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We prove that 𝑝 = 1 and 𝑞 = 2 are the best possible parameters in the interval (0,∞) such that the double inequality
(𝑒
𝑝/(𝑥+1)

− 𝑒
−𝑝/𝑥

)/2𝑝 < 𝜓
󸀠
(𝑥 + 1) < (𝑒

𝑞/(𝑥+1)
− 𝑒
−𝑞/𝑥

)/2𝑞 holds for 𝑥 > 0. As applications, some new approximation algorithms
for the circumference ratio 𝜋 and Catalan constant 𝐺 = ∑

∞

𝑛=0
((−1)
𝑛
/(2𝑛 + 1)

2
) are given. Here, 𝜓󸀠 is the trigamma function.

1. Introduction

For real and positive values of 𝑥, the classical Euler’s gamma
function Γ and its logarithmic derivative 𝜓, the so-called psi
function, are defined as

Γ (𝑥) = ∫

∞

0

𝑡
𝑥−1

𝑒
−𝑡
𝑑𝑡, 𝜓 (𝑥) =

Γ
󸀠
(𝑥)

Γ (𝑥)
. (1)

For extension of these functions to complex variables and for
basic properties, see [1]. The derivatives 𝜓󸀠, 𝜓󸀠󸀠, 𝜓󸀠󸀠󸀠, . . . are
known as polygamma functions (see [2]). In particular, 𝜓󸀠 is
called trigamma function.

Recently, the bounds for the trigamma function using
exponential functions have attracted the attention of many
researchers. For example, Elezović et al. [3] proved that the
inequality

𝜓
󸀠
(𝑥) < 𝑒

−𝜓(𝑥) (2)

holds for all 𝑥 > 0. In [4, Theorem 2.7], Batir proved that
𝑎
∗
= 1/2 and 𝑏

∗
= 𝜋
2
𝑒
−2𝛾

/6 are the best possible constants
such that the double inequality

(𝑥 + 𝑎
∗
) 𝑒
−2𝜓(𝑥+1)

< 𝜓
󸀠
(𝑥 + 1) < (𝑥 + 𝑏

∗
) 𝑒
−2𝜓(𝑥+1) (3)

holds for all 𝑥 > 0, where 𝛾 is Euler’s constant. Batir [4] also
showed that

1

2
(
2

𝑥2
− 1 + 𝑒

2/(𝑥+1)
− 𝑒
−2𝜓(𝑥+1)

)

< 𝜓
󸀠
(𝑥 + 1)

<
1

2
(
2

𝑥2
+ 1 − 𝑒

−2/𝑥
+ 𝑒
−2𝜓(𝑥+1)

)

(4)

for all 𝑥 > 0. In [5, (1.11)], Guo and Qi established that

𝜗𝑒
𝜗/𝑥

𝑥2 (𝑒𝜗/𝑥 − 1)
< 𝜓
󸀠
(𝑥) <

𝜃𝑒
𝜃/𝑥

𝑥2 (𝑒𝜃/𝑥 − 1)
(5)

if 𝑥 > 0 and 0 < 𝜗 ≤ 1, 𝜃 ≥ 2. They [6, Lemma 2] found a
very simple upper bound for trigamma function in terms of
exponential function as follows:

𝜓
󸀠
(𝑥) < 𝑒

1/𝑥
− 1 (6)

for all 𝑥 > 0. The inequality (6) was generalized in [7,
Theorem 3.1], [8, Theorem 1.1], and [9, Theorem 1.1] to a
complete monotonicity which reads that the difference 𝑒1/𝑥 −
𝜓
󸀠
(𝑥) is completely monotonic on (0,∞). Many other new

results involving the psi and trigamma functions can be found
in the literature [10, 11].
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Suppose that 𝑚 ∈ (0,∞) and 𝑔 and 𝑔𝑚 are the real
functions defined on (0,∞). 𝑚 = 𝜆 is said to be the best
possible constant in (0,∞) such that the inequality 𝑔(𝑥) >

(<) 𝑔𝑚(𝑥) holds for all 𝑥 > 0 if 𝑔𝜆(𝑥) ≥ (≤) 𝑔𝜇(𝑥) on
(0,∞), or 𝑔𝜆(𝑥) and 𝑔𝜇(𝑥) are not comparable on (0,∞), and
lim𝑥→∞(𝑔(𝑥)−𝑔𝜆(𝑥))/(𝑔(𝑥)−𝑔𝜇(𝑥)) = 0 for any 𝜇 ∈ (0,∞)

satisfies 𝑔(𝑥) >(<) 𝑔𝜇(𝑥) on the interval (0,∞).
Themain purpose of this paper is to find the best possible

constants 𝑝, 𝑞 ∈ (0,∞) such that the double inequality

𝜃 (𝑥, 𝑝) < 𝜓
󸀠
(𝑥 + 1) < 𝜃 (𝑥, 𝑞) (7)

or equivalently

1

𝑥2
+ 𝜃 (𝑥, 𝑝) < 𝜓

󸀠
(𝑥) <

1

𝑥2
+ 𝜃 (𝑥, 𝑞) (8)

holds for all 𝑥 > 0, where

𝜃 (𝑥,𝑚) =
𝑒
𝑚/(𝑥+1)

− 𝑒
−𝑚/𝑥

2𝑚
, 𝑚 > 0. (9)

Our main result is the followingTheorem 1.

Theorem 1. 𝑝 = 1 and 𝑞 = 2 are the best possible constants
in the interval (0,∞) such that the double inequality (7) or (8)
holds for all 𝑥 > 0.

FromTheorem 1, we clearly see the following.

Corollary 2. The double inequality

sinh 1

𝑥 + 1
< 𝜓
󸀠
(𝑥 + 1) <

1

2
sinh 2

𝑥
(10)

holds for all 𝑥 > 0.

2. Lemmas

Lemma 3. Let the function 𝜃 be defined on (0,∞)
2 by (9).

Then the function 𝜃 is strictly decreasing with respect to 𝑚 on
(0, 1] and strictly increasing on [3/2, +∞).

Proof. It follows from (9) that

𝑚
2
𝑥

2 (𝑚 + 𝑥)
𝑒
𝑚/𝑥 𝜕𝜃

𝜕𝑚

= (1 −
𝑥 (𝑥 − 𝑚 + 1)

(𝑥 + 1) (𝑚 + 𝑥)
exp(𝑚

𝑥
+

𝑚

𝑥 + 1
))

=: ℎ𝑚 (𝑥) ,

𝜕ℎ𝑚

𝜕𝑥
=
𝑚
2

𝑥

exp ((𝑚/𝑥) ((2𝑥 + 1) / (𝑥 + 1)))

(𝑥 + 1)
3
(𝑚 + 𝑥)

2

× ((3 − 2𝑚) 𝑥
2
+ (3 − 2𝑚) 𝑥 + (1 − 𝑚)) .

