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The classU(𝜆, 𝜇) of normalized analytic functions that satisfy |(𝑧/𝑓(𝑧))1+𝜇 ⋅ 𝑓󸀠(𝑧) − 1| < 𝜆 for all z in the open unit disk is studied
and sufficient conditions for an 𝛼-convex function to be inU(𝜆, 𝜇) are given.

1. Introduction

Let A denote the class of functions 𝑓(𝑧) which are analytic
in the unit disk D = {𝑧 : |𝑧| < 1} with the normalization
𝑓(0) = 0 and 𝑓󸀠(0) = 1.

For a function 𝑓(𝑧) ∈ A, we say that 𝑓 is starlike of order
𝛼, 0 ≤ 𝛼 < 1, if and only if

Re{
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
} > 𝛼, 𝑧 ∈ D. (1)

We denote by S∗(𝛼) the class of all such functions. Also, we
denote byK(𝛼) the class of convex functions of order 𝛼, 0 ≤
𝛼 < 1, that is, the class of functions 𝑓(𝑧) ∈ A for which

Re{1 +
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
} > 𝛼, 𝑧 ∈ D. (2)

For 𝛼 = 0, we have the classes of S∗ and K of starlike and
convex functions, respectively. All of the above classes are
subclasses of the class of univalent functions in D and even
more,K ⊂ S∗. For details see [1].

Further, for 𝑓(𝑧) ∈ A and 𝜇 ∈ C, let us define the
operator

𝑈(𝑓, 𝜇; 𝑧) = (
𝑧

𝑓 (𝑧)
)

1+𝜇

⋅ 𝑓
󸀠
(𝑧) (3)

and the class

U (𝜆, 𝜇)

= {𝑓 ∈ A :
𝑧

𝑓 (𝑧)
̸= 0,
󵄨󵄨󵄨󵄨𝑈 (𝑓, 𝜇; 𝑧) − 1

󵄨󵄨󵄨󵄨 < 𝜆, 𝑧 ∈ D} .

(4)

This class and its special cases U(𝜆) ≡ U(𝜆, 1) and U ≡

U(1) = U(1, 1) are widely studied in the past decades ([2–
12]). It is known [2, 12] that functions in U(𝜆) are univalent
if 0 < 𝜆 ≤ 1, but not necessarily univalent if 𝜆 > 1. Further,
Fournier and Ponnusamy [3] proved that assuming Re 𝜇 < 1
the following equivalency holds:

U (𝜆, 𝜇) ⊂ S
∗
⇐⇒ 0 < 𝜆 ≤

󵄨󵄨󵄨󵄨1 − 𝜇
󵄨󵄨󵄨󵄨

√(1 − 𝜇)
2

+ 𝜇2
; (5)

that is, in general case, U(𝜆, 𝜇) is not a subset of S∗. In
particular,

U (1, 𝜇) ⊂ S
∗
⇐⇒ 𝜇 = 0; (6)

that is,U ̸⊆ S∗, which can be also verified by the function

𝑓 (𝑧) =
𝑧

1 + (1/2) 𝑧 + (1/2) 𝑧3
∈ U \S

∗
. (7)
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Finally, let us consider the classes

M (𝛼, 𝛾) = {𝑓 ∈ A : Re 𝐽 (𝑓, 𝛼; 𝑧) > 𝛾, 𝑧 ∈ D} ,

M
󸀠
(𝛼, 𝛽) = {𝑓 ∈ A :

󵄨󵄨󵄨󵄨𝐽 (𝑓, 𝛼; 𝑧) − 1
󵄨󵄨󵄨󵄨 < 𝛽, 𝑧 ∈ D} ,

(8)

where

𝐽 (𝑓, 𝛼; 𝑧) ≡ (1 − 𝛼)
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+ 𝛼(1 +

𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
) , (9)

𝛼, 𝛾 ∈ R, and 𝛽 > 0. These classes make a “bridge” between
the classes of starlike and convex functions (of some order).
The class M(𝛼, 𝛾) is in fact the class of 𝛼-convex functions
of order 𝛾 and M󸀠(𝛼, 𝛽), in the case when 0 < 𝛽 ≤ 1 is
a subclass of M(𝛼, 𝛾). Further, 𝛼-convex functions of some
order are also starlike ([13], page 10). Therefore, it gives rise
to the question (which is studied in this paper) of finding the
sufficient conditions for

𝑓 ∈ U(𝜆, −
1

𝛼
) ∩M (𝛼, 𝛾) ,

𝑓 ∈M
󸀠
(𝛼, 𝛽) 󳨐⇒ 𝑓 ∈ U(𝜆, −

1

𝛼
) .

