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We prove an existence result of a nonlinear parabolic equation under Dirichlet null boundary conditions in Sobolev spaces of
infinite order, where the second member belongs to 𝐿

1
(𝑄
𝑇
).

1. Introduction

This paper is devoted to the study of the following strongly
nonlinear parabolic problem of Dirichlet type in the cylinder
𝑄
𝑇
:

𝜕𝑢

𝜕𝑡
+ 𝐴𝑢 + 𝑔 (𝑡, 𝑥, 𝑢) = 𝑓 (𝑡, 𝑥) in 𝑄

𝑇
,

𝑢 (0, 𝑥) = 0,

𝐷
𝜔
𝑢 = 0 on 𝑆

𝑇
∀ |𝜔| = 0, 1 . . . ,

(𝑃)

whereΩ is a bounded open subset ofR𝑁 and𝑄
𝑇
= (0, 𝑇)×Ω

is a cylinder with lateral surface 𝑆
𝑇
= [0, 𝑇] × Γ, with Γ is the

boundary of Ω. 𝐴 is a nonlinear elliptic operator of infinite
order defined by

𝐴𝑢 =

∞

∑

|𝛼|=0

(−1)
|𝛼|

𝐷
𝛼
(𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢)) ,

𝛾
 ≤ |𝛼| . (1)

Such operators include as a special case Leray-Lions types in
the usual sense.

The real functions𝐴
𝛼
(𝑡, 𝑥, 𝜉) are assumed to satisfy some

growth and coerciveness conditions without supposing a
monotonicity condition in 𝜉, for all multi-indices 𝛼.

The nonlinear term 𝑔 satisfies natural growth on |𝑢| and
has to fulfil a sign condition.

The data 𝑓 is assumed to satisfy

𝑓 ∈ 𝐿
1
(𝑄
𝑇
) . (2)

In the case of infinite order, Dubinskĭı [1] has proved, under
some growth hypothesis and certain monotonicity condi-
tions, the existence of solutions for the Dirichlet problem
associated with the equation 𝐴𝑢 = 𝑓 in some general
functional Sobolev spaces of infinite order 𝑊

∞

0
(𝑎
𝛼
, 𝑝
𝛼
) of

variables exponents 𝑝
𝛼
, with 𝛼 being a multi-indice. The

same author has investigated the existence result for parabolic
elliptic problems governed by operators of infinite orders. In
fact, also in [1], Dubinskĭı has proved by considering, further,
the monotonicity of the operator 𝐴 that the problem 𝜕𝑢/𝜕𝑡 +

𝐴𝑢 = 𝑓 has a solution in 𝐿
𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)), 𝑝 > 1, in the

variational case (i.e., where 𝑓 belongs to the dual space).
Another work has been shown, in the variational case in

[2], the existence of solutions for strongly parabolic nonlinear
equations of infinite order related to the problem 𝜕𝑢/𝜕𝑡+𝐴𝑢+

𝑔(𝑡, 𝑥, 𝑢) = 𝑓.
Our purpose in this paper is to prove the existence of

solutions for parabolic equations, in Sobolev spaces of infinite
order with 𝐿

1 data, associated with the problem 𝜕𝑢/𝜕𝑡+𝐴𝑢+

𝑔(𝑡, 𝑥, 𝑢) = 𝑓.
More precisely, we will assume more less restrictions

on the operator 𝐴 (no monotonicity condition) and deal
with a different approach by involving a truncation of the
perturbations 𝑔. Next, we use the monotonicity of a part of
approximate operator which contains a linear term of higher
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order of derivation that satisfies the monotonicity condition
and prove the existence of solutions in the framework of
function space 𝐿

𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)), 𝑝 > 1.

Let us mention that an interesting result concerning the
stationary counterpart of the problem (𝑃) has been proved in
[3, 4].

2. Preliminaries

Let Ω be a bounded domain in R𝑁, 𝑎
𝛼

≥ 0, 𝑝 > 1 real
numbers for all multi-index 𝛼, and ‖ ⋅ ‖

𝑝
the usual Lebesgue

norm in the space 𝐿
𝑝
(Ω). The Sobolev space of infinite order

is the functional space defined by

𝑊
∞

(𝑎
𝛼
, 𝑝) (Ω)

= {𝑢 ∈ 𝐶
∞

(Ω) : ‖𝑢‖
𝑝

∞
=

∞

∑

|𝛼|=0

𝑎
𝛼

𝐷
𝛼
𝑢


𝑝

𝑝
< ∞} .

(3)

Here𝐷
𝛼
= 𝜕
|𝛼|

/(𝜕𝑥
1
)
𝛼
1 ⋅ ⋅ ⋅ (𝜕𝑥

𝑁
)
𝛼
𝑁 .

We denote by𝐶
∞

0
(Ω) the space of all functions with com-

pact support in Ω with continuous derivatives of arbitrary
order.

