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In this present investigation, we first give a survey of the work done so far in this area of Hankel determinant for univalent functions.
Then the upper bounds of the second Hankel determinant |𝑎

2
𝑎
4
− 𝑎
2

3
| for functions belonging to the subclasses 𝑆(𝛼, 𝛽), 𝐾(𝛼, 𝛽),

𝑆
∗

𝑠
(𝛼, 𝛽), and𝐾

𝑠
(𝛼, 𝛽) of analytic functions are studied. Some of the results, presented in this paper, would extend the corresponding

results of earlier authors.

1. Introduction

LetA denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑
𝑘=2

𝑎
𝑘
𝑧
𝑘 (1)

which are analytic in the unit disc U = {𝑧 : |𝑧| < 1}, and let 𝑆
denote the subclass ofA that is univalent inU. Suppose that𝑓
and 𝑔 are analytic functions inU; we say that𝑓 is subordinate
to𝑔, written𝑓 ≺ 𝑔, if there exists a Schwarz function𝜔, which
is analytic in U with 𝜔(0) = 0 and |𝜔(𝑧)| < 1 for all 𝑧 ∈ U,
such that𝑓(𝑧) = 𝑔(𝜔(𝑧)), 𝑧 ∈ U. In particular, if𝑔 is univalent
inU, then the subordination is equivalent to 𝑓(0) = 𝑔(0) and
𝑓(U) ⊂ 𝑔(U).

Let P be the family of all functions 𝑝 analytic in U for
whichR{𝑝(𝑧)} > 0 and

𝑝 (𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧
2
+ ⋅ ⋅ ⋅ (2)

for 𝑧 ∈ U.
It is well known that the following correspondence

between the class P and the class of Schwarz functions 𝜔
exists [1]:

𝑝 ∈ P ⇐⇒ 𝑝 =
1 + 𝜔

1 − 𝜔
. (3)

Let 𝑆∗ denote the starlike subclass of 𝑆. It is well known
that 𝑓 ∈ 𝑆

∗ if and only if

R{
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
} > 0 (𝑧 ∈ U) . (4)

Let𝐾 denote the class of all functions 𝑓 ∈ A that are convex.
Further,𝑓 is convex if and only if 𝑧𝑓󸀠 is starlike. Alsowe know
that𝐾 ⊂ 𝑆

∗
⊂ 𝑆.

In 1959, Sakaguchi [2] introduced the class 𝑆∗
𝑠
of functions

starlike with respect to symmetric points, consisting of
functions 𝑓 ∈ 𝑆 satisfying

R{
2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
} > 0 (𝑧 ∈ U) . (5)

In 1977, Das and Singh [3] introduced the class 𝐾
𝑠
of

functions convex with respect to symmetric points, which
consists of functions 𝑓 ∈ 𝑆 satisfying

R
{

{

{

2(𝑧𝑓
󸀠
(𝑧))
󸀠

(𝑓 (𝑧) − 𝑓 (−𝑧))
󸀠

}

}

}

> 0 (𝑧 ∈ U) . (6)

It is evident that 𝑓 ∈ 𝐾
𝑠
if and only if 𝑧𝑓󸀠 ∈ 𝑆∗

𝑠
.

In 2007, Wang and Jiang [4] introduced the following
subclass.
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2 Abstract and Applied Analysis

Definition 1 (see [4]). Suppose that 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1.
Let 𝑆(𝛼, 𝛽) denote the class of functions 𝑓 inA satisfying the
following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
+ 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑧 ∈ U) . (7)

From [4], one knows that the above condition is equiva-
lent to

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
≺

1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
(𝑧 ∈ U) , (8)

which implies that

𝑆 (𝛼, 𝛽) ⊂ 𝑆
∗
⊂ 𝑆. (9)

If 𝛼 = 𝛽 = 1, then the class 𝑆(𝛼, 𝛽) reduces to the class 𝑆∗.
In the similar way, one can easily get the following definitions.

Definition 2. Suppose that 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Let
𝐾(𝛼, 𝛽) denote the class of functions 𝑓 in A satisfying the
following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼(𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧)
+ 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑧 ∈ U) . (10)

It is evident that the above condition is equivalent to

(𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧)
≺

1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
(𝑧 ∈ U) , (11)

which implies that

𝐾(𝛼, 𝛽) ⊂ 𝐾 ⊂ 𝑆. (12)

If 𝛼 = 1 and 𝛽 = 1, then the class 𝐾(𝛼, 𝛽) reduces to the
class 𝐾.