(11)

If𝑚 ∈ (0, 1], then 𝜕ℎ𝑚/𝜕𝑥 > 0; that is, ℎ𝑚 is strictly increasing
with respect to 𝑥 > 0. Therefore,

ℎ𝑚 (𝑥) < lim
𝑥→∞

ℎ𝑚 (𝑥) = 0, (12)

which implies that 𝜕𝜃/𝜕𝑚 < 0.

If 𝑚 ≥ 3/2, then 𝜕ℎ𝑚/𝜕𝑥 < 0; that is, ℎ𝑚 is strictly
decreasing with respect to 𝑥 > 0, which leads to the
conclusion that

ℎ𝑚 (𝑥) > lim
𝑥→∞

ℎ𝑚 (𝑥) = 0. (13)

Lemma 4. Let the function 𝜃 be defined on (0,∞)
2 by (9) and

𝐹𝑚 (𝑥) = 𝜓
󸀠
(𝑥 + 1) − 𝜃 (𝑥,𝑚) . (14)

Then the equation

𝐹𝑚 (0
+
) = 𝜓
󸀠
(1) −

𝑒
𝑚

2𝑚
= 0 (15)

has two roots

𝑚1 = 0.5023 ⋅ ⋅ ⋅ , 𝑚2 = 1. 7510 ⋅ ⋅ ⋅ (16)

such that 𝐹𝑚(0+) > 0 for 𝑚 ∈ (𝑚1, 𝑚2) and 𝐹𝑚(0
+
) < 0 for

𝑚 ∈ (0,𝑚1) ∪ (𝑚2,∞).

Proof. Differentiation yields

𝑑

𝑑𝑚
𝐹𝑚 (0
+
) = −

1

2𝑚2
𝑒
𝑚
(𝑚 − 1) , (17)

which reveals that the function 𝑚 󳨃→ 𝐹𝑚(0
+
) is strictly

increasing on (0, 1) and strictly decreasing on (1,∞). There-
fore, Lemma 4 follows from the piecewise monotonicity of
the function 𝑚 󳨃→ 𝐹𝑚(0

+
) and the numerical computations

results:

𝐹0.5023 (0
+
) =

1

6
𝜋
2
−

𝑒
0.5023

1.0046
= −1.685 ⋅ ⋅ ⋅ × 10

−5
< 0,

𝐹0.5024 (0
+
) =

1

6
𝜋
2
−

𝑒
0.5024

1.0048
= 1.46 ⋅ ⋅ ⋅ × 10

−4
> 0,

𝐹1.751 (0
+
) =

1

6
𝜋
2
−

𝑒
1.751

3.502
= 5.68 ⋅ ⋅ ⋅ × 10

−5
> 0,

𝐹1.7511 (0
+
) =

1

6
𝜋
2
−

𝑒
1.7511

3.5022
= −1.374 ⋅ ⋅ ⋅ × 10

−5
< 0.

(18)

Lemma 5. Let 𝑚 ≥ 0, 𝑚1 = 0.5023 ⋅ ⋅ ⋅ , and 𝑚2 = 1.7510 ⋅ ⋅ ⋅

and let 𝐹𝑚(𝑥) be defined as in Lemma 4. Then the following
statements are true:

(i) if the inequality 𝐹𝑚(𝑥) ≥ 0 holds for all 𝑥 > 0, then
𝑚 ∈ [1,𝑚2];

(ii) if the inequality 𝐹𝑚(𝑥) ≤ 0 holds for all 𝑥 > 0, then
𝑚 ∈ (0,𝑚1] ∪ [2,∞).
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Proof. It follows from the series formulas that

𝜓
󸀠
(𝑥) =

1

𝑥
+

1

2𝑥2
+

1

6𝑥3
−

1

30𝑥5
+ ⋅ ⋅ ⋅ , (19)

𝑒
𝑚/(𝑥+1)

= 1 +
𝑚

𝑥 + 1
+
1

2
(

𝑚

𝑥 + 1
)

2

+
1

6
(

𝑚

𝑥 + 1
)

3

+
1

24
(

𝑚

𝑥 + 1
)

5

+ ⋅ ⋅ ⋅ ,

(20)

𝑒
−𝑚/𝑥

= 1 −
𝑚

𝑥
+
1

2
(−

𝑚

𝑥
)

2

+
1

6
(−

𝑚

𝑥
)

3

+
1

24
(−

𝑚

𝑥
)

5

+ ⋅ ⋅ ⋅ ,

(21)

and we get

lim
𝑥→∞

𝐹𝑚 (𝑥)

𝑥−3

= lim
𝑥→∞

((
1

(𝑥 + 1)
+

1

2(𝑥 + 1)
2
+

1

6(𝑥 + 1)
3

− ((1 +
𝑚

𝑥 + 1
+
1

2
(

𝑚

𝑥 + 1
)

2

+
1

6
(

𝑚

𝑥 + 1
)

3

− (1 −
𝑚

𝑥
+
1

2
(−

𝑚

𝑥
)

2

+
1

6
(−

𝑚

𝑥
)

3

))

×(2𝑚)
−1
))

× (𝑥
−3
)
−1

)

= −
1

12
lim
𝑥→∞

( ((2𝑚
2
− 6𝑚 + 4) 𝑥

3
+ (3𝑚

2
− 9𝑚 + 6) 𝑥

2

+ (3𝑚
2
− 3𝑚) 𝑥 + 𝑚

2
)

×((𝑥 + 1)
3
)
−1

)

= −
1

12
(2𝑚
2
− 6𝑚 + 4) = −

1

6
(𝑚 − 1) (𝑚 − 2) .

(22)

(i) If inequality 𝐹𝑚(𝑥) ≥ 0 holds for all 𝑥 > 0, then, from

𝐹𝑚 (0
+
) = 𝜓
󸀠
(1) −

𝑒
𝑚

2𝑚
≥ 0,

lim
𝑥→∞

𝐹𝑚 (𝑥)

𝑥−3
= −

1

6
(𝑚 − 1) (𝑚 − 2) ≥ 0

(23)

and Lemma 4, we clearly see that 𝑚 ∈ [𝑚1, 𝑚2] ∩ [1, 2] =

[1,𝑚2].