(10)

Let 𝑓(𝑧) and 𝑔(𝑧) be analytic in the unit disk. We say that
𝑓(𝑧) is subordinate to 𝑔(𝑧), and we write 𝑓(𝑧) ≺ 𝑔(𝑧); if 𝑔(𝑧)
is univalent inD, then𝑓(0) = 𝑔(0) and𝑓(D) ⊆ 𝑔(D). Further,
we use the method of differential subordination introduced
by Miller and Mocanu [14]. In fact, if 𝜙 : C2 → C

(C is the complex plane) is analytic in domain 𝐷 ⊂ C,
if ℎ(𝑧) is univalent in D, and if 𝑝(𝑧) is analytic in D with
(𝑝(𝑧), 𝑧𝑝

󸀠(𝑧)) ∈ 𝐷, when 𝑧 ∈ D, thenwe say that𝑝(𝑧) satisfies
a first-order differential subordination if

𝜙 (𝑝 (𝑧) , 𝑧𝑝
󸀠
(𝑧)) ≺ ℎ (𝑧) . (11)

The univalent function 𝑞(𝑧) is called a dominant of the
differential subordination (11) if 𝑝(𝑧) ≺ 𝑞(𝑧) for all 𝑝(𝑧)
satisfying (11). If 𝑞(𝑧) is a dominant of (11) and 𝑞(𝑧) ≺ 𝑞(𝑧)
for all dominants of (11), then we say that 𝑞(𝑧) is the best
dominant of the differential subordination (11).

We will make use of the following lemma.

Lemma 1 (see [15]). Let 𝑞 be univalent in the unit diskD, and
let 𝜃(𝑤) and 𝜙(𝑤) be analytic in a domain𝐷 containing 𝑞(D),
with 𝜙(𝑤) ̸= 0 when 𝑤 ∈ 𝑞(D). Set 𝑄(𝑧) = 𝑧𝑞

󸀠(𝑧)𝜙(𝑞(𝑧)),
ℎ(𝑧) = 𝜃(𝑞(𝑧)) + 𝑄(𝑧) and suppose that

(i) 𝑄 is starlike in the unit disk D;
(ii) Re(𝑧ℎ󸀠(𝑧))/𝑄(𝑧) = Re[(𝜃󸀠(𝑞(𝑧))/𝜙(𝑞(𝑧))) +

(𝑧𝑄󸀠(𝑧)/𝑄(𝑧))] > 0, 𝑧 ∈ D.

If 𝑝 is analytic in D, with 𝑝(0) = 𝑞(0), 𝑝(D) ⊆ 𝐷, and

𝜃 (𝑝 (𝑧)) + 𝑧𝑝
󸀠
(𝑧) 𝜙 (𝑝 (𝑧))

≺ 𝜃 (𝑞 (𝑧)) + 𝑧𝑞
󸀠
(𝑧) 𝜙 (𝑞 (𝑧)) = ℎ (𝑧) ,

(12)

then 𝑝(𝑧) ≺ 𝑞(𝑧), and 𝑞 is the best dominant of (12).

2. Main Results and Consequences

Now we will prove the following theorem that will fur-
ther lead to connections between class U(𝜆, 𝜇) and classes
M󸀠(𝛼, 𝛽) andM(𝛼, 𝛾).

Theorem 2. Let 𝑓 ∈ A, 0 < 𝜆 ≤ 1 and 𝛼 ̸= 0. If 𝑓󸀠(𝑧) ̸= 0 for
all 𝑧 ∈ D, and if

𝐽 (𝑓, 𝛼; 𝑧) ≺ 1 +
𝛼𝜆𝑧

1 + 𝜆𝑧
≡ ℎ (𝑧) , (13)

then

𝑈(𝑓, −
1

𝛼
; 𝑧) ≺ 1 + 𝜆𝑧; (14)

that is, 𝑓 ∈ U(𝜆, −1/𝛼), and 1 + 𝜆𝑧 is the best dominant of
(13).

