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We investigate a stochastic SI epidemic model in the complex networks. We show that this model has a unique global positive
solution. Then we consider the asymptotic behavior of the model around the disease-free equilibrium and show that the solution
will oscillate around the disease-free equilibrium of deterministic system when 𝑅

0
≤ 1. Furthermore, we derive that the disease

will be persistent when 𝑅
0
> 1. Finally, a series of numerical simulations are presented to illustrate our mathematical findings. A

new result is given such that, when 𝑅
0
≤ 1, with the increase of noise intensity the solution of stochastic system converging to the

disease-free equilibrium is faster than that of the deterministic system.

1. Introduction

Epidemiology is the science to study the distribution of
disease and influencing factors, so as to explore the etiology,
clarify the popular rule of the disease, and formulate the
countermeasures and measures for preventing, controlling,
and eliminating the disease. Many mathematical models of
diseases spreading help us to understand the propagation of
diseases [1, 2].The transmission of diseases can be influenced
by many factors, such as the age and social structure of the
population, the contact network among individuals, and the
metapopulation characteristics. So it is difficult to establish
an accurate epidemic model which is completely consistent
with the real world. In recent years, a lot of compartmental
epidemic models have been studied by many researchers [3–
5], and complex networks also have been used to study the
spread of diseases [6–17].

In this paper we consider an SI model with the birth and
death in complex networks. Asmentioned in the paper [6, 13],
the birth and death do not affect the degree of nodes. Suppose
𝑆
𝑘
(𝑡), 𝐼
𝑘
(𝑡) are the number of the healthy and infected nodes

with the degree 𝑘 at time 𝑡; the mean-field equations can be
written as

𝑑𝑆
𝑘

𝑑𝑡
= 𝑏
𝑘
− 𝜆𝑘𝑆

𝑘
𝜃 − 𝑑𝑆

𝑘
,

𝑑𝐼
𝑘

𝑑𝑡
= 𝜆𝑘𝑆

𝑘
𝜃 − (𝑑 + 𝜖) 𝐼𝑘, (1)

where 𝜃 = (1/⟨𝑘⟩)∑
𝑛

𝑘=1
𝜆𝑘𝑃(𝑘). For system (1), it can be

written as the following form:

𝑑𝑆
𝑘
(𝑡) = (𝑏

𝑘
−

1

⟨𝑘⟩

𝑛

∑

𝑗=1

𝜆𝑘𝑗𝑃 (𝑗) 𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − 𝑑𝑆

𝑘
(𝑡))𝑑𝑡,

𝑑𝐼
𝑘
(𝑡) = (

1

⟨𝑘⟩

𝑛

∑

𝑗=1

𝜆𝑘𝑗𝑃 (𝑗) 𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − (𝑑 + 𝜖) 𝐼

𝑘
(𝑡))𝑑𝑡.

(2)

We denote 𝛽
𝑘𝑗

= (1/⟨𝑘⟩)𝜆𝑘𝑗𝑃(𝑗), so we obtain

𝑑𝑆
𝑘
(𝑡) = (𝑏

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − 𝑑𝑆

𝑘
(𝑡))𝑑𝑡,

𝑑𝐼
𝑘 (𝑡) = (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘 (𝑡) 𝐼𝑗 (𝑡) − (𝑑 + 𝜖) 𝐼𝑘 (𝑡))𝑑𝑡.

(3)

It always has the disease-free equilibrium 𝐸
0

= (𝑆
0

1
, 0, . . . ,

𝑆
0

𝑛
, 0), where 𝑆

0

𝑘
= 𝑏
𝑘
/𝑑, 𝑘 = 1, 2, . . . , 𝑛. If 𝐴 = (𝛽

𝑘𝑗
)
𝑛×𝑛

is
irreducible and 𝑅

0
≤ 1, then 𝐸

0
is globally stable in 𝐷, while
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if 𝑅
0
> 1, 𝐸

0
is unstable and there is an endemic equilibrium

𝐸
∗

= (𝑆
∗

1
, 𝐼
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
) belonging to 𝐷 which is globally

asymptotically stable in𝐷; here

𝐷 = {(𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
) ∈ R
2𝑛

+
: 𝑆
𝑘
, 𝐼
𝑘
≤

𝑏
𝑘

𝑑
, 𝑆
𝑘
+ 𝐼
𝑘
≤

𝑏
𝑘

𝑑
,

𝑘 = 1, 2, . . . , 𝑛} ,

𝑀
0
= 𝑀(𝑆

0

1
, . . . , 𝑆

0

𝑛
) = (

𝛽
𝑘𝑗
𝑆
0

𝑘

𝑑 + 𝜖
)

𝑛×𝑛

, 𝑅
0
= 𝜌 (𝑀

0
) ,

(4)

and 𝜌(𝑀
0
) denotes the spectral radius of𝑀

0
.

The deterministic models have some limitations in
describing the spread of disease.The accident in the process of
disease transmission can not be reflected by the deterministic
models. This is because of the fact that the deterministic
models ignore the effect of the environmental noise. In
an ecosystem, the environmental noise is inevitably in the
real world; thus stochastic models are more realistic. In the
research of stochastic epidemic models, many researchers
make a lot of contributions [17–26].

In this paper, we consider the following stochastic system:

𝑑𝑆
𝑘
(𝑡) = (𝑏

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − 𝑑𝑆

𝑘
(𝑡))𝑑𝑡

+ 𝜎
𝑘1
𝑆
𝑘 (𝑡) 𝑑𝐵𝑘1 (𝑡) ,

𝑑𝐼
𝑘 (𝑡) = (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘 (𝑡) 𝐼𝑗 (𝑡) − (𝑑 + 𝜖) 𝐼𝑘 (𝑡))𝑑𝑡

+ 𝜎
𝑘2
𝐼
𝑘
(𝑡) 𝑑𝐵

𝑘2
(𝑡) ,

(5)

where 𝐵
𝑘𝑖
(𝑡), 𝑘 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, are independent

standard Brownian motions with 𝐵
𝑘𝑖
(0) = 0, and 𝜎

2

𝑘𝑖
≥ 0,

𝑘 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, represent the intensities of 𝐵
𝑘𝑖
(𝑡).

The remaining parts of this paper are as follows. In the
next sectionwe show the existence and uniqueness of a global
positive solution of model (5). In Section 3, we analyze the
asymptotic behavior around the disease-free equilibrium. In
Section 4, we study the dynamic of system (5) around the
endemic of the deterministic model. In Section 5, numerical
simulations and conclusions are carried out.