Since we will deal with the Dirichlet problem, we will use
the functional space𝑊

∞

0
(𝑎
𝛼
, 𝑝)(Ω) defined by

𝑊
∞

0
(𝑎
𝛼
, 𝑝) (Ω)

= {𝑢 ∈ 𝐶
∞

0
(Ω) : ‖𝑢‖

𝑝

∞
=

∞

∑

|𝛼|=0

𝑎
𝛼

𝐷
𝛼
𝑢


𝑝

𝑝
< ∞} .

(4)

In contrast with the finite order Sobolev space, the very
first question, which arises in the study of the spaces
𝑊
∞
(𝑎
𝛼
, 𝑝)(Ω), is the question of their nontriviality (or

nonemptiness), that is, the question of the existence of a
function 𝑢 such that ‖𝑢‖

∞
< ∞.

Definition 1 (see [1]). The space 𝑊
∞

0
(𝑎
𝛼
, 𝑝)(Ω) is called

nontrivial space if it contains at least one function which
is not identically equal to zero; that is, there is a function
𝑢 ∈ 𝐶

∞

0
(Ω) such that ‖𝑢‖

∞
< ∞.

It turns out that the answer of this question depends
not only on the given parameters 𝑎

𝛼
and 𝑝 of the spaces

𝑊
∞
(𝑎
𝛼
, 𝑝)(Ω), but also on the domainΩ.

The dual space of 𝑊∞
0

(𝑎
𝛼
, 𝑝)(Ω) is defined as follows:

𝑊
−∞

(𝑎
𝛼
, 𝑝

) (Ω)

= {𝑓 : 𝑓 =

∞

∑

|𝛼|=0

(−1)
|𝛼|

𝐷
𝛼
𝑓
𝛼
,

𝑓


𝑝


−∞
=

∞

∑

|𝛼|=0

𝑎
𝛼

𝑓𝛼


𝑝


𝑝
 < ∞} ,

(5)

where 𝑓
𝛼

∈ 𝐿
𝑝


(Ω) for all multi-indices 𝛼 and 𝑝
 is the

conjugate of 𝑝; that is, 𝑝 = 𝑝/(𝑝−1) (for more details about
these spaces, see [1, 5]).

By the definition, the duality of the space𝑊−∞(𝑎
𝛼
, 𝑝

)(Ω)

and𝑊
∞

0
(𝑎
𝛼
, 𝑝)(Ω) is given by relation

⟨𝑓, V⟩ =

∞

∑

|𝛼|=0

𝑎
𝛼
∫

Ω

𝑓
𝛼
(𝑥)𝐷
𝛼V (𝑥) 𝑑𝑥, (6)

which, as it is not difficult to verify, is correct.
Let us denote by 𝐿

𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)) the space of func-

tions 𝑢(𝑡, 𝑥) which has finite norm

‖𝑢‖
𝑝

𝑝,∞
= ∫

𝑇

0

‖𝑢‖
𝑝

∞
𝑑𝑡 (7)

and is equal to zero together with all derivatives 𝐷𝜔𝑢 on the
lateral surface 𝑆. In other words one has

𝐿
𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝))

= {𝑢 measurable : ‖𝑢‖
𝑝

𝑝,∞
=

∞

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢


𝑝

𝑝
𝑑𝑡 < ∞,

𝐷
𝜔
𝑢
𝑆

= 0, |𝜔| = 0, 1, . . . } .

(8)

Further, let 𝐿
𝑝


(0, 𝑇,𝑊
−∞

(𝑎
𝛼
, 𝑝

)) be the dual space of the

space 𝐿
𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)), that is, the space of generalized

functions 𝑓(𝑡, 𝑥) having a form

𝑓 (𝑡, 𝑥) =

∞

∑

|𝛼|=0

(−1)
|𝛼|

𝑎
𝛼
𝐷
𝛼
𝑓
𝛼
(𝑡, 𝑥) , (9)

where 𝑓
𝛼
(𝑡, 𝑥) ∈ 𝐿

𝑝


(𝑄
𝑇
) and

𝜌

(𝑓) =

∞

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

𝑓𝛼 (𝑡, 𝑥)


𝑝


𝑝
 𝑑𝑡 < ∞. (10)

The value of 𝑓(𝑡, 𝑥) ∈ 𝐿
𝑝


(0, 𝑇,𝑊
−∞

(𝑎
𝛼
, 𝑝

)) on an element

V(𝑡, 𝑥) ∈ 𝐿
𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)) is defined by the formula

⟨𝑓, V⟩ =

∞

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

∫

Ω

𝑓
𝛼
(𝑡, 𝑥)𝐷

𝛼V (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡, (11)

which, as easy to see, is correct.
Sobolev spaces of infinite order have extensive appli-

cations to the theory of partial differential equations and,
among their number, in mathematical physics. The basis of
these applications is the nonformal algebra of differential
operators of infinite orders as the operators, acting in the
corresponding Sobolev spaces of infinite order. This makes
it possible, by considering 𝜕/𝜕𝑥 as a parameter, to solve a
partial equation as ordinary differential equation, to which
are adjoined the initial or boundary conditions.

