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A delay SIR epidemic model with difference in immunity and successive vaccination is proposed to understand their effects on the
disease spread. From theorems, it is obtained that the basic reproduction number governs the dynamic behavior of the system.The
existence and stability of the possible equilibria are examined in terms of a certain threshold condition about the basic reproduction
number. By use of new computational techniques for delay differential equations, we prove that the system is permanent. Our
results indicate that the recovery rate and the vaccination rate are two factors for the dynamic behavior of the system. Numerical
simulations are carried out to investigate the influence of the key parameters on the spread of the disease, to support the analytical
conclusion, and to illustrate possible behavioral scenarios of the model.

1. Introduction

The current threat of some new type diseases has raised our
awareness that curbing the spread of some emerging and
reemerging human diseases is of public health importance
such asH1N1.This emerging disease, whichwas first reported
in Mexico, spread very quickly, due to the travel of infected
persons by airplanes, trains, and buses to some other regions.
It continued to spread around the world and caused about
5000 deaths. In recent years, many mathematical models
have been developed for the transmission dynamics of
infectious diseases such as SARS, HIV/AIDS, measles, and
smallpox ([1–6], to name a few, and the references therein).
Thesemodels have provided understanding of the underlying
mechanisms which influence the spread of diseases and
suggested some control strategies. Moreover, to our knowl-
edge, the first effective control strategy for the elimination
of infectious diseases is obtaining immunity. It has been
reported that “People’s immunity to A/H1N1 flu virus is
greater than previously thought after access vaccines. The
WHO is working to givemore nations access vaccines to fight
the H1N1 flu pandemic.”

Besides these above studies, many authors formulated
and analyzed SIR epidemic models for the control of diseases
[7–20]. In particular, some authors have studied the effects
of vaccination on the spread of diseases [7–11]; others have
studied the effects of treatment on the spread of diseases
[12–15]. Gao et al. have proposed an epidemic model with
density-dependent birth pulses and seasonal prevention [16].
Recently, some works have investigated permanent and tem-
porary immunity [17–20]. However, in these SIR models, an
unrealistic assumption is that all the rest of infected indi-
viduals acquire immunity besides death.Measles encephalitis
in adults in [21, 22] shows that there is difference in immunity
of infected individuals.That is, some infected individuals can
acquire immunity after recovery, but some do not acquire
immunity and can be infected once more. At the same time,
vaccination is an important strategy for the elimination of
infectious diseases [7–11].

Vaccinations have many types; impulsive vaccination
and successive vaccination are two main policies. Successive
vaccination is that people have been vaccinated at birth to
protect themselves from disease; the studies can be found in

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 678723, 10 pages
http://dx.doi.org/10.1155/2014/678723

http://dx.doi.org/10.1155/2014/678723


2 Abstract and Applied Analysis

[23, 24]. Makinde in [23] studied a SIR model for the trans-
mission dynamics of a childhood disease in the presence of a
preventive vaccine and analyzed the vaccination reproductive
number for disease control and eradication qualitatively.
Impulsive vaccination (only at fixed time sequencewe execute
effectively the vaccination for the disease) is an important and
effective strategy for the elimination of infectious diseases
and has been studied in the literature. For example, see
[10, 17, 25–27]. In above-mentioned papers, authors almost
considered the vaccination of susceptible population. But,
in fact, under a certain situation, the vaccine treatment also
should be considered for the newborns of the susceptible,
the exposed, and the removed. We find that there are few
studies on the aspect of the vaccination of newborns. In
this case, successive vaccination seems more reasonable than
impulsive vaccination. Therefore, in this paper, a SIR model
with difference in immunity and successive vaccination is
considered.

As far as disease transmission is concerned, the incidence
rate, defined as the rate of new infection, plays a very
important role in modelling infectious diseases. Bilinear
incidence rate 𝛽𝑆𝐼 in [28, 29] and standard incidence rates
𝜆𝑆𝐼/𝑁 in [30, 31] have often been used in epidemic models.
However, it is unreasonable to consider the bilinear incidence
rate (based on the law of mass action) as the number of
susceptibles is large, owing to the number of susceptibles with
which every infective contact within a certain time is limited.
Standard incidence rate may be a good approximation if the
number of available partners is large enough but it is not
possible to make more contacts when the population 𝑁 is
small. Combine the two previous approaches by assuming
that if the number of available partners𝑁 is low, the number
of actual per capita partners is proportional to𝑁, whereas if
the number of available partners is large, there is a saturation
effect which makes the number of actual partners constant.
Considering this case, a saturation incidence rate of type
𝑓(𝐼)𝑆 with 𝑓(𝐼) = 𝑘𝐼/(1 + 𝛼𝐼) is being proposed in [32].
More general incidence rate used in the literature is the one
for which 𝑓(𝐼) = 𝑘𝐼𝑙/(1 + 𝛼𝐼ℎ) [33, 34], where 𝐼𝑙 measures
the infection force of the disease and 𝑓(𝐼) = 1/(1 + 𝛼𝐼ℎ)
measures the inhibitory effect caused by behavioral changes.
Note that if 𝑓(𝐼) is decreasing when 𝐼 is large, this may be
interpreted as the fact that susceptibles tend to reduce their
social contacts if the perceived number of infectives increases
over a psychologically significant value.The above saturation
incidence rate depends also on the size of the infectives
𝐼 termed as infectives-dependent. Particular examples of
susceptibles-dependent incidence rate are 𝑓(𝑆) = 𝑘𝑆/(1+𝛼𝑆)
[35]. Very general incidence rates which are not linear in 𝑆 are
also used in Derrick and van denDriessche [36] (𝑓(𝑆, 𝐼,𝑁) =
𝐼Φ(𝑆, 𝐼,𝑁), where𝑁 = 𝑆 + 𝐼), Korobeinikov and Maini [37]
(𝑓(𝑆, 𝐼) = ℎ1(𝐼)ℎ2(𝑆)), and Moghadas and Alexander [38]
(𝑓(𝑆, 𝐼) = 𝛽(1 + 𝑔(𝐼, V))𝐼𝑆).

Nie et al. [19] and Ji et al. [39] respectively considered
a delay SIR epidemic model with nonlinear incidence rate
and density-dependent birth and death rates. Motivated
by the main idea described in [6, 39], in this paper, we
consider a delay SIR model with difference in immunity and

successive vaccination and an abstract incidence rate. The
main difference between our study and those described in [6,
39] is the difference in immunity and successive vaccination
and an abstract incidence rate. An abstract incidence rate of
type 𝑓(𝐼)𝑆 is employed to model the spread of the disease
which is propagated through the infective individuals, under
a few biologically feasible assumptions upon 𝑓(𝐼).