2. Global Positive Solution

When we study a dynamical behavior, a global solution is
important for the system. In this section we show that the
solution of system (5) is global and nonnegative. As we know,
for a stochastic differential equation, the coefficients of the
equation are generally required to satisfy the linear growth
condition and the local Lipschitz condition. It is a sufficient
condition for a stochastic differential equation has a unique
global (i.e., no explosion in a finite time) solution for any
given initial value [27, 28]. Although the coefficients of system

(5) satisfy locally Lipschitz continuous, they are not satisfied
with the linear growth condition, so the solution of system (5)
may explode at a finite time. In this section, Lyapunov analysis
method (mentioned in [29]) is used to show that the solution
of system (5) is positive and global.

Theorem 1. For any given initial value (𝑆
1
(0), I
1
(0), . . . ,

𝑆
𝑛
(0), 𝐼
𝑛
(0)) ∈ R2𝑛

+
, there is a unique positive solution (𝑆

1
(𝑡),

𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) of model (5) on 𝑡 ≥ 0 and the solu-

tion will remain in R2𝑛
+

with probability 1, namely, (𝑆
1
(𝑡),

𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) ∈ R2𝑛

+
for all 𝑡 ≥ 0 a.s.

Proof. Due to the fact that the coefficients of the system (5)
are locally Lipschitz continuous, for any given initial value
(𝑆
1
(0), 𝐼
1
(0), . . . , 𝑆

𝑛
(0), 𝐼
𝑛
(0)) ∈ R2𝑛

+
, it has a unique local

solution (𝑆
1
(𝑡), 𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
), where 𝜏

𝑒

is the explosion time [30]. If we show that 𝜏
𝑒

= ∞ a.s., it
suggests that this solution is global. Let 𝑙

0
> 0 be sufficiently

large so that 𝑆
𝑘
(0), 𝐼
𝑘
(0) (𝑘 = 1, 2, . . . , 𝑛) all lie within the

interval [1/𝑙
0
, 𝑙
0
]. For each integer 𝑙 ≥ 𝑙

0
, defining the stopping

time

𝜏
𝑙
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑆

𝑘 (𝑡) , 𝐼𝑘 (𝑡) , 𝑘 = 1, . . . , 𝑛} ≤
1

𝑙

or max {𝑆
𝑘
(𝑡) , 𝐼
𝑘
(𝑡) , 𝑘 = 1, . . . , 𝑛} ≥ 𝑙} ,

(6)

we set inf 0 = ∞ (as usual 0 denotes the empty set).
Obviously, 𝜏

𝑙
is increasing as 𝑙 → ∞. Set 𝜏

∞
= lim

𝑙→∞
𝜏
𝑙
;

therefore 𝜏
∞

≤ 𝜏
𝑒
a.s. If 𝜏

∞
= ∞ a.s. is true, then 𝜏

𝑒
= ∞

a.s. and (𝑆
1
(𝑡), 𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) ∈ R2𝑛

+
a.s. for 𝑡 ≥ 0. In

other words, to complete the proof it is required to show that
𝜏
∞

= ∞ a.s. If this statement is false, then there is a pair of
constants 𝑇 > 0 and 𝜀 ∈ (0, 1) such that 𝑃{𝜏

∞
≤ 𝑇} > 𝜀. Thus

there is an integer 𝑙
1
≥ 𝑙
0
, such that

𝑃 {𝜏
𝑙
≤ 𝑇} ≥ 𝜀, ∀𝑙 ≥ 𝑙

1
. (7)

Define a 𝐶2-function 𝑉 : R2𝑛
+

→ R
+
as follows:

𝑉 (𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

=

𝑛

∑

𝑘=1

[(𝑆
𝑘
− 1 − ln 𝑆

𝑘
) + (𝐼
𝑘
− 1 − ln 𝐼

𝑘
)] .

(8)

Applying Itô’s formula, we obtain

𝑑 (𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

=

𝑛

∑

𝑘=1

[(1 −
1

𝑆
𝑘

)𝑑𝑆
𝑘
+

1

2

1

𝑆
2

𝑘

(𝑑𝑆
𝑘
)
2
+ (1 −

1

𝐼
𝑘

)𝑑𝐼
𝑘

+
1

2

1

𝐼
2

𝑘

(𝑑𝐼
𝑘
)
2
]
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=

𝑛

∑

𝑘=1

[

[

(1 −
1

𝑆
𝑘

)[

[

(𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− 𝑑𝑆
𝑘
)𝑑𝑡

+ 𝜎
𝑘1
𝑆
𝑘 (𝑡) 𝑑𝐵𝑘1 (𝑡)

]

]

+
1

2
𝜎
2

𝑘1
𝑑𝑡 + (1 −

1

𝐼
𝑘

)

× [

[

(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼𝑘)𝑑𝑡 + 𝜎

𝑘2
𝐼
𝑘
𝑑𝐵
𝑘2 (𝑡)

]

]

+
1

2
𝜎
2

𝑘2
𝑑𝑡]

]

=

𝑛

∑

𝑘=1

[ 𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− 𝑑𝑆
𝑘
−

𝑏
𝑘

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
+ 𝑑

+
1

2
𝜎
2

𝑘1
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼

𝑘
−

∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗

𝐼
𝑘

+ (𝑑 + 𝜖) +
1

2
𝜎
2

𝑘2
]

]

𝑑𝑡

+

𝑛

∑

𝑘=1

[𝜎
𝑘1

(𝑆
𝑘
− 1) 𝑑𝐵

𝑘1
(𝑡) + 𝜎

𝑘2
𝐼
𝑘
𝑑𝐵
𝑘2

(𝑡)]

≤

𝑛

∑

𝑘=1

(𝑏
𝑘
+ 2𝑑 + 𝜖 +

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
𝑗
+

1

2
(𝜎
2

𝑘1
+ 𝜎
2

𝑘2
))𝑑𝑡

+

𝑛

∑

𝑘=1

[𝜎
𝑘1

(𝑆
𝑘
− 1) 𝑑𝐵

𝑘1
(𝑡) + 𝜎

𝑘2
(𝐼
𝑘
− 1) 𝑑𝐵

𝑘2
(𝑡)]

=: 𝐾𝑑𝑡 + [𝜎
𝑘1

(𝑆
𝑘
− 1) 𝑑𝐵

𝑘1
(𝑡) + 𝜎

𝑘2
𝐼
𝑘
𝑑𝐵
𝑘2

(𝑡)] .