More explicitly, we cite the following examples of opera-
tors of infinite order which are closely inspired from the ones
used in Dubinskĭı [1].
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Example 2. Consider the following operator:

𝐴𝑢 = (−√𝐼 + ) 𝑢. (12)

Our technique here consists in exploiting certain results in
the setting of functional spaces of infinite order. Thus as in
[1], we can write the operator 𝐴 as follows:

𝐴𝑢 = (−√𝐼 + ) 𝑢 =

∞

∑

𝑘=0

𝑎
𝑘
(−)
𝑘
𝑢, (13)

where 𝑎
𝑘

> 0, 𝑘 = 0, 1, . . ., are real numbers which
guarantee the nontriviality of the corresponding functional
space defined by

𝑊
∞

0
(𝑎
𝑘
, 2) (Ω)

= {𝑢 ∈ 𝐶
∞

0
(Ω) : 𝜌 (𝑢) =

∞

∑

𝑘=0

𝑎
𝑘 ‖∇𝑢‖

2

2
< ∞} .

(14)

Moreover for any 𝑓 ∈ 𝐿
2
(0, 𝑇,𝑊

−∞
(𝑎
𝑘
, 2)(Ω)), the parabolic

problem

𝜕𝑢

𝜕𝑡
+

∞

∑

𝑘=0

𝑎
𝑘
(−)
𝑘
𝑢 = 𝑓, 𝑥 ∈ Ω (15)

has a solution 𝑢 ∈ 𝐿
2
(0; 𝑇;𝑊

∞

0
(𝑎
𝑘
; 2)(Ω)), in the variational

sense.
By using the recent work of authors (see Theorem 3.1. in

[2]), the strongly nonlinear parabolic problem

𝜕𝑢

𝜕𝑡
+

∞

∑

𝑘=0

𝑎
𝑘
(−)
𝑘
𝑢 + 𝑔 (𝑡, 𝑥, 𝑢) = 𝑓 𝑥 ∈ Ω, (16)

has also a solution 𝑢 ∈ 𝐿
2
(0; 𝑇;𝑊

∞

0
(𝑎
𝑘
; 2)(Ω)), in the

variational sense, for any 𝑓 ∈ 𝐿
2
(0, 𝑇,𝑊

−∞
(𝑎
𝑘
, 2)(Ω)). Here

𝑔 is a nonlinear term which has to fulfil a sign condition (see
Section 3).

Remark 3. For examples of the nontriviality of Sobolev spaces
of infinite order, we refer the reader to [1, 5–7] for details.

3. Main Result

In this section we formulate and prove the main result. We
denote by 𝜆

𝛼
the number of multi-indices 𝛾 such that |𝛾| ≤

|𝛼|. Let 𝐴 be the nonlinear operator of infinite order defined
as in (1), with 𝐴

𝛼
: (0, 𝑇) × Ω × R𝜆𝛼 → R being a real

function.
Let us now formulate the following assumptions.

(𝐴
1
) 𝐴
𝛼
(𝑡, 𝑥, 𝜉

𝛾
) is a Carathéodory function for all 𝛼, |𝛾| ≤

|𝛼|.
(𝐴
2
) For a.e. (𝑡, 𝑥) ∈ 𝑄

𝑇
, all 𝑚 ∈ N∗, all 𝜉

𝛾
, 𝜂
𝛼
, |𝛾| ≤ |𝛼|,

and some constant 𝑐
0
> 0, we assume that



𝑚

∑

|𝛼|=0

𝐴
𝛼
(𝑡, 𝑥, 𝜉

𝛾
) 𝜂
𝛼



≤ 𝑐
0

𝑚

∑

|𝛼|=0

𝑎
𝛼

𝜉𝛼


𝑝−1 𝜂𝛼
 , (17)

where 𝑝 > 1, 𝑎
𝛼

≥ 0 are real numbers for all multi-
indices 𝛼.

(𝐴
3
) There exist constants 𝑐

1
> 0, 𝑐
2
≥ 0 such that

𝑚

∑

|𝛼|=0

𝐴
𝛼
(𝑡, 𝑥, 𝜉

𝛾
) 𝜉
𝛼
≥ 𝑐
1

𝑚

∑

|𝛼|=0

𝑎
𝛼

𝜉𝛼


𝑝

− 𝑐
2 (18)

for all 𝑚 ∈ N∗, for all 𝜉
𝛾
, 𝜉
𝛼
; |𝛾| ≤ |𝛼| and for a.e.

(𝑡, 𝑥) ∈ 𝑄
𝑇
.

(𝐴
4
) The space 𝑊

∞

0
(𝑎
𝛼
, 𝑝)(Ω) is nontrivial.

As regards the nonlinear term 𝑔, we assume that 𝑔

satisfies the following natural growth on |𝑢| and the
classical sign condition.