In view of above facts, we will formulate a mathematical
model in Section 2. We provide the region of biologically
feasible solutions in Section 3. Then, we study the existence
and stability of the steady states in the next section, analyze
the permanence result in Section 5, and give some numerical
simulations in Section 6. Lastly, we end the paper with a brief
discussion of our results in Section 6.

2. Model Formulation and Invariant Region

In this section, we will present a delay SIR epidemic model
with a general nonlinear incidence rate. The total population
𝑁(𝑡) is divided into three subclasses, namely, the susceptibles
𝑆(𝑡), the infectives 𝐼(𝑡), and the recovered individuals 𝑅(𝑡).
Based on the SIR model in [12, 39], we considered following
system:

𝑑𝑆

𝑑𝑡
= [𝑏 −

𝑎𝑟𝑁

𝐾
]𝑁 − 𝛽𝑒−𝑑1𝜏𝑆𝑓 (𝐼 (𝑡 − 𝜏))

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
] 𝑆 − 𝜃𝑆 + 𝜇1𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑒−𝑑1𝜏𝑓 (𝐼 (𝑡 − 𝜏)) 𝑆

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
] 𝐼 − 𝜇1𝐼 − 𝑒

−𝑑
1
𝜔𝛿𝐼 (𝑡 − 𝜔) ,

𝑑𝑅

𝑑𝑡
= 𝑒−𝑑1𝜔𝛿𝐼 (𝑡 − 𝜔) − [𝑑 +

(1 − 𝑎) 𝑟𝑁

𝐾
]𝑅 + 𝜃𝑆,

𝑁 (0) = 𝑆0 > 0, 𝐼 (0) = 𝜑 (𝜃) ≥ 0,

∀𝜃 ∈ [−𝜏, 0] , 𝑅 (0) = 𝑅0 ≥ 0,

(1)

where 𝜏 = max{𝜏, 𝜔} and 𝜑 ∈ 𝐶([−𝜏, 0], 𝑅). We give the
following useful assumptions.

(1) There are no disease induced deaths, and all the
newborns are susceptible.

(2) 𝑓(𝐼) is the nonlinear incidence rate satisfying the
following assumptions:

𝑓 (0) = 0, 𝑓󸀠 (𝐼) > 0, 𝑓󸀠󸀠 (𝐼) < 0,

lim
𝑡→∞

𝑓 (𝐼) = 𝑐 < +∞.
(2)

(3) The force of infection at any time 𝑡 is dominated by
𝛽𝑒−𝑑1𝜏𝑆(𝑡)𝑓(𝐼(𝑡−𝜏)), where 𝜏 is incubation period and
0 < 𝑒−𝑑1𝜏 ≤ 1 represents the survival probability of
individuals in the population after time 𝜏 [20]. It is
also assumed that 𝑑1 ≤ 𝑑 in [−𝜏, 0], where 𝑑 is the
death rate and 𝑑1 is the death rate in the time interval
[−𝜏, 0].
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(4) The parameters 𝑎 are a convex combination constant,
𝑟 = 𝑏 − 𝑑 > 0 is the intrinsic growth rate (𝑏 is the
birth rate), and 𝐾 > 0 is the carrying capacity of the
population.The term (𝑏 − (𝑎𝑟𝑁(𝑡)/𝐾)) has a density-
dependent per capita birth rate and the term (𝑑+((1−
𝑎)𝑟𝑁(𝑡)/𝐾))has a density-dependent per capita death
rate [39].

(5) For 0 < 𝑎 < 1, the birth and death rates are consistent
with the limited resources associated with density
dependence. The birth rate is density independent
when 𝑎 = 0 and the death rate is density independent
when 𝑎 = 1. Thus, the spread of the disease (animals
such as rodents, etc.) is assumed to be governed by the
following system of logistic equations with time delay.

(6) The total population is assumed to be large enough to
be adequately described by a deterministic model and
is divided into compartments based on the disease
status [40].

(7) The successive vaccination rate 𝜃 is positive. The pos-
itive constant 𝜇1 is the recovery rate of the infectious
individuals from compartment 𝐼 to 𝑆.The parameters
𝛽 are the effective per capita contact rate constant
of infected individuals. The parameters 𝛿 are the
recovery rate of infected individuals.

(8) Models are formulated as functional differential
and/or integral equations when time delay is included
[40]. Ours follows the former with the assumption
that the 𝐼-equation satisfies a certain integral condi-
tion [41].

Models with multiple delays are not common, but few
authors have in the past considered these-Beretta et al. [42]-
to name but a few. Since 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), thus the
governing equation (1) can be rewritten as

𝑑𝑁

𝑑𝑡
= 𝑟 [1 −

𝑁

𝐾
]𝑁,

𝑑𝐼

𝑑𝑡
= 𝛽𝑒−𝑑1𝜏 (𝑁 − 𝐼 − 𝑅) 𝑓 (𝐼 (𝑡 − 𝜏))

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
] 𝐼 − 𝜇1𝐼 − 𝑒

−𝑑
1
𝜔𝛿𝐼 (𝑡 − 𝜔) ,

𝑑𝑅

𝑑𝑡
= 𝑒−𝑑1𝜔𝛿𝐼 (𝑡 − 𝜔)

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
]𝑅 + 𝜃 (𝑁 − 𝐼 − 𝑅) .

(3)

Let 𝜏 = max(𝜔, 𝜏). Then (3) satisfies the following initial
conditions

𝑁(0) = 𝑆0 > 0, 𝐼 (0) = 𝜑 (𝜃) ≥ 0,

∀𝜃 ∈ [−𝜏, 0] , 𝑅 (0) = 𝑅0 ≥ 0.
(4)

In this paper, we will consider two different delays 𝜏, 𝜔
which are important parameters on the dynamic behavior. So,
the present study is continuation of the previous work 𝜏 = 𝜔
by Naresh et al. [43].

Lemma 1. All solutions of the model system (3) starting in 𝑅3
+

are bounded and eventually enter the compact attracting set

Φ = {(𝑆, 𝐼, 𝑅) ∈ 𝑅
3

+
: 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡) = 𝑁 (𝑡) ≤ 𝐾} . (5)

Lemma 2. Let the initial data be 𝑁(0) = 𝑆0 > 0, 𝐼(0) =
𝐼0(𝑢) ≥ 0, for all 𝑢 ∈ [−𝜏, 0], with 𝐼0(0) > 0, 𝑅(0) = 𝑅0 ≥
0. Then, the solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of the model remains
positive for all time 𝑡 > 0.