(9)

We can now integrate both sides of (9) from 0 to 𝜏
𝑙
∧ 𝑇 and

then take the expectations

𝐸 [𝑉 (𝑆
1
(𝜏
𝑙
∧ 𝑇) , 𝐼

1
(𝜏
𝑙
∧ 𝑇) , . . . , 𝑆

𝑛
(𝜏
𝑙
∧ 𝑇) , 𝐼

𝑛
(𝜏
𝑙
∧ 𝑇))]

≤ 𝑉 (𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐸 [∫

𝜏𝑙∧𝑇

0

𝐾𝑑𝑡]

≤ 𝑉 (𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐾𝑇.

(10)

Let Ω
𝑙

= {𝜏
𝑙

≤ 𝑇} for 𝑙 ≥ 𝑙
1
and, by (7), 𝑃(Ω

𝑙
) ≥

𝜀. Note that, for every 𝜔 ∈ Ω
𝑙
, there is at least one of

𝑆
𝑘
(𝜏
𝑙
, 𝜔) and 𝐼

𝑘
(𝜏
𝑙
, 𝜔), 𝑘 = 1, 2, . . . , 𝑛, that equals either 𝑙 or

1/𝑙, and therefore𝑉(𝑆
1
(𝜏
𝑙
, 𝜔), 𝐼
1
(𝜏
𝑙
, 𝜔), . . . , 𝑆

𝑛
(𝜏
𝑙
, 𝜔), 𝐼
𝑛
(𝜏
𝑙
, 𝜔))

is not less than either

𝑙 − 1 − ln 𝑙 or 1

𝑙
− 1 − ln 1

𝑙
=

1

𝑙
− 1 + ln 𝑙. (11)

Hence,

𝑉 (𝑆
1
(𝜏
𝑙
, 𝜔) , 𝐼

1
(𝜏
𝑙
, 𝜔) , . . . , 𝑆

𝑛
(𝜏
𝑙
, 𝜔) , 𝐼

𝑛
(𝜏
𝑙
, 𝜔))

≥ (𝑙 − 1 − ln 𝑙) ∧ (
1

𝑙
− 1 + ln 𝑙) .

(12)

It then follows from (7) and (10) that

𝑉 (𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐾𝑇

≥ 𝐸 [1
Ω𝑙(𝜔)

𝑉 (𝑆
1
(𝜏
𝑙
, 𝜔) , 𝐼

1
(𝜏
𝑙
, 𝜔) , . . . , 𝑆

𝑛
(𝜏
𝑙
, 𝜔) , 𝐼

𝑛
(𝜏
𝑙
, 𝜔))]

≥ 𝜀 [(𝑙 − 1 − ln 𝑙) ∧ (
1

𝑙
− 1 + ln 𝑙)] ,

(13)

where 1
Ω𝑙(𝜔)

is the indicator function of Ω
𝑙
. Letting 𝑙 → ∞,

we have that

∞ > 𝑉(𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐾𝑇 ≥ ∞

(14)

is a contradiction. So we must have 𝜏
∞

= ∞. Therefore, it
implies 𝑆

𝑘
(𝑡), 𝐼
𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑛, will not explode in a finite

time with probability one.

3. Asymptotic Behavior around
the Disease-Free Equilibrium

As mentioned in the Introduction, 𝐸
0
= (𝑏
1
/𝑑, 0, . . . , 𝑏

𝑛
/𝑑, 0)

is the disease-free equilibrium of system (3), and when 𝑅
0
≤

1, 𝐸
0
is globally stable, which means that the disease will be

extinct in the limited time. In this section, we will study the
asymptotic behavior around 𝐸

0
of system (5).

Lemma 2. If 𝐴 is nonnegative and irreducible, then the
spectral radius 𝜌(𝐴) of 𝐴 is a simple eigenvalue, and 𝐴 has
a positive eigenvector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) corresponding to

𝜌(𝐴). Besides, if 0 ≤ 𝐴 ≤ 𝐵, then 𝜌(𝐴) ≤ 𝜌(𝐵). (This lemma
can be found in [20].)

Theorem 3. Assume𝐴 = (𝛽
𝑘𝑗
)
𝑛×𝑛

is irreducible. If 𝑅
0
≤ 1 and

the following condition is satisfied:

𝜎
2

𝑘1
≤

4

3
𝑑, 𝜎

2

𝑘2
≤ 2 (𝑑 + 𝜖) , (15)

then for any given initial value (𝑆
1
(0), 𝐼
1
(0), . . . , 𝑆

𝑛
(0), 𝐼
𝑛
(0)) ∈

R2𝑛
+
, the solution of system (5) has the property

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆
𝑘
(𝑟) −

𝑏
𝑘

𝑑
)

2

+ 𝐼
2

𝑘
(𝑟)] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
𝑏
2

𝑘

𝑑2𝐾
1

,

(16)

where

𝐾
1
= min{

𝜔
𝑘
𝛽
𝑘𝑘

(2𝑑 + 𝜖) (𝑑 + 𝜖)
(𝑑 −

3

4
𝜎
2

𝑘1
) , 𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
} .

(17)
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Proof. First change the variables 𝑠
𝑘
= 𝑆
𝑘
− 𝑏
𝑘
/𝑑, 𝑖
𝑘
= 𝐼
𝑘
; then

−𝑏
𝑘
/𝑑 ≤ 𝑠

𝑘
≤ 0, 𝑖
𝑘
≥ 0 and system (5) can be written as

𝑑𝑠
𝑘
= (−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑠
𝑘
+

𝑏
𝑘

𝑑
) 𝑖
𝑗
− 𝑑𝑠
𝑘
)𝑑𝑡

+ 𝜎
𝑘1

(𝑠
𝑘
+

𝑏
𝑘

𝑑
)𝑑𝐵
𝑘1

(𝑡) ,

𝑑𝑖
𝑘
= (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑠
𝑘
+

𝑏
𝑘

𝑑
) 𝑖
𝑗
− (𝑑 + 𝜖) 𝑖𝑘)𝑑𝑡 + 𝜎

𝑘2
𝑖
𝑘
𝑑𝐵
𝑘2 (𝑡) .

(18)

Let 𝑆0 = (𝑆
0

1
, 𝑆
0

2
, . . . , 𝑆

0

𝑛
), where 𝑆

0

𝑘
= 𝑏
𝑘
/𝑑, 𝑘 = 1, 2, . . . , 𝑛.

Define

𝑀(𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
11
𝑆
0

1

𝑑 + 𝜖

𝛽
12

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
1𝑛

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖

𝛽
21

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

𝛽
22
𝑆
0

2

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
2𝑛

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

...
... d

...