Definition 3. Suppose that 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Let
𝑆
∗

𝑠
(𝛼, 𝛽) denote the class of functions 𝑓 in A satisfying the

following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝛼𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
+ 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑧 ∈ U) .

(13)

From [5], one knows that the above condition is equiva-
lent to

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
≺

1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
(𝑧 ∈ U) . (14)

The function class 𝑆
∗

𝑠
(𝛼, 𝛽) was introduced and

investigated by Sudharsan et al. [6]. If 𝛼 = 1 and
𝛽 = 1, then the class 𝑆

∗

𝑠
(𝛼, 𝛽) reduces to the class

𝑆
∗

𝑠
.

Definition 4. Suppose that 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Let
𝐾
𝑠
(𝛼, 𝛽) denote the class of functions 𝑓 in A satisfying the

following inequality:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2(𝑧𝑓
󸀠
(𝑧))
󸀠

(𝑓 (𝑧) − 𝑓 (−𝑧))
󸀠
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝛼(𝑧𝑓
󸀠
(𝑧))
󸀠

(𝑓 (𝑧) − 𝑓 (−𝑧))
󸀠
+ 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑧 ∈ U) .

(15)

It is evident that the above condition is equivalent to

2(𝑧𝑓
󸀠
(𝑧))
󸀠

(𝑓 (𝑧) − 𝑓 (−𝑧))
󸀠
≺

1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
(𝑧 ∈ U) . (16)

If 𝛼 = 1 and 𝛽 = 1, then the class 𝐾
𝑠
(𝛼, 𝛽) reduces to the

class 𝐾
𝑠
.

In 1966, Pommerenke [7] stated the 𝑞th Hankel determi-
nant for 𝑞 ≥ 1 and 𝑛 ≥ 1 as

𝐻
𝑞
(𝑛) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑛

𝑎
𝑛+1

⋅ ⋅ ⋅ 𝑎
𝑛+𝑞−1

𝑎
𝑛+1

𝑎
𝑛+2

⋅ ⋅ ⋅ 𝑎
𝑛+𝑞

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
𝑛+𝑞−1

𝑎
𝑛+𝑞

⋅ ⋅ ⋅ 𝑎
𝑛+2𝑞−2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (𝑎
1
= 1) . (17)

This Hankel determinant is useful and has also been con-
sidered by several authors. The growth rate of Hankel deter-
minant 𝐻

𝑞
(𝑛) as 𝑛 → ∞ was investigated, respectively,

when 𝑓 is a member of certain subclass of analytic functions,
such as the class of p-valent functions [7, 8], the class of
starlike functions [7], the class of univalent functions [9],
the class of close-to-convex functions [10], the class of strong
close-to-convex functions [11], a new class 𝑉

𝑘
[12], and a

new class 𝑁̃
𝑘
(𝜂, 𝜌, 𝛽) [13]. Similar to the above discussions,

we can also refer to [14, 15]. Ehrenborg [16] studied the
Hankel determinant of exponential polynomials.The Hankel
transform of an integer sequence was defined and some of its
properties were discussed by Layman [17]. Pommerenke [9]
proved that the Hankel determinants of univalent function
satisfy

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑞
(𝑛)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐾𝑛
−(1/2+𝛽)𝑞+3/2

. (18)

Later, |𝐻
2
(𝑛)| ≤ 𝐴𝑛

1/2 was also proved by Hayman [18]. One
can easily observe that the Fekete and Szegö functional is
𝐻
2
(1) = 𝑎

3
− 𝑎
2

2
. For results related to the functional, see

[19, 20]. Fekete and Szegö further generalized the estimate
|𝑎
3
− 𝜇𝑎
2

2
|, where 𝜇 is real and 𝑓 ∈ 𝑆. For results related to the

functional, see [21, 22]. In 2010, Hayami andOwa [21, 22] also
generalized the estimate |𝑎

𝑛
𝑎
𝑛+2

− 𝜇𝑎
2

𝑛
| for analytic function.