(𝐺) 𝑔 : 𝑄
𝑇

× R → R is a Carathéodory function
satisfying
𝑔 (𝑡, 𝑥, 𝑠)

 ≤ 𝑏
1 |𝑠|
𝑝−1

+ 𝑏
2
, 𝑔 (𝑡, 𝑥, 𝑠) 𝑠 ≥ 0, (19)

for a.e. (𝑡, 𝑥) ∈ 𝑄
𝑇
, 𝑠 ∈ R, and some constants 𝑏

1
and

𝑏
2
.

Concerning the second member 𝑓, we assume that

𝑓 ∈ 𝐿
1
(𝑄
𝑇
) . (20)

We will prove the following existence theorem.

Theorem 4. Under assumptions (𝐴
1
)–(𝐴
4
) and (𝐺), for any

right side 𝑓 ∈ 𝐿
1
(𝑄
𝑇
) there exists at least a function 𝑢 such

that

(1) 𝑢(𝑡, 𝑥) ∈ 𝐿
𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)), 𝜕𝑢/𝜕𝑡 ∈ 𝐿

𝑝


(0, 𝑇,

𝑊
−∞

(𝑎
𝛼
, 𝑝

));

(2) 𝑢(0, 𝑥) = 0;
(3) for any function V(𝑡, 𝑥) ∈ 𝐿

∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)), the

following identity

∫

𝑇

0

⟨
𝜕𝑢

𝜕𝑡
, V⟩𝑑𝑡 +

∞

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

∫

Ω

𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢)𝐷
𝛼V 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫

Ω

𝑔 (𝑡, 𝑥, 𝑢) V 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0

⟨𝑓, V⟩𝑑𝑡

(21)

is valid.

Proof. we proceed by steps in order to prove our result.

Step 1. The approximate problem.
Set for a.e. (𝑡, 𝑥) ∈ 𝑄

𝑇

𝑓
𝑘
(𝑡, 𝑥) = 𝑇

𝑘
𝑓 (𝑡, 𝑥) , 𝑔

𝑘
(𝑡, 𝑥, 𝑢) = 𝑇

𝑘
𝑔 (𝑡, 𝑥, 𝑢) , (22)

where 𝑇
𝑘
is the usual truncation given by

𝑇
𝑘
𝜂 =

{

{

{

𝜂 if 𝜂
 < 𝑘

𝑘𝜂

𝜂


if 𝜂
 ≥ 𝑘.

(23)
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It is clear that |𝑓
𝑘
| ≤ 𝑘 for a.e. (𝑡, 𝑥) ∈ 𝑄

𝑇
. Thus, it follows that

𝑓
𝑘
∈ 𝐿
∞
(𝑄
𝑇
).

Further, we have

𝑓
𝑘
→ 𝑓 for a.e. (𝑡, 𝑥) ∈ 𝑄

𝑇
,

𝑓𝑘
 ≤

𝑓
 ∈ 𝐿
1
(𝑄
𝑇
) ,

(24)

and from Lebesgue’s dominated convergence theorem, see
[8], we conclude that

𝑓
𝑘
→ 𝑓 in 𝐿

1
(𝑄
𝑇
) . (25)

Let 𝑘 ∈ N∗ sufficiently large. Define the operator 𝐴
2𝑘+2

of
order 2𝑘 + 2 by

𝐴
2𝑘+2

𝑢 = ∑

|𝛼|=𝑘+1

(−1)
𝑘+1

𝑐
𝛼
𝐷
2𝛼
𝑢

+

𝑘

∑

|𝛼|=0

(−1)
|𝛼|

𝐷
𝛼
(𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢)) .

(26)

Note that 𝑐
𝛼
are constants small enough such that they fulfil

the conditions of the following lemma introduced in [1].
In fact, such a condition imposed on each 𝑐

𝛼
is required

to ensure the nontriviality of the space 𝑊
∞

0
(𝑐
𝛼
, 2).

Lemma 5 (cf. [1]). For any nontrivial space𝑊∞
0

(𝑎
𝛼
, 𝑝
𝛼
) there

exists a nontrivial space 𝑊
∞

0
(𝑐
𝛼
, 2) such that 𝑊

∞

0
(𝑎
𝛼
, 𝑝
𝛼
) ⊂

𝑊
∞

0
(𝑐
𝛼
, 2).

The operator 𝐴
2𝑘+2

is clearly monotone since the term
of higher order of derivation is linear and satisfies the
monotonicity condition (see [1, 3]). Moreover, thanks to the
truncation 𝑇

𝑘
as in [9] and from assumptions (𝐴

1
), (𝐴
2
), and

(𝐴
3
), we deduce that the operator 𝐴

2𝑘+2
+ 𝑔
𝑘
is bounded,

coercive, and pseudo-monotone. Then, it is well known (see
Lions [10]) that there exists 𝑢

𝑘
∈ 𝐿
𝑝
(0, 𝑇,𝑊

𝑘+1,𝑝

0
(Ω)) such

that
𝜕𝑢
𝑘

𝜕𝑡
+ 𝐴
2𝑘+2

𝑢
𝑘
+ 𝑔
𝑘
(𝑡, 𝑥, 𝑢

𝑘
) = 𝑓
𝑘
(𝑡, 𝑥) ,

𝑢
𝑘
(0, 𝑥) = 0.