𝛽
𝑛1

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖

𝛽
𝑛2

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
𝑛𝑛
𝑆
0

𝑛

𝑑 + 𝜖

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

;

(19)

then it is nonnegative and irreducible. By Lemma 2, there
is a positive eigenvector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) of 𝑀(𝑠)

corresponding to 𝜌(𝑀(𝑠)), such that

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀 (𝑠) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀 (𝑠)) . (20)

Define a 𝐶2-function 𝑉 : R2𝑛
+

→ R
+
by

𝑉 (𝑠
1
, 𝑖
1
, . . . , 𝑠

𝑛
, 𝑖
𝑛
) =

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
)
2
+

𝑛

∑

𝑘=1

𝜔
𝑘

𝑑 + 𝜖
𝑖
𝑘
, (21)

where 𝑎
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are positive constants. Then the

function 𝑉 is positive definite, and

𝑑𝑉 = 𝐿𝑉𝑑𝑡 +

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
)

× (𝜎
𝑘1

(𝑠
𝑘
+

𝑏
𝑘

𝑑
)𝑑𝐵
𝑘1

(𝑡) + 𝜎
𝑘2
𝑖
𝑘
𝑑𝐵
𝑘2

(𝑡))

+

𝑛

∑

𝑘=1

𝜔
𝑘

𝑑 + 𝜖
𝜎
𝑘2
𝑖
𝑘
𝑑𝐵
𝑘2

(𝑡) ,

(22)

where

𝐿𝑉 =

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
) [−𝑑𝑠

𝑘
− (𝑑 + 𝜖) 𝑖

𝑘
]

+
1

2

𝑛

∑

𝑘=1

𝑎
𝑘
[𝜎
2

𝑘1
(𝑠
𝑘
+

𝑏
𝑘

𝑑
)

2

+ 𝜎
2

𝑘2
𝑖
2

𝑘
]

+

𝑛

∑

𝑘=1

𝜔
𝑘

𝑑 + 𝜖

[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑠
𝑘
+

𝑏
𝑘

𝑑
) 𝑖
𝑗
− (𝑑 + 𝜖) 𝑖𝑘

]

]

= −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

1

2
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+

𝑛

∑

𝑘=1

∑

𝑗 ̸= 𝑘

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗
𝑠
𝑘
𝑖
𝑘

−

𝑛

∑

𝑘=1

[𝑎
𝑘 (2𝑑 + 𝜖) −

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑘
] 𝑠
𝑘
𝑖
𝑘

+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗

b
𝑘

𝑑
𝑖
𝑘

−

𝑛

∑

𝑘=1

𝜔
𝑘
𝑖
𝑘

+
1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
(2𝑠
𝑘

𝑏
𝑘

𝑑
+

𝑏
2

𝑘

𝑑2
) .

(23)

Choose 𝑎
𝑘

= 𝜔
𝑘
𝛽
𝑘𝑘
/(2𝑑 + 𝜖)(𝑑 + 𝜖), 𝑘 = 1, 2, . . . , 𝑛; then

𝑎
𝑘
(2𝑑 + 𝜖) − (𝜔

𝑘
/(𝑑 + 𝜖))𝛽

𝑘𝑘
= 0. And we note that

𝑛

∑

𝑘=1

∑

𝑗 ̸= 𝑘

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗
𝑠
𝑘
𝑖
𝑘
+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗

𝑏
𝑘

𝑑
𝑖
𝑘

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)

×

[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
11
𝑆
0

1

𝑑 + 𝜖

𝛽
12

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
1𝑛

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖

𝛽
21

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

𝛽
22
𝑆
0

2

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
2𝑛

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

...
... d

...

𝛽
𝑛1

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖

𝛽
𝑛2

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
𝑛𝑛
𝑆
0

𝑛

𝑑 + 𝜖

]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[

[

𝑖
1

𝑖
2

...
𝑖
𝑛

]
]
]
]

]

= 𝜔𝑀(𝑠) 𝑖.

(24)
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Then

𝐿𝑉 = −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

1

2
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

− 𝜔𝑖 + 𝜔𝑀(𝑠) 𝑖 +
1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
(2𝑠
𝑘

𝑏
𝑘

𝑑
+

𝑏
2

𝑘

𝑑2
)

≤ −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+ 𝜔 (𝑀 (𝑠) − 1) 𝑖 +
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2

= −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+ 𝜔 (𝜌 (𝑀 (𝑠)) − 1) 𝑖 +
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
,

(25)

where the last equality is derived from (20). Since −𝑏
𝑘
/𝑑 ≤

𝑠
𝑘

≤ 0, then 0 ≤ 𝑀(𝑠) ≤ 𝑀(𝑆
0
) = (𝑆

0

𝑘
𝛽
𝑘𝑗
/(𝑑 + 𝜖))

𝑛×𝑛
=

𝑀
0
, and so 𝜌(𝑀(𝑠)) ≤ 𝜌(𝑀

0
) according to Lemma 2. Besides,

𝑅
0
≤ 1, and then 𝜌(𝑀(𝑠)) ≤ 1. Therefore

𝑑𝑉 ≤ [−

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
]𝑑𝑡

+

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
) 𝜎
𝑘1

(𝑠
𝑘
+

𝑏
𝑘

𝑑
)𝑑𝐵
𝑘1

(𝑡)

+

𝑛

∑

𝑘=1

(𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
) 𝜎
𝑘2

+
𝜔
𝑘

𝑑 + 𝜖
𝜎
𝑘2
) 𝑖
𝑘
𝑑𝐵
𝑘2

(𝑡) .

(26)

Integrating both sides of (26) from 0 to 𝑡, and taking
expectation, yields

0 ≤ 𝐸 [𝑉 (𝑠
1 (𝑡) , 𝑖1 (𝑡) , . . . , 𝑠𝑛 (𝑡) , 𝑖𝑛 (𝑡))]

≤ 𝐸 [𝑉 (𝑠
1
(0) , 𝑖
1
(0) , . . . , 𝑠

𝑛
(0) , 𝑖
𝑛
(0))]

+ 𝐸∫

𝑡

0

[−

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
(𝑟)

+ (𝑑 + 𝜖 −
1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
(𝑟) ]

+
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
]𝑑𝑟,

(27)

which implies

𝐸∫

𝑡

0

[

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
(𝑟) + (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
(𝑟)]] 𝑑𝑟

≤ 𝐸 [𝑉 (𝑠
1 (0) , 𝑖1 (0) , . . . , 𝑠𝑛 (0) , 𝑖𝑛 (0))] +

3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
𝑡.