Later, in 2012, Krishna and Ramreddy [23] also generalized
the estimate |𝑎

𝑝+1
𝑎
𝑝+3

−𝜇𝑎
2

𝑝+2
| for p-valent analytic function;

see also [24, 25].
For our discussion in this paper, we consider the second

Hankel determinant in the case of 𝑞 = 2 and 𝑛 = 2, namely,

𝐻
2
(2) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
2
𝑎
3

𝑎
3
𝑎
4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑎
2
𝑎
4
− 𝑎
2

3
. (19)
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Janteng et al. [26] have considered the functional |𝐻
2
(2)|

and found a sharp bound, the subclass of 𝑆 denoted by 𝑅,
defined as R{𝑓

󸀠
(𝑧)} > 0. In their work, they have shown

that if 𝑓 ∈ 𝑅, then |𝐻
2
(2)| ≤ 4/9. These authors [27, 28] also

studied the second Hankel determinant and sharp bound for
the classes of starlike and convex functions, close-to-starlike
and close-to-convex functions with respect to symmetric
points denoted by 𝑆∗, 𝐾, 𝑆∗

𝑐
, and 𝐾

𝑐
and have shown that

|𝐻
2
(2)| ≤ 1, |𝐻

2
(2)| ≤ 1/8, |𝐻

2
(2)| ≤ 1, and |𝐻

2
(2)| ≤ 1/9,

respectively.
Singh [29] established the second Hankel determinant

and sharp bound for the classes of close-to-starlike and close-
to-convex functions with respect to conjugate and symmetric
conjugate points denoted by 𝑆

∗

𝑐
, 𝑆∗
𝑠𝑐
, 𝐾
𝑐
, and 𝐾

𝑠𝑐
and has

shown that |𝐻
2
(2)| ≤ 1, |𝐻

2
(2)| ≤ 1, |𝐻

2
(2)| ≤ 1/8, and

|𝐻
2
(2)| ≤ 1/9, respectively.
Mishra and Gochhayat [30] obtained the sharp bound to

|𝐻
2
(2)| for the functions in the class denoted by 𝑅

𝜆
(𝛼, 𝜌),

(0 ≤ 𝜆 < 1, |𝛼| < 𝜋/2, 0 ≤ 𝜌 ≤ 1) and defined as
R{𝑒
𝑖𝛼
(Ω
𝜆

𝑧
𝑓(𝑧)/𝑧)} > 𝜌 cos𝛼, using the fractional differential

operator denoted by Ω
𝜆

𝑧
𝑓(𝑧) and defined by Owa and

Srivastava [31].These authors have shown that if𝑓 ∈ 𝑅
𝜆
(𝛼, 𝜌),

then |𝐻
2
(2)| ≤ {((1 − 𝜌)

2
(2 − 𝜆)

2
(3 − 𝜆)

2cos2𝛼)/9}.
Mohammed and Darus [32] have obtained a sharp upper

bound to |𝐻
2
(2)| for the functions in the class denoted

by 𝑆
𝜆,𝑛

𝑚
(𝛼, 𝜎), (|𝛼| < 𝜋/2, 0 ≤ 𝜎 < 1) and defined as

R{𝑒
𝑖𝛼
(Θ
𝜆,𝑛

𝑚
𝑓(𝑧)/𝑧)} > 𝜎 cos𝛼. These authors have proved

that if 𝑓 ∈ 𝑆
𝜆,𝑛

𝑚
(𝛼, 𝜎), then |𝐻

2
(2)| ≤ {(4𝑚

2
(1 − 𝜎)

2
(1 +

𝑚)
2cos2𝛼)/(32𝑛(𝜆 + 1)2(𝜆 + 2)2)}.
Similar to the above discussions in a new subclass of

analytic function with different operators, we can also refer
to [33, 34]. Singh [35] also obtained a sharp upper bound for
the functional |𝐻

2
(2)| for the function 𝑓 ∈ 𝑀(𝛼), where

𝑀(𝛼) = {𝑓 ∈ A : R[
𝑧𝑓
󸀠
(𝑧) + 𝛼𝑧

2
𝑓
󸀠󸀠
(𝑧)

(1 − 𝛼) 𝑓 (𝑧) + 𝛼𝑧𝑓󸀠 (𝑧)
] > 0,

0 ≤ 𝛼 ≤ 1, 𝑧 ∈ U} ,

(20)

and showed that if 𝑓 ∈ 𝑀(𝛼), then |𝐻
2
(2)| ≤ 1/((1 + 𝛼)(1 +

3𝛼)).
Mehrok and Singh [36] have obtained a sharp upper

bound to |𝐻
2
(2)| for the function in the classes denoted by

𝑀
𝛼 and 𝐶∗(𝛼)