(𝑃
𝑘
)

In the variational formulation, we get

∫

𝑇

0

⟨
𝜕𝑢
𝑘

𝜕𝑡
, V⟩𝑑𝑡 + ∫

𝑇

0

⟨𝐴
2𝑘+2

𝑢
𝑘
, V⟩ 𝑑𝑡

+ ∫

𝑇

0

∫

Ω

𝑔
𝑘
(𝑡, 𝑥, 𝑢

𝑘
) V 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0

⟨𝑓
𝑘
, V⟩𝑑𝑡,

(27)

for any V ∈ 𝐿
∞
(0, 𝑇,𝑊

𝑘+1

0
(Ω)).

Step 2 (a priori estimates). Let us choose V = 𝑢
𝑘
as a test

function in (𝑃
𝑘
). Then using the sign condition in (𝐺), one

has the estimates

∑

|𝛼|=𝑘+1

𝑐
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢
𝑘



2

2
𝑑𝑡 +

𝑘

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢
𝑘



𝑝

𝑝
𝑑𝑡 ≤ 𝑐

2
, (28)

∫

𝑄

𝑔
𝑘
(𝑡, 𝑥, 𝑢

𝑘
) 𝑢
𝑘
𝑑𝑥 𝑑𝑡 ≤ 𝑐

2
. (29)

In the sequel 𝑐
2
, 𝑐
3
, 𝑐
4
, . . . designate arbitrary constants not

depending on 𝑘.
From the first equality in (𝑃

𝑘
) and estimates (28) and (29),

we remark that 𝜕𝑢
𝑘
/𝜕𝑡 ∈ 𝐿

𝑝


(0, 𝑇,𝑊
−𝑘−1,𝑝



0
(Ω)). In addition,

for any V ∈ 𝐿
∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)) the following equality is

valid:

∫

𝑇

0



⟨
𝜕𝑢
𝑘

𝜕𝑡
, V⟩



𝑑𝑡 ≤ 𝑄
1
+ 𝑄
2
+ 𝑄
3
, (30)

where

𝑄
1
= ∫

𝑇

0

∫

Ω

𝑓𝑘 (𝑡, 𝑥) V
 𝑑𝑥 𝑑𝑡,

𝑄
2
= ∫

𝑇

0

∫

Ω

𝑔𝑘 (𝑡, 𝑥, 𝑢𝑘) V
 𝑑𝑥 𝑑𝑡,

𝑄
3
= ∑

|𝛼|=𝑘+1

𝑐
𝛼
∫

𝑇

0

∫

Ω

𝐷
𝛼
𝑢
𝑘



𝐷
𝛼V 𝑑𝑥 𝑑𝑡

+

𝑘

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

∫

Ω

𝐷
𝛼
𝑢
𝑘



𝑝−1 𝐷
𝛼V 𝑑𝑥 𝑑𝑡.

(31)

Regarding the quantity 𝑄
1
, one has

𝑄
1
= ∫

𝑇

0

∫

Ω

𝑓𝑘 (𝑡, 𝑥) V
 𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

∫

Ω

𝑓 (𝑡, 𝑥) V 𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

∫

Ω

𝑓
 ⋅ |V| 𝑑𝑥 𝑑𝑡

≤
𝑓

𝐿1(𝑄
𝑇
)
‖V‖𝐿∞(𝑄

𝑇
)
,

(32)

and so

𝑄
1
≤ 𝑐
3 ‖V‖𝐿∞(𝑄

𝑇
)
. (33)

We also have

𝑄
2
≤ ∫

𝑇

0

∫

Ω

(
𝑢𝑘



𝑝−1

|V| + |V|) 𝑑𝑥 𝑑𝑡

≤ ∫

𝑇

0

𝑢𝑘


𝑝−1

𝑝
‖V‖𝑝 𝑑𝑡 + 𝑐

4
(∫

𝑇

0

‖V‖𝑝
𝑝
𝑑𝑡)

1/𝑝

≤ (∫

𝑇

0

𝑢𝑘


𝑝

𝑝
𝑑𝑡)

1/𝑝


(∫

𝑇

0

‖V‖𝑝
𝑝
𝑑𝑡)

1/𝑝

+ 𝑐
4
(∫

𝑇

0

‖V‖𝑝
𝑝
𝑑𝑡)

1/𝑝

≤ (𝑐
2
+ 𝑐
4
) ‖V‖𝑝,∞ ,

(34)

where 𝑐
2
is the constant of the estimate (28). Then one gets

𝑄
2
≤ 𝑐
5 ‖V‖𝑝,∞ . (35)
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Moreover, for the last term 𝑄
3
, one has