(28)

Therefore

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
(𝑟)

+ (𝑑 + 𝜖 −
1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
(𝑟)] ] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
;

(29)

that is,

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
)(𝑆
𝑘 (𝑟) −

𝑏
𝑘

𝑑
)

2

+(𝑑 + 𝜖 −
1

2
𝜎
2

𝑘2
) 𝐼
2

𝑘
(𝑟) ]] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
.

(30)

If we let

𝐾
1
= min {𝑎

𝑘
(𝑑 −

3

4
𝜎
2

𝑘1
) , 𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
} , (31)

then

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆
𝑘 (𝑟) −

𝑏
𝑘

𝑑
)

2

+ 𝐼
2

𝑘
(𝑟)] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
𝑏
2

𝑘

𝑑2𝐾
1

,

(32)

as the theorem is proved.

Remark 4. From Theorem 3, we can get the conclusion that
the solution of the stochastic system will oscillate around
the disease-free equilibrium of the deterministic model; the
values of 𝜎

𝑘1
and 𝜎

𝑘2
have bearing on the intensity of

turbulence. If the stochastic perturbations become small,
the solution of system (5) will be close to the disease-free
equilibrium of system (3).

Besides, if 𝜎
𝑘1

= 0, then 𝐸
0
is also the disease-free

equilibrium of system (5). From the proof of Theorem 3, we
can obtain

𝐿𝑉 ≤ −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
] ≤ 0.

(33)

Therefore, 𝐸
0
is globally asymptotically stable.
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4. The Dynamic of System (5) around the
Endemic of System (3)

In the deterministicmodel, if𝑅
0
> 1, there exists the endemic

equilibrium 𝐸
∗. But 𝐸∗ is not the endemic equilibrium of

stochastic system (5), because there is no endemic equilib-
rium for the stochastic system (5). In fact, we still want to find
the relation between the solution of stochastic system and𝐸

∗.
Given a weighted digraph (G, 𝐴) with 𝑛 vertices, where

𝐴 = (𝑎
𝑘𝑗
)
𝑛𝑛

is the weight matrix, whose entry 𝑎
𝑘𝑗
equals the

weight of arc (𝑗, 𝑘) if it exists, and 0 otherwise, the Laplacian
matrix of 𝐴 is defined as

𝐿
𝐴
=

[
[
[
[
[
[
[
[

[

∑

𝑘 ̸= 1

𝑎
1𝑘

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1𝑛

−𝑎
21

∑

𝑘 ̸= 2

𝑎
2𝑘

⋅ ⋅ ⋅ −𝑎
2𝑛

...
... d

...
−𝑎
𝑛1

−𝑎
𝑛2

⋅ ⋅ ⋅ ∑

𝑘 ̸= 𝑛

𝑎
𝑛𝑘

]
]
]
]
]
]
]
]

]

. (34)

Let 𝑐
𝑘
denote the cofactor of the 𝑘th diagonal element of 𝐿

𝐴
,

and we have the following results.

Theorem 5. Assume 𝐴 = (𝛽
𝑘𝑗
)
𝑛×𝑛

is irreducible and 𝑅
0

>

1. For any given initial value (𝑆
1
(0), 𝐼
1
(0), . . . , 𝑆

𝑛
(0), 𝐼
𝑛
(0)) ∈

R2𝑛
+
, the solution of system (5) has the property

lim sup
𝑡→∞

1

𝑡

𝑛

∑

𝑘=1

∫

𝑡

0

[𝑝
𝑘
𝑑(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ 𝑚
𝑘 (𝑑 + 𝜖) (𝐼𝑘 − 𝐼

∗

𝑘
)
2
] 𝑑𝑠

≤

𝑛

∑

𝑘=1

[(
𝑎𝑐
𝑘
𝑏
𝑘

𝑑
+

(𝑚
𝑘
+ 𝑝
𝑘
) 𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘1

+(
(𝑎 + 1) 𝑐

𝑘
𝑏
𝑘

𝑑
+

𝑚
𝑘
𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘2
] , 𝑎.𝑠.,

(35)

where 𝐸
∗

= (𝑆
∗

1
, 𝐼
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
) is the endemic equilibrium of

system (3) and 𝑐
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, denote the cofactor of the 𝑘th

diagonal element of 𝐿
𝐴
(𝐴 = (𝛽

𝑘𝑗
)
𝑛×𝑛

= (𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
)
𝑛×𝑛

), and 𝑎,
𝑚
𝑘
, 𝑝
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are positive constants defined as in the

proof.

Proof. Since 𝐸∗ is the endemic equilibrium of system (3), we
have

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
+ 𝑑𝑆
∗

𝑘
= 𝑏
𝑘
,

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
= (𝑑 + 𝜖) 𝐼

∗

𝑘
. (36)

Define

𝑉 (𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

= 𝑎

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
− 𝑆
∗

𝑘
ln

𝑆
𝑘

𝑆
∗

𝑘

+ 𝐼
𝑘
− 𝐼
∗

𝑘
− 𝐼
∗

𝑘
ln

𝐼
𝑘

𝐼
∗

𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘
(𝐼
𝑘
− 𝐼
∗

𝑘
− 𝐼
∗

𝑘
ln

𝐼
𝑘

𝐼
∗

𝑘

)

+
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)
2

+
1

2

𝑛

∑

𝑘=1

𝑝
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

:= 𝑎𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝑉
4
,

(37)

where 𝑎, 𝑚
𝑘
, 𝑝
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are positive constants to be

determined later. From the property (1) of Lemma A.2 (see
[20]), we know 𝑐

𝑘
> 0, 𝑘 = 1, 2, . . . , 𝑛. Hence 𝑉 is positive

definite. Let 𝐿 be the generating operator of system (5). Then
we get

𝐿𝑉
1
=

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝑆
∗

𝑘

𝑆
𝑘

)(𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− 𝑑𝑆
𝑘
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝑆
∗

𝑘
𝜎
2

𝑘1

2

+

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝐼
∗

𝑘

𝐼
𝑘

)(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼

𝑘
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝜎
2

𝑘2

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑏
𝑘
− 𝑑𝑆
𝑘
− 𝑏
𝑘

𝑆
∗

𝑘

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
𝑗

+ 𝑑𝑆
∗

𝑘

− (𝑑 + 𝜖) 𝐼𝑘 + (𝑑 + 𝜖) 𝐼
∗

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘

+
1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+ 𝑑𝑆
∗

𝑘
− 𝑑𝑆
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
∗

𝑘

𝑆
𝑘

− 𝑑𝑆
∗

𝑘

𝑆
∗

𝑘

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑗

𝐼
∗

𝑗

+ 𝑑𝑆
∗

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+

1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

−𝑑𝑆
∗

𝑘
(
𝑆
∗

𝑘

𝑆
𝑘

+
𝑆
𝑘

𝑆
∗

𝑘

− 2) +

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(

𝐼
𝑗

𝐼
∗

𝑗

−
𝐼
𝑘

𝐼
∗

𝑘

)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)

+
1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

]

.