𝑠
and defined as, respectively,

𝑀
𝛼
=
{

{

{

𝑓 ∈ A : R[

[

(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
)

1−𝛼

(
(𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧)
)

𝛼

]

]

> 0,

0 ≤ 𝛼 ≤ 1, 𝑧 ∈ U
}

}

}

,

𝐶
∗(𝛼)

𝑠
=
{

{

{

𝑓 ∈ A : R[

[

(
2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
)

1−𝛼

× (
2(𝑧𝑓
󸀠
(𝑧))
󸀠

(𝑓 (𝑧) − 𝑓 (−𝑧))
󸀠
)

𝛼

]

]

> 0,

0 ≤ 𝛼 ≤ 1, 𝑧 ∈ U} .

(21)

In their work, they proved that if 𝑓 ∈ 𝑀
𝛼, then

󵄨󵄨󵄨󵄨𝐻2 (2)
󵄨󵄨󵄨󵄨

≤
1

(1 + 2𝛼)
2

× [𝛼 (11 + 36𝛼 + 38𝛼
2
+ 12𝛼

3
− 𝛼
4
)

× ((1 + 3𝛼) (−4 + 263𝛼 + 603𝛼
2
+ 253𝛼

3
+ 37𝛼

4
)

× (1 + 𝛼)
4
)
−1

+ 1] ,

(22)

and if 𝑓 ∈ 𝐶
∗(𝛼)

𝑠
, then |𝐻

2
(2)| ≤ 1/(1 + 2𝛼)

2.
Shanmugam et al. [37] established the sharp upper bound

of the secondHankel determinant for the classes of 𝑆∗
𝛼
and𝐶

𝛼
,

defined as, respectively,

𝑆
∗

𝛼
= {𝑓 ∈ A : R[

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
+ 𝛼

𝑧
2
𝑓
󸀠󸀠
(𝑧)

𝑓 (𝑧)
] > 0, 𝑧 ∈ U} ,

𝐶
𝛼
=
{

{

{

𝑓 ∈ A : R[

[

(𝑧𝑓
󸀠
(𝑧) + 𝛼𝑧

2
𝑓
󸀠󸀠
(𝑧
󸀠
))
󸀠

𝑓󸀠 (𝑧)
]

]

> 0, 𝑧 ∈ U
}

}

}

.

(23)

These authors proved that if𝑓 ∈ 𝑆
∗

𝛼
, then |𝐻

2
(2)| ≤ 1/(1+3𝛼)

2

and if 𝑓 ∈ 𝐶
𝛼
, then

󵄨󵄨󵄨󵄨𝐻2 (2)
󵄨󵄨󵄨󵄨 ≤

1

144

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

280𝛼
3
+ 340𝛼

2
+ 138𝛼 + 18

(1 + 2𝛼)
2
(1 + 3𝛼)

2
(1 + 4𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (24)

Krishna and Ramreddy [38] obtained a sharp upper
bound to the nonlinear functional |𝐻

2
(2)| for a new subclass

of analytic functions𝑄(𝛼, 𝛽, 𝛾), (𝛼, 𝛽 > 0, 0 ≤ 𝛾 < 𝛼 + 𝛽 ≤ 1),
defined by

𝑄 (𝛼, 𝛽, 𝛾) = {𝑓 ∈ A : R [𝛼
𝑓 (𝑧)

𝑧
+ 𝛽𝑓
󸀠
(𝑧)] ≥ 𝛾, 𝑧 ∈ U} .

(25)

These authors proved that if 𝑓 ∈ 𝑄(𝛼, 𝛽, 𝛾), then |𝐻
2
(2)| ≤

[4(𝛼 + 𝛽 − 𝛾)
2
/(𝛼 + 3𝛽)

2
].

Similar to the above discussions defined as different
classes of analytic functions, we can also refer to [39–49].
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Raza and Malik [50] studied the third Hankel determi-
nant 𝐻

3
(1) of analytic functions related with lemniscate of

Bernoulli; see also [51].
Motivated by the above-mentioned results obtained by

different authors in this direction, in this present investiga-
tion, we determine the upper bounds of the second Hankel
determinant 𝐻

2
(2) for functions belonging to these classes

𝑆(𝛼, 𝛽),𝐾(𝛼, 𝛽), 𝑆∗
𝑠
(𝛼, 𝛽), and𝐾

𝑠
(𝛼, 𝛽).