𝑄
3
= 𝐽
1
+ 𝐽
2
, (36)

where

𝐽
1
= ∑

|𝛼|=𝑘+1

𝑐
𝛼
∫

𝑇

0

∫

Ω

𝐷
𝛼
𝑢
𝑘



𝐷
𝛼V 𝑑𝑥 𝑑𝑡

≤ ( ∑

|𝛼|=𝑘+1

𝑐
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢
𝑘



2

2
𝑑𝑡)

1/2

× ( ∑

|𝛼|=𝑘+1

𝑐
𝛼
∫

𝑇

0

𝐷
𝛼V
2

2
𝑑𝑡)

1/2

≤ (𝑐
2
)
1/2

‖V‖𝑝,∞ ,

𝐽
2
=

𝑘

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

∫

Ω

𝐷
𝛼
𝑢
𝑘



𝑝−1 𝐷
𝛼V 𝑑𝑥 𝑑𝑡

≤ (

𝑘

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢
𝑘



𝑝

𝑝
𝑑𝑡)

1/𝑝


× (

𝑘

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼V
𝑝

𝑝
𝑑𝑡)

1/𝑝

≤ (𝑐
2
)
1/𝑝


‖V‖𝑝,∞ .

(37)

Then, one deduces that

𝑄
3
≤ 𝑐
6 ‖V‖𝑝,∞ . (38)

Combining (30), (33), (35), and (38), it follows that

∫

𝑇

0



⟨
𝜕𝑢
𝑘

𝜕𝑡
, V⟩



𝑑𝑡 ≤ 𝑐
7 ‖V‖𝑝,∞ + 𝑐

3 ‖V‖𝐿∞(𝑄
𝑇
)
. (39)

This implies that


𝜕𝑢
𝑘

𝜕𝑡

𝑝 ,−∞

≤ 𝑐
8
; (40)

that is, the derivatives 𝜕𝑢
𝑘
/𝜕𝑡 form a bounded set in the space

𝐿
𝑝


(0, 𝑇,𝑊
−∞

(𝑎
𝛼
, 𝑝

)).

Now, estimates (28) and (40) permit us to apply the well
known lemma of compactness (see Lions [11]).

Let 𝐵
0
, 𝐵, and 𝐵

1
be Banach spaces. Let us set

𝑌 = {𝑢 : 𝑢 ∈ 𝐿
𝑝
0
(0, 𝑇, 𝐵

0
) , 𝑢

∈ 𝐿
𝑝
1
(0, 𝑇, 𝐵

1
)} , (41)

where 𝑝
0
> 1, 𝑝

1
> 1 are real numbers.

Lemma 6 (cf. [1]). Let the imbeddings

𝐵
0
⊂ 𝐵 ⊂ 𝐵

1 (42)

hold; moreover, let the imbedding 𝐵
0
⊂ 𝐵 be compact. Then

𝑌 ⊂ 𝐿
𝑝
0
(0, 𝑇, 𝐵) (43)

and this imbedding is compact.

In order to apply this lemma, define

𝐵
0
= 𝑊
𝑆+1

(𝑎
𝛼
, 𝑝) = {𝑢 (𝑥) :

𝑆

∑

|𝛼|=0

𝑎
𝛼

𝐷
𝛼
𝑢


𝑝

𝑝
< ∞} ,

𝐵 = 𝑊
𝑆
(𝑎
𝛼
, 𝑝) , 𝐵

1
= 𝑊
−∞

(𝑎
𝛼
, 𝑝

) ;

𝑝
0
= 𝑝, 𝑝

1
= 𝑝

,

(44)

where 𝑆 ≥ 0 is arbitrary and 𝑝

= 𝑝/(𝑝 − 1).

Step 3 (convergence of the approximate problem (𝑃
𝑘
)). In

view of (28) and (40), we deduce that the family 𝑢
𝑘

of solutions of problems (𝑃
𝑘
) is compact in the space

𝐿
𝑝
(0, 𝑇,𝑊

𝑆
(𝑎
𝛼
, 𝑝)), where 𝑆 is arbitrary. Consequently, by

similar argument as in the elliptic case (using the diagonal
process), see [3] or [1], one gets that the sequence𝑢

𝑘
converges

strongly together with all derivatives 𝐷𝜔𝑢
𝑘
to a function 𝑢 ∈

𝐿
𝑝
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)).