(38)
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Figure 1: 𝜆 = 0.025, 𝜎
𝑘1

= 0.005, 𝜎
𝑘2

= 0.03, 𝑅
0
≤ 1. (a), (b) 𝑃(𝑘) = 𝑚

𝑘 exp(−𝑚)/𝑘!,𝑚 = 6, 𝑅
0
= 0.4704 ≤ 1; (c), (d) 𝑃(𝑘) = 2𝑚

2
𝑘
−3,𝑚 = 3,

𝑅
0
= 0.9071 ≤ 1.

𝐿𝑉
2
=

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝐼
∗

𝑘

𝐼
𝑘

) (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼𝑘)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝜎
2

𝑘2

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼

𝑘
−

𝐼
∗

𝑘

𝐼
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗

+ (𝑑 + 𝜖) 𝐼
∗

𝑘
+

𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+

𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

.

(39)

𝐿𝑉
3
=

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
) (𝑏
𝑘
− 𝑑𝑆
𝑘
− (𝑑 + 𝜖) 𝐼𝑘)

+

𝑛

∑

𝑘=1

𝑚
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
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Figure 2: 𝜆 = 0.05, 𝜎
𝑘1

= 0.01, 𝜎
𝑘2

= 0.02. (a), (b) 𝑃(𝑘) = 𝑚
𝑘 exp(−𝑚)/𝑘!, 𝑚 = 6, 𝑅

0
= 0.9409 ≤ 1; (c), (d) 𝑃(𝑘) = 2𝑚

2
𝑘
−3, 𝑚 = 3,

𝑅
0
= 1.8142 ≥ 1.

=

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)

× (−𝑑 (𝑆
𝑘
− 𝑆
∗

𝑘
) − (𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
))

+

𝑛

∑

𝑘=1

𝑚
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑚
𝑘
[− 𝑑(𝑆

𝑘
− 𝑆
∗

𝑘
)
2
− (𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2

− (2𝑑 + 𝜖) (𝑆𝑘 − 𝑆
∗

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)

+
𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
]

≤

𝑛

∑

𝑘=1

𝑚
𝑘
[−(𝑑 −

(2𝑑 + 𝜖)
2

2 (𝑑 + 𝜖)
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
(𝑑 + 𝜖)

2
(𝐼
𝑘
− 𝐼
∗

𝑘
)
2
+

𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
]

=

𝑛

∑

𝑘=1

𝑚
𝑘
[
(𝑑 + 𝜖)

2
+ 𝑑
2

2 (𝑑 + 𝜖)
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
−

(𝑑 + 𝜖)

2
(𝐼
𝑘
− 𝐼
∗

𝑘
)
2

+
𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
] .
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Figure 3: 𝜆 = 0.08, 𝜎
𝑘1

= 0.01, 𝜎
𝑘2

= 0.01, 𝑅
0
≥ 1. (a), (b) 𝑃(𝑘) = 𝑚

𝑘 exp(−𝑚)/𝑘!, 𝑚 = 6, 𝑅
0
= 1.5054 ≥ 1; (c), (d) 𝑃(𝑘) = 2𝑚

2
𝑘
−3, 𝑚 = 3,

𝑅
0
= 2.9027 ≥ 1.

𝐿𝑉
4
=

𝑛

∑

𝑘=1

𝑝
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)(𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗

− 𝑑𝑆
𝑘
)

+

𝑛

∑

𝑘=1

𝑝
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑝
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)

× (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
∗

𝑘
𝐼
∗

𝑗
− 𝑆
𝑘
𝐼
𝑗
) − 𝑑 (𝑆

𝑘
− 𝑆
∗

𝑘
))

+

𝑛

∑

𝑘=1

𝑝
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘

2

= −

𝑛

∑

𝑘=1

𝑝
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ 𝑑(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
−
𝜎
2

𝑘1
𝑆
2

𝑘

2

]

]

.

(40)
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Figure 4: (a), (b) 𝜆 = 0.05, 𝜎
𝑘1

= 0.015, 𝜎
𝑘2

= 0.05, 𝑃(𝑘) = 𝑚
𝑘 exp(−𝑚)/𝑘!,𝑚 = 6, 𝑅

0
= 0.94.9 ≤ 1. (c), (d) 𝜆 = 0.025, 𝜎

𝑘1
= 0.01, 𝜎

𝑘2
= 0.1,

𝑃(𝑘) = 2𝑚
2
𝑘
−3,𝑚 = 3, 𝑅

0
= 0.9071 ≤ 1.

By property (2) of Lemma A.2 (see [20]), we know

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑗

𝐼
∗

𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

) = 0,

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
ln

𝐼
𝑗

𝐼
∗

𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
ln

𝐼
𝑘

𝐼
∗

𝑘

) = 0.

(41)

Besides, note that 𝑥 − 1 − ln𝑥 ≥ 0 for 𝑥 > 0; then

𝑆
∗

𝑘

𝑆
𝑘

≥ 1 + ln
𝑆
∗

𝑘

𝑆
𝑘

,

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

≥ 1 + ln
𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

. (42)

According to (41) and (42), we get

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)

≤

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
[2 − (1 + ln

𝑆
∗

𝑘

𝑆
𝑘

) − (1 + ln
𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)]

=

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(ln

𝐼
𝑘

𝐼
∗

𝑘

− ln
𝐼
𝑗

𝐼
∗

𝑗

) = 0,

(43)
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𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

≥

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 + ln

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)

=

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 − ln

𝑆
∗

𝑘

𝑆
𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(ln

𝐼
𝑗

𝐼
∗

𝑗

− ln
𝐼
𝑘

𝐼
∗

𝑘

)

≥

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

) .

(44)

Substituting (41) and (43) into (38), we get

𝐿𝑉
1
≤

𝑛

∑

𝑘=1

𝑐
𝑘
[−𝑑𝑆
∗

𝑘
(
𝑆
∗

𝑘

𝑆
𝑘

+
𝑆
𝑘

𝑆
∗

𝑘

− 2) +
1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

= −

𝑛

∑

𝑘=1

𝑐
𝑘
𝑑
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑐
𝑘

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
) .