Lemma 3 (see [44]). For the characteristic equation in the
form 𝑝(𝜆) + 𝑞(𝜆)𝑒−𝑟𝜆 = 0, where 𝑝 and 𝑞 are polynomials with
real coefficients and 𝑟 > 0 is the delay, suppose

(a) 𝑝(𝜆) ̸= 0, 𝑅(𝜆) > 0;

(b) |𝑞(𝑖𝑦)| < |𝑝(𝑖𝑦)|; 0 ≤ 𝑦 < ∞;

(c) lim|𝜆|→∞,𝑅(𝜆)≥0|𝑞(𝜆)/𝑝(𝜆)| = 0.

Then 𝑅(𝜆) < 0 for every root 𝜆 and all 𝑟 > 0.

3. Equilibrium and Stability Analysis

In this section, we focus on the existence and local stability of
equilibria. Let the right-hand side of equalities in model (3)
be zero. Then, there are two equilibria; namely,

(i) 𝐸0 = (𝐾, 0, 𝑝), 𝑝 = 𝐾𝜃/[𝑑+(1−𝑎)𝑟+𝜃]), disease-free
equilibrium;

(ii) 𝐸∗ = (𝑁∗, 𝐼∗, 𝑅∗), endemic equilibrium,

where the values of𝑁∗, 𝐼∗, and 𝑅∗ are given in Section 3.2.

3.1. Community Matrix. Firstly, after computing the Jacobian
or community matrix of model (3) at point (𝑁, 𝐼, 𝑅), the
characteristic equation is given by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟 −
2𝑟

𝐾
𝑁 − 𝜆 0 0

𝛽𝑒−𝑑1𝜏𝑓 (𝐼) −
(1 − 𝑎) 𝑟

𝐾
𝐼 𝑚𝑒−(𝑑1+𝜆)𝜏 − 𝛿𝑒−(𝑑1+𝜆)𝜔 − 𝑛 − 𝜆 𝛽𝑒−𝑑1𝜏𝑓 (𝐼)

𝜃 −
(1 − 𝑎) 𝑟

𝐾
𝑅 𝛿𝑒−(𝑑1+𝜆)𝜔 − 𝜃 − [𝑑 +

(1 − 𝑎) 𝑟

𝐾
𝑁 + 𝜃] − 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0, (6)
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where 𝑚 = 𝛽(𝑁 − 𝐼 − 𝑅)𝑓󸀠(𝐼), 𝑛 = 𝛽𝑒−𝑑1𝜏𝑓(𝐼) + 𝑑 + ((1 −
𝑎)𝑟/𝐾)𝑁 + 𝜇1.

Now, we analyze the equilibria stability of system (3).
Computing the Jacobian of system (3) evaluated at 𝐸0, one
gets the following matrix

𝐽 (𝐸0) = (

−𝑟 − 𝜆 0 0
0 𝑎22 − 𝜆 0

(𝑑 + 𝜃) 𝜃

𝑑 + (1 − 𝑎) 𝑟 + 𝜃
𝛿𝑒−(𝑑1+𝜆)𝜏 − 𝜃 − [𝑑 + (1 − 𝑎) 𝑟 + 𝜃] − 𝜆

) , (7)

where

𝑎22 = 𝛽 (𝐾 − 𝑝)𝑓
󸀠
(0) 𝑒
−(𝑑
1
+𝜆)𝜏

− 𝛿𝑒−(𝑑1+𝜆)𝜔 − [𝑑 + (1 − 𝑎) 𝑟 + 𝜇1] .
(8)

Denote

𝐴 = 𝛽 (𝐾 − 𝑝)𝑓󸀠 (0) , 𝐶 = 𝑑 + (1 − 𝑎) 𝑟 + 𝜇1; (9)

then

𝑎22 = 𝐴𝑒
−(𝑑
1
+𝜆)𝜏 − 𝛿𝑒−(𝑑1+𝜆)𝜔 − 𝐶. (10)

Denote

ℎ (𝜆) = 𝐴𝑒
−(𝑑
1
+𝜆)𝜏 − 𝛿𝑒−(𝑑1+𝜆)𝜔 − 𝐶 − 𝜆. (11)

The eigenvalues of the system (3) about the steady state
𝐸0 are 𝜆1 = −𝑟, ℎ(𝜆) = 0 and 𝜆3 = −[𝑑 + (1 − 𝑎)𝑟 + 𝜃]. All
the parameters of the model are assumed to be nonnegative.
Therefore, 𝜆1 and 𝜆3 are negative. Next, we discuss the roots
of ℎ(𝜆) = 0 in five cases.

Case 1. For 𝜏 = 𝜔 ̸= 0, from the second equation of the system
(3), we can get the following.

Proposition 4. For 𝜏 = 𝜔 > 0, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

(𝐴 − 𝛿) 𝑒
−𝑑
1
𝜏 < 𝐶. (12)

Proof. From the above analysis, 𝜆2 satisfies the following
characteristic equation:

𝑔 (𝜆) = (𝐴 − 𝛿) 𝑒
−(𝑑
1
+𝜆)𝜏 − 𝐶 − 𝜆 = 0. (13)

(1) Clearly, 𝜆 = 0 is not a root of 𝑔(𝜆) = 0.
(2) From the fact that 𝑔(0) < 0, 𝑔󸀠(𝜆) < 0 for 𝜆 > 0, it is

obtained that 𝑔(𝜆) = 0 has no positive real root.
(3) It is sufficient to show that 𝑔(𝜆) = 0 does not admit

a purely imaginary root. In fact, if 𝜆 = 𝑖V (V > 0) is
a root of (𝑔(𝜆) = 0), then by separating the real part,
one gets

(𝐴 − 𝛿) 𝑒
−𝑑
1
𝜏 cos (V𝜏) = 𝐶. (14)

Together with the condition of Proposition 4, we have

cos (V𝜏) > 1. (15)

This is impossible.

(4) It is easy to show that 𝑔(𝜆) = 0 has no imaginary
root whose real part is positive. Otherwise, there is
an imaginary root 𝜆 = 𝑢 + 𝑖V with 𝑢 > 0. Without any
loss of generality, we consider V > 0.Then, we take the
real and imaginary parts of 𝑔(𝜆) = 0; namely,

(𝐴 − 𝛿) 𝑒
−(𝑑
1
+𝑢)𝜏 cos (V𝜏) = 𝐶 + 𝑢. (16)

Combined with (9), we have

𝐶 > (𝐴 − 𝛿) 𝑒
−𝑑
1
𝜏 > (𝐴 − 𝛿) 𝑒

−(𝑑
1
+𝑢)𝜏 cos (V𝜏) = 𝐶 + 𝑢. (17)

This is a contradictionwhich implies that all eigenvalues roots
of 𝑔(𝜆) have negative real parts. Therefore, the disease-free
equilibrium of the system (3) is locally asymptotically stable
when (9) holds. The proof is completed.