(ii) If inequality 𝐹𝑚(𝑥) ≤ 0 holds for all 𝑥 > 0, then

𝐹𝑚 (0
+
) = 𝜓
󸀠
(1) −

𝑒
𝑚

2𝑚
≤ 0,

lim
𝑥→∞

𝐹𝑚 (𝑥)

𝑥−3
= −

1

6
(𝑚 − 1) (𝑚 − 2) ≤ 0

(24)

and Lemma 4 lead to the conclusion that
𝑚 ∈ ((0,𝑚1] ∪ [𝑚2,∞]) ∩ ((0, 1] ∪ [2,∞))

= (0,𝑚1] ∪ [2,∞) .

(25)

Lemma 6. Let the function 𝜃 be defined on (0,∞)
2 by (9).

Then 𝜃(𝑥, 1) and 𝜃(𝑥,𝑚) are not comparable for all 𝑥 > 0 if
𝑚 ∈ (1, 2).

Proof. For 𝑥 > 0 and𝑚 > 0, let

𝐺1,𝑚 (𝑥) = 𝜃 (𝑥, 1) − 𝜃 (𝑥,𝑚)

=
𝑒
1/(𝑥+1)

− 𝑒
−1/𝑥

2

−
𝑒
𝑚/(𝑥+1)

− 𝑒
−𝑚/𝑥

2𝑚
.

(26)

Then simple computation leads to

𝐺1,𝑚 (0
+
) =

𝑒

2
−

𝑒
𝑚

2𝑚
. (27)

From (20) and (21), we have

lim
𝑥→∞

𝐺1,𝑚 (𝑥)

𝑥−3
= −

1

6
(𝑚 − 1) (𝑚 − 2) . (28)

Differentiation yields

𝑑

𝑑𝑚
𝐺1,𝑚 (0

+
) = −

𝑒
𝑚

2𝑚2
(𝑚 − 1) , (29)

which shows that 𝑚 󳨃→ 𝐺1,𝑚(0
+
) is strictly decreasing on

(1,∞). Therefore,

𝐺1,𝑚 (0
+
) < 𝐺1,1 (0

+
) = 0 (30)

if 𝑚 ∈ (1, 2). On the other hand, we clearly see that
lim𝑥→∞[𝑥

3
𝐺1,𝑚(𝑥)] > 0 for𝑚 ∈ (1, 2).

Lemma 7. Let 𝑛 ∈ N = {1, 2, 3, . . .} and 𝑚 ∈ N ∪ {0} with
𝑛 > 𝑚 and let 𝑃𝑛(𝑡) be the polynomial of degree 𝑛 defined by

𝑃𝑛 (𝑡) =

𝑛

∑

𝑖=𝑚+1

𝑎𝑖𝑡
𝑖
−

𝑚

∑

𝑖=0

𝑎𝑖𝑡
𝑖
, (31)

where 𝑎𝑛, 𝑎𝑚 > 0 and 𝑎𝑖 ≥ 0 for 0 ≤ 𝑖 ≤ 𝑛 − 1 with 𝑖 ̸=𝑚. Then,
there exists 𝑡𝑚+1 ∈ (0,∞) such that 𝑃𝑛(𝑡𝑚+1) = 0 and𝑃𝑛(𝑡) < 0

for 𝑡 ∈ (0, 𝑡𝑚+1) and 𝑃𝑛(𝑡) > 0 for 𝑡 ∈ (𝑡𝑚+1,∞).

Proof. Differentiating 𝑃𝑛(𝑡) gives

𝑃
(𝑘)

𝑛
(𝑡) =

𝑛

∑

𝑖=𝑚+1

𝑖!

(𝑖 − 𝑘)!
𝑎𝑖𝑡
𝑖−𝑘

−

𝑚

∑

𝑖=𝑘

𝑖!

(𝑖 − 𝑘)!
𝑎𝑖𝑡
𝑖−𝑘 for 1 ≤ 𝑘 ≤ 𝑚,

𝑃
(𝑚+1)

𝑛
(𝑡) =

𝑛

∑

𝑖=𝑚+1

𝑖!

(𝑖 − 𝑚 − 1)!
𝑎𝑖𝑡
𝑖−𝑚−1

> 0.

(32)
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Note that

𝑃
(𝑘)

𝑛
(∞) = ∞, 𝑃

(𝑘)

𝑛
(0
+
) = −𝑎𝑘 (33)

for 1 ≤ 𝑘 ≤ 𝑚.
From 𝑃

(𝑚+1)

𝑛
(𝑡) > 0, we clearly see that 𝑃(𝑚)

𝑛
(𝑡) is strictly

increasing on (0,∞). Then 𝑃
(𝑚)

𝑛
(∞) > 0 and 𝑃

(𝑚)

𝑛
(0
+
) =

−𝑎𝑚 < 0 lead to the conclusion that there exists 𝑡1 ∈ (0,∞)

such that 𝑃(𝑚)
𝑛

(𝑡1) = 0 and 𝑃
(𝑚)

𝑛
(𝑡) < 0 for 𝑡 ∈ (0, 𝑡1) and

𝑃
(𝑚)

𝑛
(𝑡) > 0 for 𝑡 ∈ (𝑡1,∞). Therefore, 𝑃(𝑚−1)

𝑛
(𝑡) is strictly

decreasing on (0, 𝑡1) and strictly increasing on (𝑡1,∞).
It follows from the piecewise monotonicity of 𝑃(𝑚−1)

𝑛
(𝑡)

and 𝑃
(𝑚−1)

𝑛
(∞) = ∞ that 𝑃(𝑚−1)

𝑛
(𝑡) < 𝑃

(𝑚−1)

𝑛
(0
+
) = −𝑎𝑚−1 ≤

0 for 𝑡 ∈ (0, 𝑡1), and there exists 𝑡2 ∈ (𝑡1,∞) such that
𝑃
(𝑚−1)

𝑛
(𝑡2) = 0 and 𝑃(𝑚−1)

𝑛
(𝑡) < 0 for 𝑡 ∈ (0, 𝑡2) and 𝑃

(𝑚−1)

𝑛
(𝑡) >

0 for 𝑡 ∈ (𝑡2,∞). Therefore, 𝑃(𝑚−2)
𝑛

(𝑡) is strictly decreasing on
(0, 𝑡2) and strictly increasing on (𝑡2,∞).

After repeating the same steps as above 𝑚 + 1 times, we
deduce that there exists 𝑡𝑚+1 ∈ (𝑡𝑚,∞) ⊂ (0,∞) such that
𝑃𝑛(𝑡𝑚+1) = 0 and 𝑃𝑛(𝑡) < 0 for 𝑡 ∈ (0, 𝑡𝑚+1) and 𝑃𝑛(𝑡) > 0 for
𝑡 ∈ (𝑡𝑚+1,∞).