2. Preliminary Results

In order to prove our main results, we need the following
lemmas.

Lemma 5 (see [52]). If the function 𝑝 ∈ P is given by the
power series (2), then |𝑐

𝑘
| ≤ 2 (𝑘 = 1, 2, . . .).

Lemma 6 (see [53, 54]). If the function 𝑝 ∈ P is given by the
power series (2), then

2𝑐
2
= 𝑐
2

1
+ (4 − 𝑐

2

1
) 𝑥 (26)

for some 𝑥 with |𝑥| ≤ 1 and

4𝑐
3
= 𝑐
3

1
+ 2𝑐
1
(4 − 𝑐

2

1
) 𝑥 − 𝑐

1
(4 − 𝑐

2

1
) 𝑥
2

+ 2 (4 − 𝑐
2

1
) (1 − |𝑥|

2
) 𝑧

(27)

for some 𝑧 with |𝑧| ≤ 1.

3. Main Results

Theorem 7. Let 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Suppose that the
function 𝑓 given by (1) is in the class 𝑆(𝛼, 𝛽). Then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤
1

4
𝛽
2
(1 + 𝛼)

2
. (28)

The result is sharp, with the extremal function

𝑓
1
(𝑧) = {

𝑧(1 − 𝛼𝛽𝑧
2
)
−(1+𝛼)/2𝛼

, 0 < 𝛼 ≤ 1,

𝑧𝑒
𝛽𝑧
2
/2
, 𝛼 = 0.

(29)

Proof. Since 𝑓 ∈ 𝑆(𝛼, 𝛽), it follows from (8) that there exists a
Schwarz function 𝜔, which is analytic inUwith 𝜔(0) = 0 and
|𝜔(𝑧)| < 1 in U, such that

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
= 𝜙 (𝜔 (𝑧)) (𝑧 ∈ U) , (30)

where

𝜙 (𝑧) =
1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
= 1 + 𝛽 (1 + 𝛼) 𝑧 + 𝛼𝛽

2
(1 + 𝛼) 𝑧

2

+ 𝛼
2
𝛽
3
(1 + 𝛼) 𝑧

3
+ ⋅ ⋅ ⋅ .

(31)

Define the function 𝑝 by

𝑝 (𝑧) =
1 + 𝜔 (𝑧)

1 − 𝜔 (𝑧)
= 1 + 𝑐

1
𝑧 + 𝑐
2
𝑧
2
+ ⋅ ⋅ ⋅ . (32)

From (3), we get 𝑝 ∈ P and

𝜔 (𝑧) =
𝑝 (𝑧) − 1

𝑝 (𝑧) + 1
=
1

2
𝑐
1
𝑧 +

1

2
(𝑐
2
−
1

2
𝑐
2

1
) 𝑧
2

+
1

2
(𝑐
3
− 𝑐
1
𝑐
2
+
1

4
𝑐
3

1
) 𝑧
3
+ ⋅ ⋅ ⋅ .

(33)

In view of (30), (31), and (33), we have

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
= 𝜙 (𝜔 (𝑧))

= 𝜙 (
1

2
𝑐
1
𝑧 +

1

2
(𝑐
2
−
1

2
𝑐
2

1
) 𝑧
2

+
1

2
(𝑐
3
− 𝑐
1
𝑐
2
+
1

4
𝑐
3

1
) 𝑧
3
+ ⋅ ⋅ ⋅ )

= 1 +
1

2
𝛽 (1 + 𝛼) 𝑐

1
𝑧

+ [
1

2
𝛽 (1 + 𝛼) (𝑐

2
−
1

2
𝑐
2

1
) +

1

4
𝛼𝛽
2
(1 + 𝛼) 𝑐

2

1
] 𝑧
2

+ [
1

2
𝛽 (1 + 𝛼) (𝑐

3
− 𝑐
1
𝑐
2
+
1

4
𝑐
3

1
)

+
1

2
𝛼𝛽
2
(1 + 𝛼) (𝑐

2
−
1

2
𝑐
2

1
) 𝑐
1

+
1

8
𝛼
2
𝛽
3
(1 + 𝛼) 𝑐

3

1
] 𝑧
3
+ ⋅ ⋅ ⋅ .