Proof. Let𝑝(𝑧) = 𝑈(𝑓, −1/𝛼; 𝑧) = (𝑧/𝑓(𝑧))1−1/𝛼⋅𝑓󸀠(𝑧), 𝑞(𝑧) =
1 + 𝜆𝑧, 𝜃(𝜔) = 1, and 𝜙(𝜔) = 𝛼/𝜔, where 𝜔 ∈ (D). Then 𝑞(𝑧)
is univalent in D, 𝜃(𝜔) and 𝜙(𝜔) are analytic in domain 𝐷 =

C \ {0} which contains 𝑞(D) = {1 + 𝑧 : |𝑧| < 𝜆} (𝑞(𝑧) = 1 + 𝜆𝑧
and D is the unit disk), and 𝜙(𝜔) ̸= 0 when 𝜔 ∈ 𝑞(D). On the
other hand, let

𝑄 (𝑧) = 𝑧𝑞
󸀠
(𝑧) 𝜙 (𝑞 (𝑧)) = 𝑧𝜆

𝛼

𝑞 (𝑧)
=

𝛼𝜆𝑧

1 + 𝜆𝑧
= ℎ (𝑧) − 1.

(15)

Then

𝑧𝑄󸀠 (𝑧)

𝑄 (𝑧)
=
𝑧ℎ󸀠 (𝑧)

𝑄 (𝑧)
=

1

1 + 𝜆𝑧
,

Re{𝑧𝑄
󸀠
(𝑧)

𝑄 (𝑧)
} = Re{𝑧ℎ

󸀠
(𝑧)

𝑄 (𝑧)
} = Re 1

𝑞 (𝑧)
>

1

1 + 𝜆
> 0,

𝑧 ∈ D.

(16)

The last inequality holds since Re 𝑞(𝑧) = 1+𝜆⋅Re 𝑧 < 1+𝜆 for
all 𝑧 ∈ D and 𝑞(D) does not contain the origin. So, conditions
(i) and (ii) from Lemma 1 are satisfied.

Further, 𝑝 is analytic in D and 𝑝(0) = 𝑞(0) = 1. Also,
𝑝(𝑧) ̸= 0 for all 𝑧 ∈ D; that is, 𝑝(D) ⊆ 𝐷, since 𝑓󸀠(𝑧) ̸= 0 for all
𝑧 ∈ D (condition of the theorem); 𝑧/𝑓(𝑧) = 1 ̸= 0 for 𝑧 = 0
(because 𝑓 ∈ A) and 𝑓(𝑧) has no poles on D. Hence from
Lemma 1 and the fact that

𝐽 (𝑓, 𝛼; 𝑧) = 1 + 𝛼 ⋅
𝑧𝑝
󸀠
(𝑧)

𝑝 (𝑧)
= 𝜃 (𝑝 (𝑧)) + 𝑧𝑝

󸀠
(𝑧) 𝜙 (𝑝 (𝑧))

≺
𝛼𝜆𝑧

1 + 𝜆𝑧
= 𝜃 (𝑞 (𝑧)) + 𝑧𝑞

󸀠
(𝑧) 𝜙 (𝑞 (𝑧)) ,

(17)

we receive that 𝑝(𝑧) ≺ 𝑞(𝑧), that is, relation (14), and we also
receive that 𝑞(𝑧) is the best dominant of (13).
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Applying the definition of subordination to Theorem 2,
we receive the following.

Corollary 3. Let 𝑓 ∈ A, 0 < 𝜆 ≤ 1, and 𝛼 ̸= 0. Also, let
𝑓(𝑧)/𝑧 ̸= 0 and 𝑓󸀠(𝑧) ̸= 0 for all 𝑧 ∈ D. If

󵄨󵄨󵄨󵄨𝐽 (𝑓, 𝛼; 𝑧) − 1
󵄨󵄨󵄨󵄨 <

𝜆 |𝛼|

1 + 𝜆
, 𝑧 ∈ D, (18)

then 𝑓 ∈ U(𝜆, −1/𝛼); that is,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑓, −

1

𝛼
; 𝑧) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜆, 𝑧 ∈ D. (19)

This result is sharp; that is, the constant 𝜆 in inequality (19)
cannot be replaced by a smaller one such that the implication
still holds.

Proof. First, let us note that the function ℎ defined by
expression (13) is univalent in the unit disk such that

min {|ℎ (𝑧) − 1| : |𝑧| = 1} = 𝜆 |𝛼|

1 + 𝜆
. (20)

So, the disk {𝑤 : |𝑤 − 1| < 𝜆|𝛼|/(1 + 𝜆)} is contained in ℎ(D)
which, having inmind the definition of subordination,means
that inequality (18) implies subordination (13). Further, from
Theorem 2 follows subordination (14), which is equivalent to
the inequality (19). Even more, Theorem 2 says that 𝑞(𝑧) =
1 + 𝜆𝑧 is the best dominant of (13).

