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)
)

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× [2 −
𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)

+

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

]

−

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑔
𝑘
(𝑢) 𝑒
−𝛿𝑘𝑢

⋅ [

[

𝐼
∗

𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝐼
𝑘
(𝑡) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

− ln
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

]

]

d𝑢.

(31)

Therefore,

𝑉
󸀠

𝑃
∗

= 𝑄
𝑘
(𝜑
𝑘
(𝑆
𝑘
(𝑡)) − 𝜑

𝑘
(𝑆
∗

𝑘
)) (1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)
)

−

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× [

[

𝐻(
𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘 (𝑡) , 𝐼

∗

𝑘
)
)

+ 𝐻(

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡))

)]

]

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

× (

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

− 1)

× (1 −

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡))

)

−

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑔
𝑘
(𝑢) 𝑒
−𝛿𝑘𝑢

× 𝐻(

𝐼
∗

𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝐼
𝑘 (𝑡) 𝑓𝑘𝑗 (𝑆

∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

× 𝐼
∗

𝑗
[

𝐼
𝑗
(𝑡)

𝐼
∗

𝑗

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

− ln
𝐼
𝑗
(𝑡)

𝐼
∗

𝑗

+ ln
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

] .

(32)

Furthermore, under (S
5
)–(S
7
), we have

𝑉
󸀠

𝑃
∗ ≤

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

× 𝐼
∗

𝑗
[

𝐼
𝑗 (𝑡)

𝐼
∗

𝑗

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

− ln
𝐼
𝑗 (𝑡)

𝐼
∗

𝑗

+ ln
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

] .

(33)
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Obviously, the equalities in (33) hold if and only if 𝑆
𝑘
= 𝑆
∗

𝑘

and 𝐼
𝑘
= 𝐼
∗

𝑘
, 𝑘 = 1, 2, . . . , 𝑛. Therefore, the functional 𝑉 =

∑
𝑛

𝑘=1
V
𝑘
𝑉
𝑃
∗ as defined in Theorem 3.1 of [12] is a Lyapunov

function for system (12). Using similar arguments as in [4,
8–13, 16, 17], one can show that the largest invariant subset
where 𝑉󸀠

𝑝
∗ = 0 is the singleton {𝑃

∗
}. By LaSalle’s Invariance

Principle, 𝑃∗ is globally asymptotically stable in the interior
of Γ. This completes the proof of Theorem 3.
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[29] N. P. Bhatia andG. P. Szegő,Dynamical Systems: StabilityTheory
and Applications, Springer, Berlin, Germany, 1967.

[30] H. L. Smith and P. Waltman, The Theory of the Chemostat,
Cambridge University Press, 1995.