(34)

Similarly,

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
= 1 + 𝑎

2
𝑧 + (2𝑎

3
− 𝑎
2

2
) 𝑧
2

+ (3𝑎
4
− 3𝑎
2
𝑎
3
+ 𝑎
2

2
) 𝑧
3
+ ⋅ ⋅ ⋅ .

(35)

Comparing the coefficients of 𝑧, 𝑧2, and 𝑧3 in (34) and
(35), we obtain

𝑎
2
=
1

2
𝛽 (1 + 𝛼) 𝑐

1
,

𝑎
3
=
1

8
𝛽 (1 + 𝛼) [2𝑐

2
+ (𝛽 + 2𝛼𝛽 − 1) 𝑐

2

1
] ,

𝑎
4
=
1

8
𝛽 (1 + 𝛼)

× (
1

3
−
1

2
𝛽 −

7

6
𝛼𝛽 +

5

6
𝛼𝛽
2
+ 𝛼
2
𝛽
2
+
1

6
𝛽
2
) 𝑐
3

1

−
1

2
𝛽 (1 + 𝛼) (

1

3
−
1

4
𝛽 −

7

12
𝛼𝛽) 𝑐
1
𝑐
2
+
1

6
𝛽 (1 + 𝛼) 𝑐

3
.

(36)
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Thus we have

𝑎
2
𝑎
4
− 𝑎
2

3
= −

1

192
𝛽
2
(1 + 𝛼)

2

× [(2𝛼𝛽
2
+ 2𝛼𝛽 + 𝛽

2
− 1) 𝑐

4

1
− 4 (𝛼𝛽 − 1) 𝑐

2

1
𝑐
2

−16𝑐
1
𝑐
3
+ 12𝑐
2

2
] ,

(37)

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
=

1

192
𝛽
2
(1 + 𝛼)

2

×
󵄨󵄨󵄨󵄨󵄨
(2𝛼𝛽
2
+ 2𝛼𝛽 + 𝛽

2
− 1) 𝑐

4

1

−4 (𝛼𝛽 − 1) 𝑐
2

1
𝑐
2
− 16𝑐
1
𝑐
3
+ 12𝑐
2

2

󵄨󵄨󵄨󵄨󵄨
.

(38)

Since the functions 𝑝(𝑧) and 𝑝(𝑒
𝑖𝜃
𝑧) (𝜃 ∈ R) are

members of the class P simultaneously, we assume without
loss of generality that 𝑐

1
> 0. For convenience of notation, we

take 𝑐
1
= 𝑐 (𝑐 ∈ [0, 2]). By substituting the values of 𝑐

2
and 𝑐
3
,

respectively, from (26) and (27) in (38), we have

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
=

1

192
𝛽
2
(1 + 𝛼)

2

×
󵄨󵄨󵄨󵄨󵄨
(2𝛼 + 1) 𝛽

2
𝑐
4
− 2𝛼𝛽𝑐

2
(4 − 𝑐

2
) 𝑥

+ (12 + 𝑐
2
) (4 − 𝑐

2
) 𝑥
2

−8𝑐 (4 − 𝑐
2
) (1 − |𝑥|

2
) 𝑧
󵄨󵄨󵄨󵄨󵄨
.

(39)

Using the triangle inequality and |𝑧| ≤ 1, we have

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤

1

192
𝛽
2
(1 + 𝛼)

2

× [(2𝛼 + 1) 𝛽
2
𝑐
4
+ 2𝛼𝛽𝑐

2
(4 − 𝑐

2
) |𝑥|

+ (12 + 𝑐
2
) (4 − 𝑐

2
) |𝑥|
2

+8𝑐 (4 − 𝑐
2
) (1 − |𝑥|

2
)]

=
1

192
𝛽
2
(1 + 𝛼)

2

× [8𝑐 (4 − 𝑐
2
) + (2𝛼 + 1) 𝛽

2
𝑐
4

+ 2𝛼𝛽𝑐
2
(4 − 𝑐

2
) |𝑥|

+ (𝑐 − 2) (𝑐 − 6) (4 − 𝑐
2
) |𝑥|
2
]

= 𝐹 (𝑐, 𝜇) , (𝑠𝑎𝑦) ,

(40)

where 𝜇 = |𝑥| ≤ 1.