In order to prove the sharpness of the result let us assume
the opposite; that is, there exists 𝜆

∗
, 0 < 𝜆

∗
< 𝜆, such that

inequality (18) implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑓, −

1

𝛼
; 𝑧) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜆
∗
, 𝑧 ∈ D; (21)

that is,

𝑈(𝑓, −
1

𝛼
; 𝑧) ≺ 1 + 𝜆

∗
𝑧 ≡ 𝑞
∗
(𝑧) . (22)

On the other hand, inequality (18) implies subordination (13)
with best dominant 𝑞(𝑧), meaning that 𝑞(𝑧) ≺ 𝑞

∗
(𝑧). This is

a contradiction to the assumption 𝜆
∗
< 𝜆 which proves the

sharpness of the result.

Previous corollary can be written in the following, equiv-
alent, form that gives conditions for inclusion of the class
M󸀠(𝛼, 𝛽) into the classU(𝜆, −1/𝛼).

Corollary 4. Let 𝑓 ∈ A, 0 < 𝜆 ≤ 1, 𝛼 ̸= 0, and 𝛽 = 𝜆|𝛼|/(1 +
𝜆). Also, let 𝑓(𝑧)/𝑧 ̸= 0 and 𝑓󸀠(𝑧) ̸= 0 for all 𝑧 ∈ D. Then

𝑓 ∈M
󸀠
(𝛼, 𝛽) 󳨐⇒ 𝑓 ∈ U(𝜆, −

1

𝛼
) . (23)

The constant 𝜆, for the classU(𝜆, −1/𝛼), cannot be replaced by
a smaller one such that the inclusion still holds.

Next result gives the connection between classesM(𝛼, 𝛾)

andU(𝜆, −1/𝛼).

Corollary 5. Let 𝑓 ∈ A, 0 < 𝜆 ≤ 1, 𝛼 ̸= 0, and

𝛾 :=

{{

{{

{

1 + 𝛼 −
𝛼

1 − 𝜆
, if 𝛼 > 0, 𝜆 ̸= 1,

1 + 𝛼 −
𝛼

1 + 𝜆
, if 𝛼 < 0.

(24)

Also, let𝑓(𝑧)/𝑧 ̸= 0 and𝑓󸀠(𝑧) ̸= 0 for all 𝑧 ∈ D. If subordination
(13) holds, then

𝑓 ∈ U(𝜆, −
1

𝛼
) ∩M (𝛼, 𝛾) . (25)

Proof. It is easy to check that all conditions of Theorem 2 are
fulfilled; hence, 𝑓 ∈ U(𝜆, −1/𝛼).

It remains to verify that 𝑓 ∈ M(𝛼, 𝛾); that is, subordina-
tion (13) implies

Re 𝐽 (𝑓, 𝛼; 𝑧) > 𝛾, 𝑧 ∈ D. (26)

Having in mind the definition of subordination and the fact
that ℎ(𝑧) = 1 + (𝛼𝜆𝑧)/(1 + 𝜆𝑧) is univalent, it is enough to
show that Re ℎ(𝑧) ≥ 𝛾 for all 𝑧 ∈ D. The last is true because

inf {Re ℎ (𝑧) : 𝑧 ∈ D} = min {Re ℎ (𝑧) : |𝑧| = 1}

= min {ℎ (1) , ℎ (−1)} = 𝛾.
(27)

Remark 6. The case 𝛼 > 0 and 𝜆 = 1 is not covered by the
previous corollary since then inf{Re ℎ(𝑧) : 𝑧 ∈ D} = −∞.

3. Examples

Now we will apply the results from the previous section on
specific functions 𝑓 ∈ A and receive interesting conclusions.

Example 1. Let 0 < 𝜆 ≤ 1, 𝛼 ̸= 0, and 𝑎 ∈ R. Consider the
following.

(i) Let

𝛾 :=

{{

{{

{

1 + 𝛼 −
𝛼

1 − 𝜆
, if 𝛼 > 0, 𝜆 ̸= 1

1 + 𝛼 −
𝛼

1 + 𝜆
, if 𝛼 < 0.

(28)

If 𝑎 ̸= 0, 𝑎 ̸= −1, 𝜆 ≤ |1+𝑎|, 𝑎𝛼 > 0, and |𝑎| > |𝛼|, then

𝑓 (𝑧) = 𝑧 ⋅ (1 +
𝜆

1 + 𝑎
𝑧)

𝑎

∈ U(𝜆, −
1

𝛼
) ∩M (𝛼, 𝛾) . (29)

(ii) If |𝑎| < 1 and one of the following two sets of
conditions holds:

𝛼 > 0, |𝑎| (1 + 𝜆) (1 − |𝑎| + 𝛼) < 𝜆𝛼 (1 − |𝑎|) (30)

or

𝛼 < 0, |𝑎| (1 + 𝜆) (1 + |𝑎| + 𝛼) < 𝜆 |𝛼| (1 + |𝑎|) , (31)

then
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𝑓 (𝑧) = 𝑧 ⋅ 𝑒
𝑎𝑧
∈ U(𝜆, −

1

𝛼
) . (32)

In both cases, power is taken by its principal value.