Letting now𝑚 > 0 be fixed, 𝐸 a measurable subset of𝑄
𝑇
,

and 𝜀 > 0, we have

∫

𝐸

𝑔𝑘 (𝑡, 𝑥, 𝑢𝑘)
 𝑑𝑥 𝑑𝑡

≤ ∫

𝐸∩{|𝑢
𝑘
|≤𝑚}

𝑔𝑘 (𝑡, 𝑥, 𝑢𝑘)
 𝑑𝑥 𝑑𝑡

+
1

𝑚
∫

𝐸∩{|𝑢
𝑘
|>𝑚}

𝑔𝑘 (𝑡, 𝑥, 𝑢𝑘) 𝑢𝑘
 𝑑𝑥 𝑑𝑡

≤ ∫

𝐸∩{|𝑢
𝑘
|≤𝑚}

(𝑏
1

𝑢𝑘


𝑝−1

+ 𝑏
2
) 𝑑𝑥 𝑑𝑡

+
1

𝑚
∫

𝑄
𝑇

𝑔
𝑘
(𝑡, 𝑥, 𝑢

𝑘
) 𝑢
𝑘
𝑑𝑥 𝑑𝑡

≤ (|𝑚|
𝑝−1

+ 1) |𝐸| +
𝑐
2

𝑚
,

(45)

where 𝑐
2
is the constant of (29) which is independent of 𝑘.

For |𝐸| sufficiently small and 𝑐
2
/𝑚 < 𝜀/2, we obtain

∫

𝐸

𝑔
𝑘
(𝑡, 𝑥, 𝑢

𝑘
) ≤ 𝜀. (46)

Using Vitali’s theorem, we get

𝑔
𝑘
(𝑥, 𝑡, 𝑢

𝑘
) → 𝑔 (𝑥, 𝑡, 𝑢) in 𝐿

1
(𝑄
𝑇
) . (47)

On the other hand, in view of Fatou’s lemma and (29), we
obtain

∫

𝑄
𝑇

𝑔 (𝑥, 𝑡, 𝑢) 𝑢 𝑑𝑠 ≤ lim
𝑘→+∞

∫

𝑄
𝑇

𝑔
𝑘
(𝑥, 𝑡, 𝑢

𝑘
) 𝑢
𝑘
𝑑𝑠 ≤ 𝑐

2
; (48)

this implies that

𝑔 (𝑥, 𝑡, 𝑢) 𝑢 ∈ 𝐿
1
(𝑄
𝑇
) . (49)

Now, we will prove that

lim
𝑘→+∞

∫

𝑇

0

⟨𝐴
2𝑘+2

(𝑢
𝑘
) , V⟩ 𝑑𝑡 = ∫

𝑇

0

⟨𝐴 (𝑢) , V⟩ 𝑑𝑡 (50)

for all V ∈ 𝐿
∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)).
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In fact, let 𝑘
0
be a fixed number sufficiently large (𝑘 > 𝑘

0
)

and let V ∈ 𝐿
∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)). Set

∫

𝑇

0

⟨𝐴 (𝑢) − 𝐴
2𝑘+2

(𝑢
𝑘
) , V⟩ 𝑑𝑡 = 𝐼

1
+ 𝐼
2
+ 𝐼
3
, (51)

where

𝐼
1
=

𝑘
0

∑

|𝛼|=0

∫

𝑇

0

⟨𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢) − 𝐴

𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢
𝑘
) , 𝐷
𝛼V⟩ 𝑑𝑡,

𝐼
2
=

∞

∑

|𝛼|=𝑘
0
+1

∫

𝑇

0

⟨𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢) , 𝐷

𝛼V⟩ 𝑑𝑡,

𝐼
3
= −

𝑘

∑

|𝛼|=𝑘0+1

∫

𝑇

0

⟨𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢
𝑘
) , 𝐷
𝛼V⟩

− ∑

|𝛼|=𝑘+1

𝑐
𝛼
⟨𝐷
𝛼
𝑢,𝐷
𝛼V⟩ 𝑑𝑡,

(52)

or, in another form,

𝐼
3
= −

𝑘+1

∑

|𝛼|=𝑘0+1

∫

𝑇

0

⟨𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢
𝑘
) , 𝐷
𝛼V⟩ 𝑑𝑡, (53)

with 𝐴
𝛼
(𝑡, 𝑥, 𝜉

𝛾
) = 𝑐
𝛼
𝜉
𝛼
and 𝑐
𝛼

≥ 0 for |𝛼| = 𝑘 + 1 (𝑐
𝛼
are

constants given in Lemma 5).
We will go to limit as 𝑘 → +∞ to prove that 𝐼

1
, 𝐼
2
, and

𝐼
3
tend to 0. Starting by 𝐼

1
, we have 𝐼

1
→ 0 since 𝐴(𝑡, 𝑥, 𝜉

𝛾
)

is of Carathéodory type.
The term 𝐼

2
is the remainder of a convergence series;