We next maximize the function 𝐹(𝑐, 𝜇) on the closed
square [0, 2] × [0, 1]. Differentiating 𝐹(𝑐, 𝜇) in (40) partially
with respect to 𝜇, we get

𝜕𝐹 (𝑐, 𝜇)

𝜕𝜇
=

1

96
𝛽
2
(1 + 𝛼)

2

× [𝛼𝛽𝑐
2
(4 − 𝑐

2
) + (𝑐 − 2) (𝑐 − 6) (4 − 𝑐

2
) 𝜇] .

(41)

For 0 < 𝜇 < 1 and for any fixed 𝑐 with 0 < 𝑐 < 2, from (41),
we observe that 𝜕𝐹(𝑐, 𝜇)/𝜕𝜇 > 0. Consequently, 𝐹(𝑐, 𝜇) is an
increasing function of𝜇 and hence it cannot have amaximum
value at any point in the interior of the closed square [0, 2] ×
[0, 1]. Moreover, for fixed 𝑐 ∈ [0, 2], we have

max
0≤𝜇≤1

𝐹 (𝑐, 𝜇) = 𝐹 (𝑐, 1) = 𝐺 (𝑐) (𝑠𝑎𝑦) . (42)

From the relations (40) and (42), upon simplification, we
obtain

𝐺 (𝑐) = 𝐹 (𝑐, 1) =
1

192
𝛽
2
(1 + 𝛼)

2

× [(2𝛼𝛽 + 𝛽 + 1) (𝛽 − 1) 𝑐
4
+ 8 (𝛼𝛽 − 1) 𝑐

2
+ 48] .

(43)

Next, since

𝐺
󸀠
(𝑐) =

1

48
𝛽
2
(1 + 𝛼)

2
𝑐

× [(2𝛼𝛽 + 𝛽 + 1) (𝛽 − 1) 𝑐
2
+ 4 (𝛼𝛽 − 1)] ,

(44)

we get that 𝐺󸀠(𝑐) ≤ 0 for 0 < 𝑐 ≤ 2 and 𝐺(𝑐) has real critical
point at 𝑐 = 0. Therefore, the maximum of 𝐺(𝑐) occurs at
𝑐 = 0. Thus, the upper bound of 𝐹(𝑐, 𝜇) corresponds to 𝜇 = 1
and 𝑐 = 0. Hence,

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤
1

4
𝛽
2
(1 + 𝛼)

2
. (45)

Equality holds for the function

𝑓
1
(𝑧) = {

𝑧(1 − 𝛼𝛽𝑧
2
)
−(1+𝛼)/2𝛼

, 0 < 𝛼 ≤ 1,

𝑧𝑒
𝛽𝑧
2
/2
, 𝛼 = 0.

(46)
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By calculating, we have

𝑧𝑓
󸀠

1
(𝑧)

𝑓
1
(𝑧)

=
1 + 𝛽𝑧

2

1 − 𝛼𝛽𝑧2
≺

1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
(47)

and 𝑎
2
= 0, 𝑎

3
= (1/2)𝛽(1 + 𝛼), and 𝑎

4
= 0. So 𝑓

1
(𝑧) ∈ 𝑆(𝛼, 𝛽)

and equality holds.This shows that the result is sharp, and the
proof of Theorem 7 is complete.

Setting 𝛼 = 𝛽 = 1 in Theorem 7, we obtain the following
result due to Janteng et al. [27].

Corollary 8. If 𝑓(𝑧) ∈ 𝑆∗, then
󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤ 1. (48)

The result is sharp, with the extremal function

𝑓
2
(𝑧) =

𝑧

1 − 𝑧2
. (49)

By using the similar method as in the proof ofTheorem 7,
one can similarly proveTheorem 9.

Theorem 9. Let 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Suppose that the
function 𝑓 given by (1) is in the class 𝐾(𝛼, 𝛽). Then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤

{{{{{

{{{{{

{

1

36
𝛽
2
(1 + 𝛼)

2
, 5𝛼𝛽 + 𝛽 − 2 ≤ 0,

1

576
𝛽
2
(1 + 𝛼)

2
[

(5𝛼𝛽 + 𝛽 − 2)
2

2 + 𝛽 (5𝛼 + 1) − 𝛽2 (1 − 𝛼) (2𝛼 + 1)
+ 16] , 5𝛼𝛽 + 𝛽 − 2 > 0.