Lemma 8. Let the function 𝜃 be defined on (0,∞)
2 by (9).

Then there exists 𝑚0 ∈ (2/5, 9/20) such that 𝜃(𝑥, 2) and
𝜃(𝑥,𝑚) are not comparable for all 𝑥 > 0 if 𝑚 ∈ (𝑚0, 1), and
𝜃(𝑥, 2) < 𝜃(𝑥,𝑚) for all 𝑥 > 0 if𝑚 ∈ (0,𝑚0].

Proof. For 𝑥 > 0 and𝑚 > 0, let

𝐺2,𝑚 (𝑥) = 𝜃 (𝑥, 2) − 𝜃 (𝑥,𝑚)

=
𝑒
2/(𝑥+1)

− 𝑒
−2/𝑥

4

−
𝑒
𝑚/(𝑥+1)

− 𝑒
−𝑚/𝑥

2𝑚
.

(34)

Then simple computation leads to

𝐺2,𝑚 (0
+
) =

𝑒
2

4
−

𝑒
𝑚

2𝑚
. (35)

(i) We prove that there exists 𝑚0 ∈ (2/5, 9/20) such that
𝜃(𝑥, 2) and 𝜃(𝑥,𝑚) are not comparable for all 𝑥 > 0 if 𝑚 ∈

(𝑚0, 1). For this end, it suffices to prove that there exists𝑚0 ∈
(2/5, 9/20) such that 𝐺2,𝑚(0

+
) > 0 and lim𝑥→∞𝑥

3
𝐺2,𝑚(𝑥) <

0 if𝑚 ∈ (𝑚0, 1).
Indeed, it follows from

𝑑

𝑑𝑚
𝐺2,𝑚 (0

+
) = −

𝑒
𝑚

2𝑚2
(𝑚 − 1) (36)

that the function𝑚 󳨃→ 𝐺2,𝑚(0
+
) is strictly increasing on (0, 1).

Numerical computations show that

𝐺2,2/5 (0
+
) =

1

4
𝑒
2
−
5

4
𝑒
2/5

< 0,

𝐺2,9/20 (0
+
) =

1

4
𝑒
2
−
10

9
𝑒
9/20

> 0.

(37)

Therefore, there exists𝑚0 ∈ (2/5, 9/20) such that

𝐺2,𝑚 (0
+
) =

𝑒
2

4
−

𝑒
𝑚

2𝑚
= 0 (38)

and 𝐺2,𝑚(0
+
) < 0 for 𝑚 ∈ (0,𝑚0) and 𝐺2,𝑚(0

+
) > 0 for 𝑚 ∈

(𝑚0, 1).
On the other hand, it follows from 𝑚 ∈ (𝑚0, 1) together

with (20) and (21) that

lim
𝑥→∞

𝐺2,𝑚 (𝑥)

𝑥−3
= −

1

6
(𝑚 − 1) (𝑚 − 2) < 0. (39)

(ii) We prove that 𝜃(𝑥, 2) < 𝜃(𝑥,𝑚) for all 𝑥 > 0 if
𝑚 ∈ (0,𝑚0]. From Lemma 3, we know that 𝑚 󳨃→ 𝜃(𝑥,𝑚)

is strictly decreasing on (0, 1], so it suffices to prove that
𝜃(𝑥, 2) < 𝜃(𝑥,𝑚0) for all 𝑥 > 0.

Let
𝑔1 (𝑥) = 𝑒

𝑚0/𝑥𝐺2,𝑚0
(𝑥)

=
1

4
exp(

𝑚0

𝑥
+

2

𝑥 + 1
) −

1

4
exp (

𝑚0

𝑥
−
2

𝑥
)

+
1

2𝑚0
(1 − exp(

𝑚0

𝑥
+

𝑚0

𝑥 + 1
)) .

(40)

Then
lim
𝑥→∞

𝑔1 (𝑥) = 0. (41)

Differentiation yields
4

2 − 𝑚0
𝑥
2
𝑒
(2−𝑚0)/𝑥 × 𝑔

󸀠

1
(𝑥)

=
2 (2𝑥
2
+ 2𝑥 + 1)

(2 − 𝑚0) (𝑥 + 1)
2
exp ( 2

𝑥
+

𝑚0

𝑥 + 1
) − 1

−
(𝑚0 + 2) 𝑥

2
+ 2𝑚0𝑥 + 𝑚0

(2 − 𝑚0) (𝑥 + 1)
2

exp( 2
𝑥
+

2

𝑥 + 1
)

:= 𝑔2 (𝑥) ,

(42)

𝑔
󸀠

2
(𝑥) = 2 ((2𝑚0 + 2) 𝑥

4
+ (2𝑚0 + 10) 𝑥

3

+ (𝑚0 + 14) 𝑥
2
+ 8𝑥 + 2)

× ((2 − 𝑚0) 𝑥
2
(𝑥 + 1)

4
)
−1

× exp (
𝑚0

𝑥 + 1
+
2

𝑥
)𝑔3 (𝑥) ,

(43)

where
𝑔3 (𝑥) = ((2𝑚0 + 2) 𝑥

4
+ (6𝑚0 + 2) 𝑥

3

+ (7𝑚0 + 2) 𝑥
2
+ 4𝑚0𝑥 + 𝑚0)

× ((2𝑚0 + 2) 𝑥
4
+ (2𝑚0 + 10) 𝑥

3

+ (𝑚0 + 14) 𝑥
2
+ 8𝑥 + 2)

−1

× 𝑒
(2−𝑚0)/(𝑥+1) − 1.