(45)

Substituting (44) into (39), we get

𝐿𝑉
2
≤

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+

𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(

𝐼
𝑘

𝐼
∗

𝑘

−

𝐼
𝑗

𝐼
∗

𝑗

)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−
𝑆
𝑘

𝑆
∗

𝑘

) +
𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+
𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

.

(46)

Therefore,

𝐿𝑉 = 𝑎𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
3
+ 𝐿𝑉
4

≤ −

𝑛

∑

𝑘=1

[𝑝
𝑘
𝑑 − 𝑚

𝑘

(𝑑 + 𝜖)
2
+ 𝑑
2

2 (𝑑 + 𝜖)
] (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑎𝑑 −

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
)

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑐
𝑘
− 𝑝
𝑘
𝑆
∗

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

−

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝑝
𝑘
𝛽
𝑘𝑗
𝐼
𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑎𝑐
𝑘
𝑆
∗

𝑘
+ (𝑚
𝑘
+ 𝑝
𝑘
) 𝑆
2

𝑘

2
𝜎
2

𝑘1

+

𝑛

∑

𝑘=1

(𝑎 + 1) 𝑐
𝑘
𝐼
∗

𝑘
+ 𝑚
𝑘
𝐼
2

𝑘

2
𝜎
2

𝑘2

≤ −

𝑛

∑

𝑘=1

[𝑝
𝑘
𝑑 − 𝑚

𝑘

(𝑑 + 𝜖)
2
+ 𝑑
2

2 (𝑑 + 𝜖)
] (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
1

2

𝑛

∑

k=1
𝑚
𝑘 (𝑑 + 𝜖) (𝐼𝑘 − 𝐼

∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑎𝑑 −

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
)

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑐
𝑘
− 𝑝
𝑘
𝑆
∗

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

+

𝑛

∑

𝑘=1

𝑎𝑐
𝑘
𝑆
∗

𝑘
+ (𝑚
𝑘
+ 𝑝
𝑘
) 𝑆
2

𝑘

2
𝜎
2

𝑘1

+

𝑛

∑

𝑘=1

(𝑎 + 1) 𝑐𝑘𝐼
∗

𝑘
+ 𝑚
𝑘
𝐼
2

𝑘

2
𝜎
2

𝑘2
.

(47)

Choose 𝑎 = max{(∑𝑛
𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
)/𝑑, 𝑘 = 1, 2, . . . , 𝑛}, 𝑚

𝑘
= (𝑑 +

𝜖)𝑝
𝑘
𝑑/((𝑑 + 𝜖)

2
+ 𝑑
2
), 𝑝
𝑘
= 𝑐
𝑘
/𝑆
∗

𝑘
, 𝑘 = 1, 2, . . . , 𝑛; then

𝐿𝑉 ≤ −

𝑛

∑

𝑘=1

𝑝
𝑘
𝑑

2
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
−

1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2

+
1

2

𝑛

∑

𝑘=1

[(
𝑎𝑐
𝑘
𝑏

𝑑
+

(𝑚
𝑘
+ 𝑝
𝑘
) 𝑏
2

𝑑2
)𝜎
2

𝑘1

+(
(𝑎 + 1) 𝑐𝑘𝑏

𝑑
+

𝑚
𝑘
𝑏
2

𝑑2
)𝜎
2

𝑘2
]

:= 𝐹 (𝑡) .

(48)
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Therefore,

𝑑𝑉 ≤ 𝐹 (𝑡) 𝑑𝑡

+

𝑛

∑

𝑘=1

[[𝑎𝑐
𝑘
𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) + (𝑚

𝑘
+ 𝑝
𝑘
) 𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) 𝑆
𝑘
]

× 𝑑𝐵
𝑘1

(𝑡)

+ [𝑐
𝑘 (𝑎 + 1) 𝜎𝑘2 (𝐼𝑘 − 𝐼

∗

𝑘
) + 𝑚
𝑘
𝜎
𝑘2

(𝐼
𝑘
− 𝐼
∗

𝑘
) 𝐼
𝑘
]

× 𝑑𝐵
𝑘2

(𝑡)] .

(49)

Integrating both sides of (49) from 0 to 𝑡 yields

𝑉 (𝑡) − 𝑉 (0)

≤ ∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑛

∑

𝑘=1

[𝑎𝑐
𝑘
𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) + (𝑚

𝑘
+ 𝑝
𝑘
) 𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) 𝑆
𝑘
]

× 𝑑𝐵
𝑘1

(𝑠)

+ ∫

𝑡

0

𝑛

∑

𝑘=1

[𝑐
𝑘
(𝑎 + 1) 𝜎

𝑘2
(𝐼
𝑘
− 𝐼
∗

𝑘
) + 𝑚
𝑘
𝜎
𝑘2

(𝐼
𝑘
− 𝐼
∗

𝑘
) 𝐼
𝑘
]

× 𝑑𝐵
𝑘2 (𝑠) .

(50)

Let 𝑀
1
(𝑡) := ∫

𝑡

0
∑
𝑛

𝑘=1
[𝑎𝑐
𝑘
𝜎
𝑘1
(𝑆
𝑘
− 𝑆
∗

𝑘
) + (𝑚

𝑘
+ 𝑝
𝑘
)𝜎
𝑘1
(𝑆
𝑘
−

𝑆
∗

𝑘
)𝑆
𝑘
]𝑑𝐵
𝑘1
(𝑠), 𝑀

2
(𝑡) := ∫

𝑡

0
∑
𝑛

𝑘=1
[𝑐
𝑘
(𝑎 + 1)𝜎

𝑘2
(𝐼
𝑘
− 𝐼
∗

𝑘
) +

𝑚
𝑘
𝜎
𝑘2
(𝐼
𝑘
−𝐼
∗

𝑘
)𝐼
𝑘
]𝑑𝐵
𝑘2
(𝑠), which are local continuous martin-

gale, and𝑀
1
(0) = 𝑀

2
(0) = 0. Moreover

lim sup
𝑡→∞

⟨𝑀
1
,𝑀
1
⟩
𝑡

𝑡
≤ 8

𝑛

∑

𝑘=1

𝜎
2

𝑘1
[𝑎
2
𝑐
2

𝑘
+ (𝑚
𝑘
+ 𝑝
𝑘
)
2
𝑏
2

𝑘

𝑑2
]

𝑏
2

𝑘

𝑑2

< ∞,

lim sup
𝑡→∞

⟨𝑀
2
,𝑀
2
⟩
𝑡

𝑡
≤ 8

𝑛

∑

𝑘=1

𝜎
2

𝑘2
[𝑐
2

𝑘
(𝑎 + 1)

2
+ 𝑚
2

𝑘

𝑏
2

𝑘

𝑑2
]

𝑏
2

𝑘

𝑑2
< ∞.