Case 2. For 𝜏 ̸= 0, 𝜔 = 0, by the same way as in Case 1, one
gets the following.

Proposition 5. For all 𝜏 ̸= 0, 𝜔 = 0, 𝑅(𝜆) < 0 for every root 𝜆
of ℎ(𝜆) = 0 when

𝐴𝑒−𝑑1𝜏 − 𝛿 < 𝐶. (18)

Case 3. For 𝜔 ̸= 0, 𝜏 = 0, one gets the following.

Proposition 6. For 𝜔 ̸= 0, 𝜏 = 0, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

𝛿𝑒−𝑑1𝜔 < |𝐴 − 𝐶| . (19)

Proof. By the fact that ℎ(𝜆) = 0 is equivalent to 𝑝(𝜆) +
𝑞(𝜆)𝑒−𝜆𝜔 = 0 with 𝑝(𝜆) = 𝐴 − 𝐶 − 𝜆, 𝑞(𝜆) = −𝛿𝑒−𝑑1𝜔.

(i) Suppose 𝜆 = 𝑢 + 𝑖V (𝑢 > 0). Then, 𝑝(𝜆) = 𝐴−𝐶− 𝑢 −
𝑖V ̸= 0.

(ii) By |𝑞(𝑖V)| = 𝛿𝑒−𝑑1𝜔, |𝑝(𝑖V)| = |𝐴 − 𝐶 −

𝑖V| = √(𝐴 − 𝑐)2 + V2, together with the condition of
Proposition 6, we know that |𝑞(𝑖V)| < |𝑝(𝑖V)|.
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(iii) Suppose 𝜆 = 𝑢 + 𝑖V, (𝑢 > 0). Then,

lim
𝑢2+V2→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞 (𝜆)

𝑝 (𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝛿𝑒−𝑑1𝜔,

lim
𝑢2+V2→+∞

1

√(𝐴 − 𝐶 − 𝑢)2 + V2
= 0.

(20)

Then, using Lemma 3, we have 𝑅(𝜆) < 0 for all 𝜔.

Case 4. For 𝜔 > 𝜏 > 0, let 𝜀 = 𝜔 − 𝜏. Then, 𝜔 = 𝜏 + 𝜀. For
fixed 𝜏,

ℎ (𝜆) = 𝐴𝑒
−(𝑑
1
+𝜆)𝜏 − 𝛿𝑒−(𝑑1+𝜆)(𝜏+𝜀) − 𝐶 − 𝜆. (21)

Let 𝜆 = 𝑢 + 𝑖V (𝑢 > 0). Then, we take the real and imaginary
parts of ℎ(𝜆) = 0; namely,

𝐴𝑒−(𝑑1+𝑢)𝜏 cos (V𝜏) − 𝛿𝑒−(𝑑1+𝑢)(𝜏+𝜀) cos (V (𝜏 + 𝜀))

= 𝐶 + 𝑢,

−𝐴𝑒−(𝑑1+𝑢)𝜏 sin (V𝜏) − 𝛿𝑒−(𝑑1+𝑢)(𝜏+𝜀) sin (V (𝜏 + 𝜀)) = V.

(22)

Sum of squares of the above equalities is

𝐴2𝑒−2(𝑑1+𝑢)𝜏 + 𝛿2𝑒−2(𝑑1+𝑢)(𝜏+𝜀)

− 2𝐴𝛿𝑒−(𝑑1+𝑢)(2𝜏+𝜀) cos (V𝜀) − (𝐶 + 𝑢)2 − V2 = 0.
(23)

Then, we have

𝜕𝑢

𝜕𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0
=

𝛿 (𝑢 + 𝑑1) (𝐴 − 𝛿)

(𝐴 − 𝛿)2𝜏 + (𝐶 + 𝑢) 𝑒2𝜏(𝑢+𝛿)
. (24)

Obviously, 𝜕𝑢/𝜕𝜀|𝜀=0 < 0 when 𝐴 − 𝛿 < 0. Combined with
(𝐴 − 𝛿)𝑒−𝑑1𝜏 < 𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔, we have the following.

Proposition 7. For 𝜔 > 𝜏 > 0, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔 < 𝐶, 𝐴 − 𝛿 < 0, 0 < 𝜔 − 𝜏 ≪ 1. (25)

Case 5. For 0 < 𝜏 < 𝜔, in the same way as in Case 4, we have
the following.

Proposition 8. For 0 < 𝜏 < 𝜔, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔 < 𝐶, 𝐴 − 𝛿 > 0, 0 < 𝜏 − 𝜔 ≪ 1. (26)

From what has been discussed above, we get the follow-
ing.

Theorem 9. The disease-free equilibrium of the system (3) is
locally asymptotically stable if one of the following conditions
holds.

(a) 𝜏 = 𝜔 ̸= 0, (𝐴 − 𝛿)𝑒−𝑑1𝜏 < 𝐶.
(b) 𝜏 ̸= 0, 𝜔 = 0, 𝐴𝑒−𝑑1𝜏 − 𝛿 < 𝐶.
(c) 𝜏 = 0, 𝜔 ̸= 0, 𝛿𝑒−𝑑1𝜔 < |𝐴 − 𝐶|.
(d) 𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔 < 𝐶, 𝐴 − 𝛿 < 0, 0 < 𝜔 − 𝜏 ≪ 1.
(e) 𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔 < 𝐶, 𝐴 − 𝛿 > 0, 0 < 𝜏 − 𝜔 ≪ 1.

3.2. Existence of Endemic Equilibrium. Thus, by Theorem 9,
we may define the basic reproduction number as

𝑅0 =
𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔

𝐶
. (27)

This threshold 𝑅0 defines the average number of sec-
ondary infections generated by a typical infectious individual
in a completely susceptible population in a steady demo-
graphic state.