(44)
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Note that

lim
𝑥→∞

𝑔2 (𝑥) = 0, (45)

lim
𝑥→0+

𝑔3 (𝑥) =
1

2
𝑚0𝑒
2−𝑚0 − 1 = 0, (46)

lim
𝑥→∞

𝑔3 (𝑥) = 0, (47)

where the second equation in (46) follows from (38).
Differentiating 𝑔3(𝑥) leads to

𝑔
󸀠

3
(𝑥) = ((2 − 𝑚0) 𝑒

(2−𝑚0)/(𝑥+1))

× ((𝑥 + 1)
2
(8𝑥 + 𝑚0𝑥

2
+ 2𝑚0𝑥

3

+ 2𝑚0𝑥
4
+ 14𝑥

2
+ 10𝑥

3
+ 2𝑥
4
+ 2)
2

)
−1

× 𝑔4 (𝑥) ,

(48)

where

𝑔4 (𝑥) = (4 − 4𝑚
2

0
) 𝑥
8
+ (16 − 16𝑚

2

0
) 𝑥
7

+ (−28𝑚
2

0
− 24𝑚0 + 32) 𝑥

6

+ (−28𝑚
2

0
− 72𝑚0 + 40) 𝑥

5

− (17𝑚
2

0
+ 104𝑚0 − 42) 𝑥

4

− (6𝑚
2

0
+ 88𝑚0 − 36) 𝑥

3

− (𝑚
2

0
+ 46𝑚0 − 18) 𝑥

2

− (14𝑚0 − 4) 𝑥 − 2𝑚0

:= 𝑎8𝑥
8
+ 𝑎7𝑥
7
+ 𝑎6𝑥
6
+ 𝑎5𝑥
5
− 𝑎4𝑥
4

− 𝑎3𝑥
3
− 𝑎2𝑥
2
− 𝑎1𝑥 − 𝑎0.

(49)

We assert that there exists a unique 𝑥
∗

4
∈ (0,∞) such that

𝑔4(𝑥) < 0 for 𝑥 ∈ (0, 𝑥
∗

4
) and 𝑔4(𝑥) > 0 for 𝑥 ∈ (𝑥

∗

4
,∞),

which leads to the conclusion that 𝑔3(𝑥) is strictly decreasing
on (0, 𝑥

∗

4
] and strictly increasing on [𝑥

∗

4
,∞). To this end,

it is enough to verify that the coefficients of 𝑔4(𝑥) satisfy
the conditions of Lemma 7. In fact, it follows from 𝑚0 ∈

(2/5, 9/20) := (𝑚0−, 𝑚0+) that we have

𝑎8 = 4 − 4𝑚
2

0
= 4 (1 − 𝑚

2

0
) > 0,

𝑎7 = 16 − 16𝑚
2

0
= 16 (1 − 𝑚

2

0
) > 0,

𝑎6 = −28𝑚
2

0
− 24𝑚0 + 32

> −28𝑚
2

0+
− 24𝑚0+ + 32 =

1553

100
> 0,

𝑎5 = −28𝑚
2

0
− 72𝑚0 + 40

> −28𝑚
2

0+
− 72𝑚0+ + 40 =

193

100
> 0,

𝑎4 = (17𝑚
2

0
+ 104𝑚0 − 42)

> 17𝑚
2

0−
+ 104𝑚0− − 42 =

58

25
> 0,

𝑎3 = (6𝑚
2

0
+ 88𝑚0 − 36)

> 6𝑚
2

0−
+ 88𝑚0− − 36 =

4

25
> 0,

𝑎2 = (𝑚
2

0
+ 46𝑚0 − 18)

> 𝑚
2

0−
+ 46𝑚0− − 18 =

14

25
> 0,

𝑎1 = (14𝑚0 − 4)

> 14𝑚0− − 4 =
8

5
> 0,

𝑎0 = 2𝑚0 > 0.

(50)

From the piecewise monotonicity of 𝑔3(𝑥) together with (46)
and (47), we clearly see that

𝑔3 (𝑥) < lim
𝑥→0+

𝑔3 (𝑥) = 0 for 𝑥 ∈ (0, 𝑥
∗

4
] ,

𝑔3 (𝑥) < lim
𝑥→∞

𝑔3 (𝑥) = 0 for 𝑥 ∈ [𝑥
∗

4
,∞) ;

(51)

that is,𝑔3(𝑥) < 0 for𝑥 ∈ (0,∞).Then (43) and (45) lead to the
conclusion that 𝑔2(𝑥) > lim𝑥→∞𝑔2(𝑥) = 0 for 𝑥 ∈ (0,∞),
which implies that 𝑔1(𝑥) is strictly increasing on (0,∞) and
𝑔1(𝑥) < lim𝑥→∞𝑔1(𝑥) = 0 for 𝑥 ∈ (0,∞).

Therefore, 𝜃(𝑥, 2) < 𝜃(𝑥,𝑚0) follows easily from (40) and
𝑔1(𝑥) < 0.

Lemma 9 (see [12, pp. 258–260]). Let 𝑥 > 0 and 𝑛 ∈

{0, 1, 2, . . .}. Then

𝜓
(𝑛)

(𝑥 + 1) − 𝜓
(𝑛)

(𝑥) =
(−1)
𝑛
𝑛!

𝑥𝑛+1
. (52)

From the proof of [4, Theorem 2.6], we get the following.

Lemma 10. The inequality

𝜓
󸀠
(𝑥 + 1) >

2𝑥 + 1

2𝑥2 + 2𝑥 + 2/3
(53)

holds for 𝑥 > −1.

The following lemma can be derived immediately from
the proof of [4, Theorem 2.1].

Lemma 11 (see [4,Theorem2.1]). Let𝑦 be the function defined
on (0,∞) by

𝑦 (𝑥) = 𝑒
2𝜓(𝑥)

. (54)

Then 𝑦
󸀠󸀠󸀠
(𝑥) > 0 for 𝑥 ∈ (0,∞).
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The well-known Hermite-Hadamard inequality for con-
vex function can be stated as follows.

Lemma 12 (see [13]). Let 𝐼 ⊆ R be an interval, 𝑎, 𝑏 ∈ 𝐼 with
𝑎 < 𝑏, and let 𝑓 : 𝐼 → R be a convex function. Then

𝑓(
𝑎 + 𝑏

2
) ≤

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

𝑏 − 𝑎
≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
. (55)

3. Proofs of Theorem 1

Proof of Theorem 1. We divide the proof into four parts.
(I) We prove the first inequality in (7); that is,

𝐹1 (𝑥) = 𝜓
󸀠
(𝑥 + 1) −

𝑒
1/(𝑥+1)

− 𝑒
−1/𝑥

2
> 0, (56)

where 𝐹𝑚(𝑥) is defined by (14).
It follows from Lemma 10 that

𝐹1 (𝑥) = 𝜓
󸀠
(𝑥 + 1) −

𝑒
1/(𝑥+1)

− 𝑒
−1/𝑥

2

>
2𝑥 + 1

2𝑥2 + 2𝑥 + 2/3
−
𝑒
1/(𝑥+1)

− 𝑒
−1/𝑥

2

:= 𝑒
−1/𝑥

𝐻(𝑥) ,

(57)

where

𝐻(𝑥) =
2𝑥 + 1

2𝑥2 + 2𝑥 + 2/3
𝑒
1/𝑥

−
exp ((1/ (𝑥 + 1)) + (1/𝑥)) − 1

2
.