(51)

By Lemma A.4 (see [20]), we obtain

lim
𝑡→∞

𝑀
1 (𝑡)

𝑡
= 0, lim

𝑡→∞

𝑀
2 (𝑡)

𝑡
= 0 a.s., (52)

which together with (50) implies

lim inf
𝑡→∞

∫
𝑡

0
𝐹 (𝑠) 𝑑𝑠

𝑡
≥ 0 a.s. (53)

Consequently,

lim sup
𝑡→∞

1

𝑡

𝑛

∑

𝑘=1

∫

𝑡

0

[𝑝
𝑘
𝑑(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ 𝑚
𝑘
(𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2
] 𝑑𝑠

≤

𝑛

∑

𝑘=1

[(
𝑎𝑐
𝑘
𝑏
𝑘

𝑑
+

(𝑚
𝑘
+ 𝑝
𝑘
) 𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘1

+(
(𝑎 + 1) 𝑐𝑘𝑏𝑘

𝑑
+

𝑚
𝑘
𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘2
] , a.s.

(54)

ThusTheorem 5 is proved.

Remark 6. Theorem 5 shows that the solution of system (5)
fluctuates around the certain level which is relevant to 𝐸

∗ of
system (3) and 𝜎

2

𝑘1
, 𝜎2
𝑘2
, 𝑘 = 1, 2, . . . , 𝑛. The distance between

the solution 𝑋(𝑡) = (𝑆
1
(𝑡), 𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) and 𝐸

∗ of
system (3) has the following form:

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

󵄩󵄩󵄩󵄩𝑋(𝑠) − 𝐸
∗󵄩󵄩󵄩󵄩

2
𝑑𝑠 ≤ 𝐶‖𝜎‖

2
, (55)

where 𝐶 is a positive constant and ‖𝜎‖
2
= ∑
𝑛

𝑘=1
(𝜎
2

𝑘1
+ 𝜎
2

𝑘2
).

Although the solution of system (5) does not have stability
as the deterministic system, we can draw a conclusion that
system (5) is persistent on the basis of the result ofTheorem 5,
which also accounts for the fact that the disease is prevalent.

5. Simulations and Conclusions

5.1. Numerical Simulations. In order to confirm the results
above, we numerically simulate the solution of system (5)
with 𝑛 = 50, 𝑏

𝑘
= 0.25, 𝑑 = 0.3, 𝜖 = 0.01, and initial value

𝑆
𝑘
(0) = 0.5, 𝐼

𝑘
(0) = 0.1, 𝑘 = 1, 2, . . . , 50. Using Milstein’s

Higer Order Method [31], we get the discretization equation:

𝑆
𝑘,𝑖+1

= 𝑆
𝑘,𝑖

+ Δ𝑡(𝑏
𝑘
−

2

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘,𝑖
𝐼
𝑗,𝑖

− 𝑑𝑆
𝑘,𝑖
)

+ 𝜎
𝑘1
𝑆
𝑘,𝑖
√Δ𝑡𝜉
𝑘1,𝑖

+
𝜎
2

𝑘1

2
𝑆
𝑘,𝑖
Δ𝑡 (𝜉
2

𝑘1,𝑖
− 1) ,

𝐼
𝑘,𝑖+1

= 𝐼
𝑘,𝑖

+ Δ𝑡(

2

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘,𝑖
𝐼
𝑗,𝑖

− (𝑑 + 𝜖) 𝐼𝑘,𝑖)

+ 𝜎
𝑘2
𝐼
𝑘,𝑖
√Δ𝑡𝜉
𝑘2,𝑖

+
𝜎
2

𝑘2

2
𝐼
𝑘,𝑖
Δ𝑡 (𝜉
2

𝑘2,𝑖
− 1) ,

(56)

where 𝑘 = 1, 2, . . . , 𝑛 and 𝜉
𝑘1,𝑖

, 𝜉
𝑘2,𝑖

, 𝑖 = 1, 2, . . . , 𝑁, are the
independent Gaussian random variables𝑁(0, 1).

From Theorem 3 and Remark 4, it is shown that the
expectations of 𝑆

𝑘
(𝑡), 𝐼
𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑛, are converging

under some conditions, and the solution of system (5) will
oscillate around the disease-free equilibrium of system (3). In
Figure 1, we choose parameters 𝜆 = 0.025, 𝜎

𝑘1
= 0.005, and

𝜎
𝑘2

= 0.03, such that 𝑅
0
≤ 1, and in Figures 1(a) and 1(b) we

choose 𝑃(𝑘) = 𝑚
𝑘 exp(−𝑚)/𝑘!, and in Figures 1(c) and 1(d)
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we choose 𝑃(𝑘) = 2𝑚
2
𝑘
−3. From Figure 1, we can see that the

disease-free equilibrium 𝐸
0
of system (3) (imaginary lines)

is globally asymptotically stable and the curves of system (5)
(real lines) always fluctuate around the curves of system (3)
(imaginary lines). From Figure 2, we can see that, due to
the difference of the degree distribution, the critical value of
spread is different.

In Figure 3, parameters 𝜆 = 0.08, 𝜎
𝑘1

= 0.01, and
𝜎
𝑘2

= 0.01 and others are the same as the previous. From
Figure 3, we can see that the position of the equilibrium state
is different due to the difference of the degree distribution.
From Figures 1(d), 2(b), 4(b), and 4(d), we found that the
solution of stochastic system converging to the disease-free
equilibrium is faster than that of the deterministic system
with the increase of noise intensity.

5.2. Conclusions. The numerical simulations illustrate the
mathematical theorems well. Due to the existence of the
noise, the solution of the stochastic system goes around the
solution of the deterministic system.With intensities decreas-
ing, the turbulence intensity is weaker. From numerical
simulations, we have a new discovery. When 𝑅

0
≤ 1, with the

increase of noise intensity, the solution of stochastic system
converging to the disease-free equilibrium is faster than the
deterministic system. This is because of the fact that, when
𝑅
0

≤ 1, the disease will die out after some time. However
in the real world many stochastic factors contributed to the
extinction of the disease.
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