In Theorem 9, we have already shown that the system
(3) has an infection-free steady state which is locally asymp-
totically stable under condition 𝑅0 < 1. The disease-free
equilibrium is unstable when 𝑅0 > 1, and the system (3) has
a nontrivial endemic equilibrium 𝐸∗ = (𝑁∗, 𝐼∗, 𝑅∗) when
𝑅0 > 1. From (3),

𝑁∗ = 𝐾 > 0,

𝑅∗ =
𝛿𝑒−𝑑1𝜔 − 𝜃

𝑑 + (1 − 𝑎) 𝑟 + 𝜃
𝐼∗

+
𝐾𝜃

𝑑 + (1 − 𝑎) 𝑟 + 𝜃
≐ 𝑞𝐼∗ + 𝑝,

(28)

where 𝑞 = (𝑒−𝑑1𝜔𝛿 − 𝜃)/(𝑑 + (1 − 𝑎)𝑟 + 𝜃). Substituting these
values of𝑁∗ and 𝑅∗ in the second equation of (3), we get the
following equation for 𝐼:

𝐺 (𝐼) = 𝛽𝑒
−𝑑
1
𝜏 (𝐾 − (1 + 𝑞) 𝐼 − 𝑝) 𝑓 (𝐼) − [𝐶 + 𝛿𝑒

−𝑑
1
𝜔] 𝐼.

(29)

Obviously, 𝐼 = 0 is one of the roots of (29) as 𝑓(0) = 0.
Therefore, to exclude that root, choose

𝐻(𝐼) = 𝛽𝑒
−𝑑
1
𝜏 (𝐾 − (1 + 𝑞) 𝐼 − 𝑝)

𝑓 (𝐼)

𝐼
− [𝐶 + 𝛿𝑒−𝑑1𝜔] .

(30)

It can easily be seen that the function𝐻(𝐼) is negative for
large positive 𝐼; that is,

𝐻(𝐾) = −𝛽𝑒
−𝑑
1
𝜏 (𝐾𝑞 + 𝑝)

𝑓 (𝑘)

𝐾
− [𝐶 + 𝛿𝑒−𝑑1𝜔] < 0. (31)

Next, we determine the sign of its derivative

𝐻󸀠 (𝐼) = 𝛽𝑒
−𝑑
1
𝜏 (𝐾 − 𝑝)

𝑓󸀠 (𝐼) 𝐼 − 𝑓 (𝐼)

𝐼2

− 𝛽𝑒−𝑑1𝜏 (1 + 𝑞) 𝑓󸀠 (𝐼) .

(32)

It can easily be seen that 𝐾 > 𝑝. In addition, from the
properties of the function 𝑓(𝐼), in particular from 𝑓(0) = 0
and 𝑓󸀠󸀠(0) < 0, it follows that 𝑓(𝐼) − 𝑓󸀠(𝐼)𝐼 > 0, and
consequently𝐻󸀠(𝐼) < 0 for all 𝐼 > 0. Therefore, for a positive
root of𝐻(𝐼) = 0 to exist,𝐻(𝐼) has to satisfy𝐻(0) > 0; that is,

𝐻(0) = 𝐴𝑒
−𝑑
1
𝜏 − 𝛿𝑒−𝑑1𝜔 − 𝐶

= (
𝐴𝑒−𝑑1𝜏 − 𝑒−𝑑1𝜔𝛿

𝐶
− 1)𝐶

= (𝑅0 − 1)𝐶.

(33)



6 Abstract and Applied Analysis

Hence, one needs the requirement that 𝑅0 > 1 to ensure
the existence of the endemic equilibrium. From the above
analysis, we have the following theorem.

Theorem 10. The system (3) has a nontrivial endemic equilib-
rium 𝐸∗ = (𝑁∗, 𝐼∗, 𝑅∗) when 𝑅0 > 1.

3.3. Local Stability of the Endemic Equilibrium. In this sec-
tion, we analyze the local stability of the endemic equilibrium
𝐸∗ for 𝜏 = 𝜔. Its characteristic equation is given by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑟 − 𝜆 0 0

𝛽𝑒−𝑑1𝜏𝑓 (𝐼∗) −
(1 − 𝑎) 𝑟𝐼∗

𝐾
𝑚𝑒−(𝑑1+𝜆)𝜏 − 𝑛 − 𝜆 𝛽𝑒−𝑑1𝜏𝑓 (𝐼∗)

𝜃 −
(1 − 𝑎) 𝑟𝑅∗

𝐾
𝛿𝑒−(𝑑1+𝜆)𝜏 − 𝜃 − [𝑑 + (1 − 𝑎) 𝑟 + 𝜃] − 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0, (34)

where𝑚 = 𝛽(𝐾 − 𝐼∗ − 𝑅∗)𝑓󸀠(𝐼∗) − 𝛿, 𝑛 = 𝛽𝑒−𝑑1𝜏𝑓(𝐼∗) + 𝑑 +
(1 − 𝑎)𝑟 + 𝜇1.

The Jacobin matrix leads to the characteristic equation

(𝜆 + 𝑟) [𝜆
2 + 𝑚1𝜆 + 𝑚0 + (𝑛1𝜆 + 𝑛0) 𝑒

−𝜆𝜏] = 0, (35)

where

𝑚1 = 𝛽𝑒
−𝑑
1
𝜏𝑓 (𝐼∗) + 2𝑑 + 2 (1 − 𝑎) 𝑟 + 𝜃 + 𝜇1 > 0,

𝑚0 = [𝛽𝑒
−𝑑
1
𝜏𝑓 (𝐼∗) + 𝑑 + (1 − 𝑎) 𝑟 + 𝜇1]

× (𝑑 + (1 − 𝑎) 𝑟 + 𝜃) + (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1) 𝜃 > 0,

𝑛1 = − [𝛽𝑓
󸀠 (𝐼∗) (𝐾 − 𝐼∗ − 𝑅∗) − 𝛿] 𝑒−𝑑1𝜏,

𝑛0 = [𝛽𝑓
󸀠 (𝐼∗) (𝐾 − 𝐼∗ − 𝑅∗) − 𝛿] [𝑑 + (1 − 𝑎) 𝑟 + 𝜃]

× 𝑒−𝑑1𝜏 + 𝛿𝑓 (𝐼∗) 𝑒−2𝑑1𝜏.

(36)

Since all the model parameters are assumed to be nonnega-
tive, it follows that one eigenvalue is negative; that is, 𝜆1 = −𝑟.
Thus, the stability of 𝐸∗ depends on the roots of the quasi-
polynomial

𝜆2 + 𝑚1𝜆 + 𝑚0 + (𝑛1𝜆 + 𝑛0) 𝑒
−𝜆𝜏 = 0. (37)

We note that 𝑚1 > 0 and 𝑚0 > 0, whereas 𝑛1 and 𝑛0 may be
positive or negative. For 𝜏 = 0, we state the following results
that follow directly from (39). The endemic steady state is
locally asymptotically stable if the following conditions hold:

𝛽𝑓 (𝐼∗) + 2𝑑 + 2 (1 − 𝑎) 𝑟 + 𝜃 + 𝜇1 + 𝛿𝛽𝑓
󸀠 (𝐼∗)

> 𝛽 (𝐾 − 𝐼∗ − 𝑅∗) 𝑓󸀠 (𝐼∗) ,
(𝐻1)

[𝛽𝑓 (𝐼∗) + 𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝛿 − 𝛽 (𝐾 − 𝐼
∗ − 𝑅∗) 𝑓󸀠 (𝐼∗)]

× [𝑑 + (1 − 𝑎) 𝑟 + 𝜃] + 𝑓 (𝐼
∗) 𝛿 > 0.