(58)

We clearly see that it is enough to prove that𝐻(𝑥) > 0 for
𝑥 > 0.

Differentiating𝐻(𝑥) gives

𝐻
󸀠
(𝑥) =

1

2𝑥2
𝑒
1/𝑥

× (
2𝑥
2
+ 2𝑥 + 1

(𝑥 + 1)
2

𝑒
1/(𝑥+1)

−
3 (𝑥 + 1) (6𝑥

3
+ 6𝑥
2
+ 4𝑥 + 1)

(3𝑥2 + 3𝑥 + 1)
2

)

=
1

2𝑥2
𝑒
1/𝑥

𝐿

× (
2𝑥
2
+ 2𝑥 + 1

(𝑥 + 1)
2

𝑒
1/(𝑥+1)

,

3 (𝑥 + 1) (6𝑥
3
+ 6𝑥
2
+ 4𝑥 + 1)

(3𝑥2 + 3𝑥 + 1)
2

) × ℎ (𝑥) ,

(59)

where 𝐿(𝑎, 𝑏) = (𝑏 − 𝑎)/(ln 𝑎 − ln 𝑏) denotes the logarithmic
mean of positive numbers 𝑎 and 𝑏, and

ℎ (𝑥) =
1

𝑥 + 1
+ ln 2𝑥

2
+ 2𝑥 + 1

(𝑥 + 1)
2

− ln
3 (𝑥 + 1) (6𝑥

3
+ 6𝑥
2
+ 4𝑥 + 1)

(3𝑥2 + 3𝑥 + 1)
2

.

(60)

Differentiating ℎ(𝑥) leads to

ℎ
󸀠
(𝑥) = (𝑥 (2𝑥 + 1) (7𝑥

2
+ 7𝑥 + 3))

× ((𝑥 + 1)
2
(3𝑥
2
+ 3𝑥 + 1) (2𝑥

2
+ 2𝑥 + 1)

× (6𝑥
3
+ 6𝑥
2
+ 4𝑥 + 1))

−1

> 0

(61)

for 𝑥 > 0, which means that ℎ is strictly increasing on
(0,∞) and ℎ(𝑥) < lim𝑥→∞ ℎ(𝑥) = 0. It in turn implies
that 𝐻 is strictly decreasing on (0,∞). Therefore, 𝐻(𝑥) >

lim𝑥→∞𝐻(𝑥) = 0 for 𝑥 > 0.
(II)We prove that𝑚 = 1 is the best possible constant such

that 𝜓󸀠(𝑥 + 1) > 𝜃(𝑥,𝑚) for all 𝑥 > 0.
From Lemma 5, we know that 𝑚 ∈ [1,𝑚2] if 𝜓

󸀠
(𝑥 + 1) >

𝜃(𝑥,𝑚) for all 𝑥 > 0, where 𝑚2 = 1. 7510 . . .. It follows from
Lemma 6 that 𝜃(𝑥, 1) and 𝜃(𝑥,𝑚) are not comparable for all
𝑥 > 0 if 𝑚 ∈ (1, 2); that is to say, 𝜃(𝑥,𝑚∗) is not a better
lower bound of𝜓󸀠(𝑥+1) than 𝜃(𝑥, 1) even if there exists𝑚∗ ∈
(1,𝑚2] such that 𝜓󸀠(𝑥 + 1) > 𝜃(𝑥,𝑚

∗
).

For any𝑚∗ ∈ (1,𝑚2], (22) leads to

lim
𝑥→∞

[𝑥
3
𝐹𝑚∗ (𝑥)] =

1

6
(𝑚
∗
− 1) (2 − 𝑚

∗
) . (62)

It follows from (19), (20), and (21) that we get

lim
𝑥→∞

[𝑥
5
𝐹1 (𝑥)] =

1

24
. (63)

(III) We prove the second inequality (7); that is,

𝐹2 (𝑥) = 𝜓
󸀠
(𝑥 + 1) −

𝑒
2/(𝑥+1)

− 𝑒
−2/𝑥

4
< 0 (64)

for 𝑥 > 0, where 𝐹𝑚(𝑥) is defined by (14).
Lemma 11 implies that the function 𝑥 󳨃→ 𝑦

󸀠
(𝑥) =

2𝜓
󸀠
(𝑥)𝑒
2𝜓(𝑥) is strictly convex on (0,∞). Then, making use

of Lemma 12, we get

𝑦
󸀠
(
𝑥 + 𝑥 + 2

2
) <

∫
𝑥+2

𝑥
𝑦
󸀠
(𝑡) 𝑑𝑡

𝑥 + 2 − 𝑥

(65)

for 𝑥 > 0. That is,

2𝜓
󸀠
(𝑥 + 1) 𝑒

2𝜓(𝑥+1)
<
𝑒
2𝜓(𝑥+2)

− 𝑒
2𝜓(𝑥)

2
,

𝜓
󸀠
(𝑥 + 1) <

1

4
[𝑒
2(𝜓(𝑥+2)−𝜓(𝑥+1))

− 𝑒
2(𝜓(𝑥)−𝜓(𝑥+1))

] .

(66)
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Therefore, inequality (64) follows easily from (52) and the
last inequality above.

(IV) We prove that 𝑚 = 2 is the best possible constant
such that 𝜓󸀠(𝑥 + 1) < 𝜃(𝑥,𝑚) for all 𝑥 > 0.

From Lemma 5, we know that 𝑚 ∈ (0,𝑚1] ∪ [2,∞) if
𝜓
󸀠
(𝑥 + 1) < 𝜃(𝑥,𝑚) for all 𝑥 > 0, where𝑚1 = 0.5023 ⋅ ⋅ ⋅ .
It follows from Lemma 8 that there exists 𝑚0 ∈

(2/5, 9/20) ⊂ (0,𝑚1) such that 𝜃(𝑥, 2) and 𝜃(𝑥,𝑚) are not
comparable for all𝑥 > 0 if𝑚 ∈ (𝑚0, 𝑚1] and 𝜃(𝑥, 2) < 𝜃(𝑥,𝑚)

for all 𝑥 > 0 if 𝑚 ∈ (0,𝑚0]. Lemma 3 leads to the conclusion
that 𝜃(𝑥, 2) < 𝜃(𝑥,𝑚) for all 𝑥 > 0 if𝑚 ∈ (2,∞).