hence 𝐼
2

→ 0.
For what concerns 𝐼

3
, for all 𝜀 > 0, there holds 𝑘(𝜀) > 0

(see [8, page 56]) such that


𝑘+1

∑

|𝛼|=𝑘
0
+1

∫

𝑇

0

⟨𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢
𝑘
) , 𝐷
𝛼V⟩ 𝑑𝑡



≤

𝑘+1

∑

|𝛼|=𝑘0+1

∫

𝑇

0

⟨𝐴𝛼 (𝑡, 𝑥, 𝐷
𝛾
𝑢
𝑘
) , 𝐷
𝛼V⟩ 𝑑𝑡

≤ 𝑐
0

𝑘+1

∑

|𝛼|=𝑘0+1

𝑎
𝛼
∫

𝑇

0

∫

Ω

𝐷
𝛼
𝑢
𝑘



𝑝−1 𝐷
𝛼V 𝑑𝑥 𝑑𝑡

≤ 𝑐
0

𝑘+1

∑

|𝛼|=𝑘
0
+1

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢
𝑘



𝑝−1

𝑝

𝐷
𝛼V𝑝 𝑑𝑡

≤ 𝜀𝑐
0

𝑘+1

∑

|𝛼|=𝑘0+1

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼
𝑢
𝑘



𝑝

𝑝
𝑑𝑡

+ 𝑐
0
𝑘 (𝜀)

𝑘+1

∑

|𝛼|=𝑘0+1

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼V
𝑝

𝑝
𝑑𝑡

≤ 𝜀𝑐
0
𝑐
2
+ 𝑐
0
𝑘 (𝜀)

∞

∑

|𝛼|=𝑘
0
+1

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼V
𝑝

𝑝
𝑑𝑡,

(54)

where 𝑐
2
is the constant given in the estimate (28). Moreover

the term
∞

∑

|𝛼|=𝑘
0
+1

𝑎
𝛼
∫

𝑇

0

𝐷
𝛼V
𝑝

𝑝
𝑑𝑡 (55)

is the remainder of a convergent series; therefore 𝐼
3

→ 0

holds.
Finally, we conclude that

∫

𝑇

0

⟨𝐴
2𝑘+2

(𝑢
𝑘
) , V⟩ 𝑑𝑡 → ∫

𝑇

0

⟨𝐴 (𝑢) , V⟩ 𝑑𝑡 as 𝑘 → +∞

(56)

for all V ∈ 𝐿
∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)).

Moreover, it is clear that

∫

𝑇

0

⟨𝑓
𝑘
, V⟩ 𝑑𝑡 → ∫

𝑇

0

⟨𝑓, V⟩ 𝑑𝑡 (57)

as 𝑘 → +∞ since 𝑓
𝑘

→ 𝑓 in 𝐿
1
(𝑄
𝑇
).

Consequently, by passing to the limit in (𝑃
𝑘
), we obtain

∫

𝑇

0

⟨
𝜕𝑢

𝜕𝑡
, V⟩𝑑𝑡 + ∫

𝑇

0

⟨𝐴 (𝑢) , V⟩ 𝑑𝑡

+ ∫

𝑄
𝑇

𝑔 (𝑡, 𝑥, 𝑢) V 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0

⟨𝑓, V⟩ 𝑑𝑡,

(58)

for all V ∈ 𝐿
∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)).

That is,

∫

𝑇

0

⟨
𝜕𝑢

𝜕𝑡
, V⟩𝑑𝑡

+

∞

∑

|𝛼|=0

𝑎
𝛼
∫

𝑇

0

∫

Ω

𝐴
𝛼
(𝑡, 𝑥, 𝐷

𝛾
𝑢)𝐷
𝛼V 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫

Ω

𝑔 (𝑡, 𝑥, 𝑢) V 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0

⟨𝑓, V⟩𝑑𝑡,

(59)

for all V ∈ 𝐿
∞
(0, 𝑇,𝑊

∞

0
(𝑎
𝛼
, 𝑝)).

This completes the proof.

4. Example

The following example of an operator of infinite order is
closely related to the one used in [12].

Let us consider the operator:

𝐴𝑢 =

∞

∑

|𝛼|=0

(−1)
𝛼
𝐷
𝛼
(𝑎
𝛼

𝐷
𝛼
𝑢


𝑝−2

𝐷
𝛼
𝑢) , (60)

where 𝑎
𝛼

≥ 0 is a sequence of numbers, 𝑝 > 1 is a number
such that the space 𝑊

∞
(𝑎
𝛼
, 𝑝)(Ω) is not trivial (e.g., if 𝑎

𝛼
=

[(2𝛼)!]
−𝑝

, 𝑝 > 1 and dimΩ = 1); then the conditions
𝐴
1
, 𝐴
2
, and 𝐴

3
are satisfied.

As regards a function 𝑔 that satisfies the condition (𝐺), let
us consider

𝑔 (𝑡, 𝑥, 𝑠) = 𝑠 |𝑠|
𝑟
ℎ (𝑥) , with 𝑟 > 0, (61)

where ℎ ∈ 𝐿
1
(Ω), ℎ(𝑥) ≥ 0, a.e.
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Consequently, for the described above operator 𝐴 and
the nonlinear term𝑔 the existence result follows immediately
fromTheorem 4.
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