(𝐻2)

The main purpose of this paper is to study the stability
behavior of 𝐸∗ in the case 𝜏 ̸= 0. Obviously, 𝑖𝜂 (𝜂 > 0) is the
root of (29) if and only if 𝜂 satisfies

−𝜂2 + 𝑚1𝑖𝜂 + 𝑚0 = − (𝑛1𝑖𝜂 + 𝑛0) (cos 𝜂𝜏 − 𝑖 sin 𝜂𝜏) . (38)

Separating the real and imaginary parts, we have

−𝜂2 + 𝑚0 = −𝑛0 cos 𝜂𝜏 − 𝑛1𝜂 sin 𝜂𝜏, (39)

𝑚1𝜂 = −𝑛1𝜂 cos 𝜂𝜏 + 𝑛0 sin 𝜂𝜏. (40)

Eliminating 𝜏 by squaring and adding (39) and (40), we
obtain a polynomial in 𝜂 as

𝜂4 + (𝑚2
1
− 𝑛2
1
− 2𝑚0) 𝜂

2 + 𝑚2
0
− 𝑛2
0
= 0. (41)

Suppose that the conditions

𝑚2
1
> 𝑛2
1
+ 2𝑚0, 𝑚2

0
> 𝑛2
0

(𝐻3)

hold for all 𝜏 ≥ 0.Then, the infected steady state of the system
(3) is locally asymptotically stable.

Theorem 11. For 𝜏 = 𝜔, if 𝑅0 > 1, then the endemic
equilibrium of the system (3) is locally asymptotically stable,
when conditions (𝐻1)–(𝐻3) hold.

Corollary 12. For 𝜏 = 𝜔, if 𝜇1 < 𝜇∗
1
or 𝜃 < 𝜃∗, then the

endemic equilibrium of the system (3) is locally asymptotically
stable, when conditions (𝐻1)–(𝐻3) hold.

4. Permanence

In this section, we investigate a permanence result [5]. The
following is our main result of this paper. We will give the
following result by using some techniques given in [8, 11].
The proof of the permanence with nonlinear incidence is a
daunting task. Consequently, for simplicity andmathematical
convenience, let us choose a linear incidence rate 𝑓(𝐼) =
𝐼. The result holds with the nonlinear incidence, as shown
numerically, but the algebraic proof is long and tedious, and
the conditions to impose on some of the parameters may be
very restrictive. Now, let us firstly give the following theorem.
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Theorem 13. If 𝑅0 > 1 holds, then the system (1) with 𝜏 = 𝜔
is permanent; that is, there are positive constants 𝑐𝑖 (𝑖 = 1, 2, 3)
such that

𝑐1 < lim
𝑡→∞

inf 𝑆 (𝑡) ≤ lim
𝑡→∞

sup 𝑆 (𝑡) ≤ 𝐾,

𝑐2 < lim
𝑡→∞

inf 𝐼 (𝑡) ≤ lim
𝑡→∞

sup 𝐼 (𝑡) ≤ 𝐾,

𝑐3 < lim
𝑡→∞

inf 𝑅 (𝑡) ≤ lim
𝑡→∞

sup𝑅 (𝑡) ≤ 𝐾

(42)

hold for any solution of (1) with (𝜙1(𝜃), 𝜙2(𝜃), 𝜙3(𝜃)) in the
interior of Φ for all 𝜃 ∈ [−𝜏, 0]. In fact, 𝑐𝑖 (𝑖 = 1, 2, 3) can
be chosen explicitly as

𝑐1 =
(𝑏 − 𝑎𝑟)𝐾

𝛽𝐾𝑒−𝑑1𝜏 + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃
,

𝑐2 = 𝐼
∗𝑒−(𝑑+(1−𝑎)𝑟+𝜇1+𝑒

−𝑑1𝜏𝛿),

𝑐3 =
𝛿𝑒−𝑑1𝜏𝑐2 + 𝜃𝑐1
𝑑 + (1 − 𝑎) 𝑟

.

(43)

Proof. Note that 0 < 𝑁(𝑡) < 𝐾 for all 𝑡 ≥ 0 and that
lim𝑡→∞𝑁(𝑡) = 𝐾. It is easy to see that lim𝑡→∞ inf 𝑆(𝑡) ≥ 𝑐1.
In fact, let 𝜖 < 𝐾 be arbitrary. Choose 𝑇1 > 𝜏 so large that
𝑁(𝑡) > 𝐾 − 𝜖 for 𝑡 > 𝑇1. We have the following inequality:

̇𝑆 (𝑡) > − [𝛽𝐾𝑒
−𝑑
1
𝜏 + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃] 𝑆 (𝑡)

+ (𝑏 − 𝑎𝑟) (𝐾 − 𝜖) ,
(44)

for all 𝑡 ≥ 𝑇1, which implies that

lim inf
𝑡→∞

𝑆 (𝑡) ≥
(𝑏 − 𝑎𝑟) (𝐾 − 𝜖)

𝛽𝐾𝑒−𝑑1𝜏 + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃
. (45)

Note that 𝜖may be arbitrarily small so that lim𝑡→∞ inf 𝑆(𝑡) ≥
𝑐1.