If there exists 𝑚∗ ∈ (𝑚0, 𝑚1] such that 𝐹𝑚∗(𝑥) = 𝜓
󸀠
(𝑥 +

1) − 𝜃(𝑥,𝑚
∗
) < 0 for all 𝑥 > 0, then, from (19), (20), (21), and

(22), we get

lim
𝑥→∞

[𝑥
3
𝐹𝑚∗ (𝑥)] = −

1

6
(1 − 𝑚

∗
) (2 − 𝑚

∗
) ,

lim
𝑥→∞

[𝑥
7
𝐹2 (𝑥)] = −

1

45
.

(67)

From the above proof and Lemma 3 we get the following.

Corollary 13. Let the function 𝜃 be defined on (0,∞)
2 by (9)

and let𝑚0 ∈ (2/5, 9/20) be the root of (38) on (0, 1). Then the
inequalities

𝜓
󸀠
(𝑥 + 1) < 𝜃 (𝑥, 2) < 𝜃 (𝑥,𝑚0) < lim

𝑚→0
𝜃 (𝑥,𝑚)

=
1

2 (𝑥 + 1)
+

1

2𝑥

(68)

or equivalently

𝜓
󸀠
(𝑥) <

1

2 (𝑥 + 1)
+

1

2𝑥
+

1

𝑥2
(69)

hold for all 𝑥 > 0.

4. Remarks

Remark 14. It follows from (67) and the facts that

lim
𝑥→∞

𝜓
󸀠
(𝑥) − 𝑒

−𝜓(𝑥)

𝑥−3
= −

1

24
,

lim
𝑥→∞

𝜓
󸀠
(𝑥 + 1) − (𝑥 + 𝜋

2
𝑒
−2𝛾

/6) 𝑒
−2𝜓(𝑥+1)

𝑥−2

=
1

2
−
1

6
𝜋
2
𝑒
−2𝛾

,

lim
𝑥→∞

𝜓
󸀠
(𝑥 + 1) − (1/2) ((2/𝑥

2
) + 1 − 𝑒

−2/𝑥
+ 𝑒
−2𝜓(𝑥+1)

)

𝑥−6

= −
1

60
,

lim
𝑥→∞

𝜓
󸀠
(𝑥) − (𝑒

1/𝑥
− 1)

𝑥−4
= −

1

24
,

lim
𝑥→∞

𝜓
󸀠
(𝑥) − (2𝑒

2/𝑥
/𝑥
2
(𝑒
2/𝑥

− 1))

𝑥−2
= −

1

2
(70)

that we clearly see that the upper bound inTheorem 1 for the
trigamma function 𝜓

󸀠 is better than the upper bounds given
in (2), (3), (4), (5), and (6) if 𝑥 is large enough.

Lemma 15. One has

𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

> 2 𝑖𝑓𝑥 ∈ (−∞, −1) ∪ (0,∞) ,

𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

≥ 2𝑒
2

𝑖𝑓𝑥 ∈ (−1, 0) .

(71)

Proof. Differentiation leads to

(𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

)
󸀠

=
𝑒
−1/𝑥

𝑥2
(1 −

𝑥
2

(𝑥 + 1)
2
exp( 1

𝑥 + 1
+
1

𝑥
))

:=
𝑒
−1/𝑥

𝑥2
𝑉 (𝑥) ,

𝑉
󸀠
(𝑥) =

exp (1/ (𝑥 + 1) + (1/𝑥))

(𝑥 + 1)
4

> 0.

(72)

If 𝑥 ∈ (0,∞), then, from 𝑉
󸀠
(𝑥) > 0, we get 𝑉(𝑥) <

lim𝑥→∞𝑉(𝑥) = 0, which leads to

𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

> lim
𝑥→∞

(𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

) = 2. (73)

If 𝑥 ∈ (−∞, −1), then the first inequality in (71) still holds by
making a change of variable 𝑦 = −(𝑥 + 1). If 𝑥 ∈ (−1, 0),
since 𝑉(−1/2) = 0, we see that 𝑉(𝑥) < 𝑉(−1/2) = 0 for
𝑥 ∈ (−1, −1/2) and 𝑉(𝑥) > 𝑉(−1/2) = 0 for 𝑥 ∈ (−1/2, 0).
Hence,

𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

≥ [𝑒
1/(𝑥+1)

+ 𝑒
−1/𝑥

]
𝑥=−1/2

= 2𝑒
2
. (74)

Remark 16. Using inequality (71), one has

1

𝑥2
+ 𝜃 (𝑥, 2) − (𝑒

1/𝑥
− 1)

=
1

𝑥2
+
𝑒
2/(𝑥+1)

− 𝑒
−2/𝑥

4
− (𝑒
1/𝑥

− 1)

<
1

𝑥2
+
𝑒
2/(𝑥+1)

− (2 − 𝑒
1/(𝑥+1)

)
2

4
− (𝑒
1/𝑥

− 1)

=
1

𝑥2
+ 𝑒
1/(𝑥+1)

− 𝑒
1/𝑥

=
1

𝑥2
+

∞

∑

𝑛=0

1

𝑛!
(

1

(𝑥 + 1)
𝑛 −

1

𝑥𝑛
)

<
1

𝑥2
+

3

∑

𝑛=0

1

𝑛!
(

1

(𝑥 + 1)
𝑛 −

1

𝑥𝑛
) = −

1

6𝑥3(𝑥 + 1)
3
< 0

(75)

for 𝑥 > 0, which shows that the upper bound 𝑥
−2

+ 𝜃(𝑥, 2) in
(8) is better than the upper bound (𝑒

1/𝑥
− 1) in (6).
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Remark 17. The conclusion that the difference 𝑒
1/𝑥

− 𝜓
󸀠
(𝑥)

is completely monotonic on (0,∞) given in [6, Lemma 2]
implies that

𝑒 − 𝜓
󸀠
(1) > 𝑒

1/(𝑥+1)
− 𝜓
󸀠
(𝑥 + 1) > 1 (76)

or

𝑒
1/(𝑥+1)

− 𝑒 +
𝜋
2

6
< 𝜓
󸀠
(𝑥 + 1) < 𝑒

1/(𝑥+1)
− 1 <

1

2
sinh 2

𝑥
.

(77)

It is easy to check that the lower bound 𝑒1/(𝑥+1) − 𝑒+𝜋
2
/6 and

sinh 1/(𝑥 + 1) for 𝜓󸀠(𝑥 + 1) given in (10) are not comparable
due to

𝑒
1/(𝑥+1)

− 𝑒 +
𝜋
2

6
> (<) sinh 1

𝑥 + 1
if 𝑥 < (>) 1.62670 ⋅ ⋅ ⋅ .

(78)

Remark 18. Guo et al. [14] proved that

(𝑘 − 1)!

𝑥𝑘
+

𝑘!