Proof. (i) For the function 𝑓(𝑧) = 𝑧(1 + (𝜆/(1 + 𝑎))𝑧)
𝑎, we

have 𝑓(0) = 0 and

𝑓
󸀠
(𝑧) = (1 +

𝜆

1 + 𝑎
𝑧)

𝑎

⋅ (1 +
𝛼𝜆𝑧

1 + 𝛼 + 𝜆𝑧
) 󳨐⇒ 𝑓

󸀠
(0) = 1.

(33)

Condition 𝜆 ≤ |1 + 𝑎| guarantees that 1 + 𝛼 + 𝜆𝑧 ̸= 0 for
all 𝑧 ∈ D; hence, 𝑓 is an analytic function and 𝑓 ∈ A. For the
function 𝑓, it is easy to verify that

𝐽 (𝑓, 𝛼; 𝑧) ≡ (1 − 𝛼)
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
+ 𝛼(1 +

𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
)

= 1 +
𝑎𝜆𝑧

1 + 𝜆𝑧
.

(34)

Further, from the definition of subordination, we have
that 𝑎𝑧 ≺ 𝛼𝑧 when |𝑎| > |𝛼| and 𝑎𝛼 > 0; that is, both are
positive or both negative. Therefore,

𝐽 (𝑓, 𝛼; 𝑧) = 1 +
𝑎𝜆𝑧

1 + 𝜆𝑧
≺ 1 +

𝛼𝜆𝑧

1 + 𝜆𝑧
. (35)

So, all conditions of Corollary 5 bring us to the conclusion
that 𝑓 ∈ U(𝜆, −1/𝛼) ∩M(𝛼, 𝛾).

(ii) It is easy to verify that 𝑓 ∈ A and that

𝐽 (𝑓, 𝛼; 𝑧) ≡ (1 − 𝛼)
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
+ 𝛼(1 +

𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
)

= 1 + 𝑎𝑧 (1 +
𝛼

1 + 𝑎𝑧
) .

(36)

Therefore,

Δ ≡ sup {󵄨󵄨󵄨󵄨𝐽 (𝑓, 𝛼; 𝑧) − 1
󵄨󵄨󵄨󵄨 : 𝑧 ∈ D}

= max {󵄨󵄨󵄨󵄨𝐽 (𝑓, 𝛼; 𝑧) − 1
󵄨󵄨󵄨󵄨 : |𝑧| = 1}

= |𝑎| ⋅max {1 + 𝛼

1 + 𝑎𝑧
: 𝑧 ∈ D}

= |𝑎| ⋅

{{{

{{{

{

1 +
𝛼

1 − |𝑎|
, if 𝛼 > 0,

1 +
𝛼

1 + |𝑎|
, if 𝛼 < 0.

(37)

Further, if one of the conditions (30) or (31) holds, then
Δ ≤ (𝜆|𝛼|)/(1 + 𝜆); that is, we receive inequality (18). Finally,
we have shown that all conditions of Corollary 3 are fulfilled,
which leads to 𝑓(𝑧) ∈ U(𝜆, −1/𝛼).

The following example exhibits some concrete conclu-
sions that can be obtained from the results of the previous
section by specifying the values of 𝜆 and/or 𝛼.

Example 2. Let 𝑓 ∈ A, 0 < 𝜆 ≤ 1 and let 𝑓(𝑧)/𝑧 ̸= 0 and
𝑓
󸀠(𝑧) ̸= 0 for all 𝑧 ∈ D. Consider the following:

(i) 𝑓 ∈ M󸀠(𝛼, |𝛼|/2) ⇒ 𝑓 ∈ U(1, −1/𝛼) (𝜆 = 1 in
Corollary 4);

(ii) 𝑓 ∈ U(1, −1/𝛼) ∩M(𝛼, 1 + 𝛼/2) (𝜆 = 1 and 𝛼 < 0 in
Corollary 5).
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[9] M.Obradović, S. Ponnusamy, V. Singh, and P. Vasundhra, “Uni-
valency, starlikeness and convexity applied to certain classes of
rational functions,” Analysis, vol. 22, no. 3, pp. 225–242, 2002.
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