Next, we will show lim𝑡→∞ inf 𝐼(𝑡) ≥ 𝑐2. For any 𝜉 :
0 < 𝜉 < 1, we see the inequality 𝑆∗ < [(𝑏 − 𝑎𝑟)𝐾 +

𝜇1𝐼
∗]/(𝛽𝑒−𝑑1𝜏𝜉𝐼∗ + 𝑑 + (1 − 𝑎)𝑟 + 𝜃). There exist sufficiently

large 𝜌 ≥ 1 and sufficiently small 𝜖 such that 𝑆∗ < {[(𝑏 −

𝑎𝑟)(𝐾 − 𝜖) + 𝜇1𝐼
∗]/(𝛽𝑒−𝑑1𝜏𝜉𝐼∗ + 𝑑 + (1 − 𝑎)𝑟 + 𝜃)}(1 −

𝑒−(𝛽𝑒
−𝑑1𝜏𝜉𝐼

∗
+𝑑+(1−𝑎)𝑟+𝜃)𝜌𝜏) ≡ 𝑆Δ. We show that 𝐼(𝑡0) > 𝑞𝐼

∗ for
some 𝑡0 ≥ 𝜌𝜏. In fact, if not, it follows from the first equation
of (1) that, for all 𝑡 ≥ 𝜌𝜏 + 𝜏 ≥ 𝑇1 + 𝜏,

̇𝑆 (𝑡) ≥ (𝑏 − 𝑎𝑟) (𝐾 − 𝜖) + 𝜇1𝐼
∗

− [𝛽𝑒−𝑑1𝜏𝜉𝐼∗ + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃] 𝑆 (𝑡) .
(46)

Hence, for 𝑡 ≥ 𝜌𝜏 + 𝜏,

𝑆 (𝑡) ≥ 𝑒
−(𝛽𝑒
−𝑑1𝜏𝜉𝐼

∗
+𝑑+(1−𝑎)𝑟+𝜃)(𝑡−𝜌𝜏−𝜏)

× [𝑆 (𝜌𝜏 + 𝜏) + (𝑏 − 𝑎𝑟) (𝐾 − 𝜖) + 𝜇1𝐼
∗]

× ∫
𝑡

𝜌𝜏+𝜏

𝑒−(𝛽𝑒
−𝑑1𝜏𝜉𝐼

∗
+𝑑+(1−𝑎)𝑟+𝜃)(𝑡−𝜌𝜏−𝜏)𝑑𝜃

>
[(𝑏 − 𝑎𝑟) (𝐾 − 𝜖) + 𝜇1𝐼

∗]

𝛽𝑒−𝑑1𝜏𝜉𝐼∗ + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃

× (1 − 𝑒−(𝛽𝑒
−𝑑1𝜏𝜉𝐼

∗
+𝑑+(1−𝑎)𝑟+𝜃)(𝑡−𝜌𝜏−𝜏)) ,

(47)

which gives us, for 𝑡 ≥ 2𝜌𝜏 + 𝜏,

𝑆 (𝑡) > 𝑆
Δ > 𝑆∗. (48)

For 𝑡 ≥ 0, we define a positive differentiable function 𝑉(𝑡) as
follows:

𝑉 (𝑡) = 𝐼 (𝑡) +
[𝛽 (𝐾 − 𝑝) − 𝛿] 𝑒−𝑑1𝜏

𝑅0
∫
𝑡

𝑡−𝜏

𝐼 (𝑠) 𝑑𝑠. (49)

We obtain the inequality, for 𝑡 ≥ 2𝜌𝜏 + 𝜏,

𝑉̇ (𝑡) = [𝛽𝑒
−𝑑
1
𝜏 (𝑆 (𝑡) − 𝑆

∗) 𝐼 (𝑡 − 𝜏) + (1 − 𝑎) 𝑟]

× (1 −
𝑁 (𝑡)

𝐾
) 𝐼 (𝑡)

> 𝛽𝑒−𝑑1𝜏 (𝑆 (𝑡) − 𝑆
∗) 𝐼 (𝑡 − 𝜏)

> 𝛽𝑒−𝑑1𝜏 (𝑆Δ − 𝑆∗) 𝐼 (𝑡 − 𝜏) .

(50)

Let 𝑖 = min𝜃∈[−𝜏,0]𝐼(2𝜌𝜏 + 2𝜏 + 𝜃). Now, let us show that
𝐼(𝑡) ≥ 𝑖 for all 𝑡 ≥ 2𝜌𝜏 + 𝜏. In fact, if there exists 𝑇2 ≥ 0 such
that 𝐼(𝑡) ≥ 𝑖 for 2𝜌𝜏+𝜏 ≤ 𝑡 ≤ 2𝜌𝜏+2𝜏+𝑇2, 𝐼(2𝜌𝜏+2𝜏+𝑇2) = 𝑖
and ̇𝐼(2𝜌𝜏 + 2𝜏 +𝑇2) ≤ 0. Direct calculation using the second
equation of (1) and (48) gives

̇𝐼 (2𝜌𝜏 + 2𝜏 + 𝑇2)

> [𝛽𝑒−𝑑1𝜏 (𝑆 (2𝜌𝜏 + 2𝜏 + 𝑇2)

− (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝑒
−𝑑
1
𝜏𝛿)] 𝑖

> (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝑒
−𝑑
1
𝜏𝛿) [

𝑆Δ

𝑆∗
− 1] 𝑖 > 0.

(51)

This contradicts the definition of 𝑇2. Thus, we have shown
that 𝐼(𝑡) ≥ 𝑖 for all 𝑡 ≥ 2𝜌𝜏 + 𝜏. Hence, for all 𝑡 ≥ 2𝜌𝜏 + 2𝜏,

𝑉̇ (𝑡) > 𝛽𝑒
−𝑑
1
𝜏 (𝑆Δ − 𝑆∗) 𝑖, (52)

which implies that 𝑉(𝑡) → +∞ as 𝑡 → +∞. This
contradicts the boundedness of 𝑉(𝑡). Consequently, 𝐼(𝑡0) >
𝜉𝐼∗ for some 𝑡0 ≥ 𝜌𝜏.

In the rest, we now need to consider two cases:

(i) 𝐼(𝑡) ≥ 𝜉𝐼∗ for all large 𝑡;
(ii) 𝐼(𝑡) oscillates about 𝜉𝐼∗ for all large 𝑡.
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Wenowneed to show that 𝐼(𝑡) ≥ 𝜉𝑐2 for large 𝑡. Obviously,
it suffices to show that it holds only for case (ii). We suppose
that for any large 𝑇 there exists 𝑡1, 𝑡2 > 𝑇 such that 𝐼(𝑡1) =
𝐼(𝑡2) = 𝜉𝐼

∗ and 𝐼(𝑡) < 𝜉𝐼∗ for 𝑡1 < 𝑡 < 𝑡2. If 𝑡2 − 𝑡1 ≤ 𝜏, the
second equation (1) gives us ̇𝐼(𝑡) > −(𝑑 + (1 − 𝑎)𝑟 + 𝜇1)𝐼(𝑡),
which implies that 𝐼(𝑡) > 𝐼(𝑡1)𝑒

−(𝑑+(1−𝑎)𝑟+𝜇
1
)(𝑡−𝑡
1
) on (𝑡1, 𝑡2).