2𝑥𝑘+1
< (−1)

𝑘+1
𝜓
(𝑘)

(𝑥) <
(𝑘 − 1)!

𝑥𝑘
+

𝑘!

𝑥𝑘+1
(79)

for 𝑥 > 0 if 𝑘 ∈ N. In particular, if 𝑘 = 1, one has

1

𝑥
+

1

2𝑥2
< 𝜓
󸀠
(𝑥) <

1

𝑥
+

1

𝑥2
. (80)

We clearly see that the upper bound given in (69) is better
than that in (80) for the trigamma function 𝜓

󸀠
(𝑥).

Finally, we give remarks on two mathematical constants
𝜋 and 𝐺 (Catalan constant).

Remark 19. It is well known that
∞

∑

𝑘=1

1

𝑘2
=
𝜋
2

6
. (81)

Let𝑄𝑛 = ∑
𝑛

𝑘=1
(1/𝑘
2
), and then 𝜓

󸀠
(𝑛+1) = (𝜋

2
/6)−𝑄𝑛. From

Theorem 1, we clearly see that the double inequality

𝑒
1/(𝑛+1)

− 𝑒
−1/𝑛

2
<
𝜋
2

6
− 𝑄𝑛 <

𝑒
2/(𝑛+1)

− 𝑒
−2/𝑛

4
(82)

holds for all 𝑛 ∈ N.
Let

𝑙𝑛 = 𝑄𝑛 +
𝑒
1/(𝑛+1)

− 𝑒
−1/𝑛

2
, 𝐿𝑛 = 𝑄𝑛 +

𝑒
2/(𝑛+1)

− 𝑒
−2/𝑛

4
.

(83)

Then inequalities (82) can be rewritten as

𝑙𝑛 <
𝜋
2

6
< 𝐿𝑛

(84)

or

√6𝑙𝑛 < 𝜋 < √6𝐿𝑛. (85)

Table 1

𝑛 |√6𝑄𝑛 − 𝜋| |√6𝑙𝑛 − 𝜋| |√6𝐿𝑛 − 𝜋|

1 0.6921 4.3127 × 10
−3

7.663 × 10
−4

2 0.40298 3.7549 × 10
−4

2.8250 × 10
−5

5 0.1782 7.7596 × 10
−6

1.3276 × 10
−7

10 9.2231 × 10
−2

3.1013 × 10
−7

1.4875 × 10
−9

50 1.8966 × 10
−2

1.2112 × 10
−10

2.5320 × 10
−14

100 9.5161 × 10
−3

3.8807 × 10
−12

2.0489 × 10
−16

200 4.7663 × 10
−3

1.2280 × 10
−13

1.6291 × 10
−18

500 1.9085 × 10
−3

1.2669 × 10
−15

2.6973 × 10
−21

It follows from (63) and (67) that

lim
𝑛→∞

𝑛
5
(𝑙𝑛 −

𝜋
2

6
) = −

1

24
,

lim
𝑛→∞

𝑛
7
(𝐿𝑛 −

𝜋
2

6
) =

1

45
.

(86)

Therefore, (85) provides a new approximation algorithm for
𝜋. Numerical simulations results carried out with mathemat-
ical software show that the given algorithm is more accurate
than√6𝑄𝑛 (see Table 1).

More estimate methods for 𝜋 can be found in [15–19].

Remark 20. The Catalan constant

𝐺 =

∞

∑

𝑛=0

(−1)
𝑛

(2𝑛 + 1)
2
= 0.9159655941772190 ⋅ ⋅ ⋅ (87)

is a mysterious constant in mathematics and physics. From
𝜓
󸀠
(1/4) = 𝜋

2
+8𝐺 and𝜓󸀠(𝑛+(1/4)+1) = 𝜓

󸀠
(1/4)−∑

𝑛

𝑘=0
(1/(𝑘+

1/4)
2
) (see [17, 20]) together withTheorem 1, we get

𝑒
1/(𝑛+5/4)

− 𝑒
−1/(𝑛+1/4)

16
+
1

8

𝑛

∑

𝑘=0

1

(𝑘 + 1/4)
2
−
𝜋
2

8
< 𝐺

<
𝑒
2/(𝑛+5/4)

− 𝑒
−2/(𝑛+1/4)

32
+
1

8

𝑛

∑

𝑘=0

1

(𝑘 + 1/4)
2
−
𝜋
2

8

(88)

for 𝑛 ∈ N.
Let

𝑢𝑛 =
𝑒
1/(𝑛+5/4)

− 𝑒
−1/(𝑛+1/4)

16
+
1

8

𝑛

∑

𝑘=0

1

(𝑘 + 1/4)
2
−
𝜋
2

8
,

𝑈𝑛 =
𝑒
2/(𝑛+5/4)

− 𝑒
−2/(𝑛+1/4)

32
+
1

8

𝑛

∑

𝑘=0

1

(𝑘 + 1/4)
2
−
𝜋
2

8
.

(89)

Then inequalities (88) can be rewritten as

𝑢𝑛 < 𝐺 < 𝑈𝑛. (90)

It follows from (63) and (67) that we have

lim
𝑛→∞

𝑛
5
(𝑢𝑛 − 𝐺) = −

1

24
,

lim
𝑛→∞

𝑛
7
(𝑈𝑛 − 𝐺) =

1

45
.

(91)
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Table 2

𝑛 |∑
𝑛

𝑘=0
(−1)
𝑘
/(2𝑘 + 1)

2
− 𝐺| |𝑢𝑛 − 𝐺| |𝑈𝑛 − 𝐺|

1 2.7077 × 10
−2

2.7274 × 10
−4

3.7885 × 10
−5

2 1.2923 × 10
−2

3.0912 × 10
−5

1.9591 × 10
−6

5 3.4037 × 10
−3

8.1456 × 10
−7

1.2782 × 10
−8

10 1.0268 × 10
−3

3.6098 × 10
−8

1.6524 × 10
−10

50 4.8045 × 10
−5

1.5468 × 10
−11

3.2017 × 10
−15

100 1.2253 × 10
−5

5.0171 × 10
−13

2.6358 × 10
−17

200 3.0939 × 10
−6

1.5974 × 10
−14

2.1139 × 10
−19

500 4.98 × 10
−7

1.6542 × 10
−16

3.5184 × 10
−22

Therefore, (90) provides a new approximation algorithm
for the Catalan constant 𝐺. Numerical simulations results
carried out with mathematical software show that the given
algorithm is more accurate than ∑

𝑛

𝑘=0
((−1)
𝑘
/(2𝑘 + 1)

2
) (see

Table 2).
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