Thus, 𝐼(𝑡) > 𝜉𝑐2. On the other hand, if 𝑡2 − 𝑡1 > 𝜏, applying
the same manner gives 𝐼(𝑡) ≥ 𝜉𝑐2 on [𝑡1, 𝑡1 + 𝜏], and hence
the remaining work is to show 𝐼(𝑡) ≥ 𝜉𝑐2 on [𝑡1 + 𝜏, 𝑡2]. In
fact, assuming that there exists 𝑇3 > 0 such that 𝐼(𝑡) ≥ 𝜉𝑐2 on
[𝑡1, 𝑡1 + 𝜏 + 𝑇3], 𝐼(𝑡1 + 𝜏 + 𝑇3) = 𝜉𝑐2, and ̇𝐼(𝑡1 + 𝜏 + 𝑇3) ≤ 0, it
follows from (1) that

̇𝐼 (𝑡1 + 𝜏 + 𝑇3)

≥ [𝛽𝑒−𝑑1𝜏𝑆 (𝑡1 + 𝜏 + 𝑇3)

− (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝑒
−𝑑
1
𝜏𝛿)] 𝜉𝑐2

> (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝑒
−𝑑
1
𝜏𝛿) [

𝑆Δ

𝑆∗
− 1] 𝜉𝑐2 > 0.

(53)

This contradicts the definition of 𝑇3. Hence, 𝐼(𝑡) ≥ 𝜉𝑐2 on
[𝑡1, 𝑡2]. Consequently, 𝐼(𝑡) ≥ 𝜉𝑐2 for large 𝑡 in the case (ii).
Therefore, lim𝑡→∞ inf 𝐼(𝑡) ≥ 𝜉𝑐2. Note that 𝑞may be so close
to 1 that lim𝑡→∞ inf 𝐼(𝑡) ≥ 𝑐2.

Finally, let us show that lim𝑡→∞ inf 𝑅(𝑡) ≥ (𝛿𝑒−𝑑1𝜏𝑐2 +
𝜃𝑐1)/(𝑑 + (1 − 𝑎)𝑟). The third equation gives us

𝑅̇ (𝑡) ≥ [𝛿𝑒
−𝑑
1
𝜏𝐼 + 𝜃𝑆 − [𝑑 + (1 − 𝑎) 𝑟] 𝑅

≥ [𝛿𝑒−𝑑1𝜏𝜉𝑐2 + 𝜃𝜉𝑐1 − [𝑑 + (1 − 𝑎) 𝑟] 𝑅
(54)

for large 𝑡. Hence, lim𝑡→∞ inf 𝑅(𝑡) ≥ (𝛿𝑒−𝑑1𝜏𝜉𝑐2 +
𝜃𝜉𝑐1)/(𝑑 + (1 − 𝑎)𝑟). In a similar manner, we could show
lim𝑡→∞ inf 𝑅(𝑡) ≥ 𝑐3. This proves the theorem.

Corollary 14. If 𝜇1 < 𝜇∗1 and 𝜃 < 𝜃
∗, then the system (1) with

𝜏 = 𝜔 is permanent.

5. Numerical Analysis

Since it is important to visualize the dynamical behavior of
the model, the model system (3) is integrated numerically
with the help of MATLAB 7.0 using the following set of
parameters.

(1) Let 𝑟 = 0.5, 𝑘 = 8, 𝑑 = 0.04, 𝑑1 = 0.04, 𝛽 = 1,
𝑎 = 0.3, 𝛿 = 0.2, 𝜇1 = 0.8, 𝜃 = 0.01, and 𝜏 = 5. It is
easy to compute that 𝐸0 = (8, 0, 0.2) and 𝑅0 = 0.94 < 1. In
Figure 1, the infective population and recovered population,
respectively, are plotted against the total population. We see
from the figure that for any initial start the solution curves
tend to the equilibrium 𝐸0. Hence, we infer that the system
(3) may be stable about the disease-free equilibrium point 𝐸0,
which satisfies Theorem 9.

(2) Let 𝑟 = 0.5, 𝑘 = 8, 𝑑 = 0.04, 𝑑1 = 0.04, 𝛽 = 1,
𝑎 = 0.3, 𝛿 = 0.2, 𝜇1 = 0.2, 𝜃 = 0.02, and 𝜏 = 5. We
get 𝐸∗ = (8, 2.23, 1.11) and this set of parameter values
satisfies the local asymptotic stability conditions of 𝐸∗. It is
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Figure 1: The disease-free equilibrium 𝐸0 is locally asymptotically
stable. Variation of infective population 𝐼(𝑡) and recovered popula-
tion 𝑅(𝑡) with total population𝑁(𝑡).
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Figure 2:The endemic equilibrium 𝐸∗ is locally asymptotically sta-
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𝑅(𝑡) with total population𝑁(𝑡).
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population 𝑅(𝑡) with time for different values of 𝜇1.
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Figure 4: Variation of infective population 𝐼(𝑡) and recovered
population 𝑅(𝑡) with time for different values of 𝜃.

easy to verify that 𝑅0 = 1.83 > 1 and all other conditions of
Theorem 11 are satisfied. So, we can obtain from Figure 2 that
the system (3) is stable at the endemic equilibrium point 𝐸∗.

(3) The results of numerical simulation are displayed
graphically in Figures 3 and 4. In Figure 3, the variation
of the infective population and recovered population is
shown with time for different values of the removal rate
constant from groups 𝐼 to 𝑆, 𝜇1. It is found that both the
infective population and the recovered population decrease
as 𝜇1 increases. Figure 4 depicts the variation of infective
population and recovered population, respectively, with time
for the different successive vaccination rate, 𝜃. As 𝜃 increases,
the infective population decreases whereas the recovered
population increases.

6. Discussion

In this paper, we will consider two different delays which
are important parameters on the dynamic behavior. So, the
present study is continuation of the previous work by [43].
Furthermore, from biological epidemic point of view, we
investigate successive vaccination and difference in immunity
in our system. From mathematical point of view, we study
the stability of disease-free equilibrium and the existence
of endemic equilibrium for different delay and consider the
permanence of the system in the new paper.

In Theorems 9, 10, 11, and 13 corresponding to their
corollaries, when the effect of the successive vaccination
rate and the transfer rate from the infectious group to the
susceptible group after treatment is strong, that is, 𝜃 > 𝜃∗

and 𝜇1 > 𝜇∗
1
, the basic reproduction number 𝑅0 being

unity is a strict threshold for the control of the disease;
the disease will be extinct or otherwise will tend to break
out and persist. The other results are displayed graphically
from our numerical simulation. We show the variation of

the infective population and recovered population with time
for different values of 𝜇1. It is found that both the infective
population and the recovered population decrease as 𝜇1
increases. The infective population decreases whereas the
recovered population increases as the successive vaccination
rate increases, 𝜃, respectively.
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