(50)

The results are sharp, with the extremal function

𝑓
3
(𝑧) =

{{{

{{{

{

∫
𝑧

0

(1 − 𝛼𝛽𝜇
2
)
−(1+𝛼)/2𝛼

𝑑𝜇, 0 < 𝛼 ≤ 1,

∫
𝑧

0

𝑒
𝛽𝜇
2
/2
𝑑𝜇, 𝛼 = 0

(51)

for the case 5𝛼𝛽 + 𝛽 − 2 ≤ 0, and there is no extremal function
for the case 5𝛼𝛽 + 𝛽 − 2 > 0.

Setting𝛼 = 𝛽 = 1 inTheorem 9, one obtains the following
result due to Janteng et al. [27].

Corollary 10. If 𝑓(𝑧) ∈ 𝐾, then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤
1

8
. (52)

The result is sharp.

Theorem 11. Let 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Suppose that the
function 𝑓 given by (1) is in the class 𝑆∗

𝑠
(𝛼, 𝛽). Then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤
1

4
𝛽
2
(1 + 𝛼)

2
. (53)

The result is sharp, with the extremal function

𝑓
4
(𝑧) =

{{{{{{{

{{{{{{{

{

∫
𝑧

0

(1 − 𝛼𝛽𝜇
2
)
−(1+𝛼)/2𝛼

×(
1 + 𝛽𝜇

2

1 − 𝛼𝛽𝜇2
)𝑑𝜇, 0 < 𝛼 ≤ 1,

∫
𝑧

0

𝑒
𝛽𝜇
2
/2
(1 + 𝛽𝜇

2
) 𝑑𝜇, 𝛼 = 0.

(54)

Proof. Since𝑓 ∈ 𝑆
∗

𝑠
(𝛼, 𝛽), it follows from (14) that there exists

a Schwarz function 𝜔, which is analytic in U with 𝜔(0) = 0

and |𝜔(𝑧)| < 1 in U, such that

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
= 𝜙 (𝜔 (𝑧)) (𝑧 ∈ U) , (55)

where 𝜙 was defined by (31).
In view of (31), (33), and (55), we have

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)

= 𝜙 (𝜔 (𝑧))

= 𝜙(
1

2
𝑐
1
𝑧 +

1

2
(𝑐
2
−
𝑐
2

1

2
) 𝑧
2

+
1

2
(𝑐
3
− 𝑐
1
𝑐
2
+
𝑐
3

1

4
) 𝑧
3
+ ⋅ ⋅ ⋅ )

= 1 +
1

2
𝛽 (1 + 𝛼) 𝑐

1
𝑧

+ [
1

2
𝛽 (1 + 𝛼) (𝑐

2
−
1

2
𝑐
2

1
) +

1

4
𝛼𝛽
2
(1 + 𝛼) 𝑐

2

1
] 𝑧
2

+ [
1

2
𝛽 (1 + 𝛼) (𝑐

3
− 𝑐
1
𝑐
2
+
1

4
𝑐
3

1
)

+
1

2
𝛼𝛽
2
(1 + 𝛼) (𝑐

2
−
1

2
𝑐
2

1
) 𝑐
1

+
1

8
𝛼
2
𝛽
3
(1 + 𝛼) 𝑐

3

1
] 𝑧
3
+ ⋅ ⋅ ⋅ .

(56)
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Similarly,

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
= 2𝑎
2
𝑧 + 2𝑎

3
𝑧
2
+ 2 (2𝑎

4
− 𝑎
2
𝑎
3
) 𝑧
3
+ ⋅ ⋅ ⋅ .

(57)

Comparing the coefficients of 𝑧, 𝑧2, and 𝑧3 in (56) and (57),
we obtain

𝑎
2
=
1

4
𝛽 (1 + 𝛼) 𝑐

1
,

𝑎
3
=
1

4
𝛽 (1 + 𝛼) [(𝛼𝛽 − 1) 𝑐

2

1
+ 2𝑐
2
] ,

𝑎
4
=

1

64
𝛽 (1 + 𝛼)

× (2 − 4𝛼𝛽 + 3𝛼
2
𝛽
2
+ 𝛼𝛽
2
) 𝑐
3

1

+
1

32
𝛽 (1 + 𝛼) (5𝛼𝛽 + 𝛽 − 4) 𝑐

1
𝑐
2

+
1

8
𝛽 (1 + 𝛼) 𝑐

3
.

(58)

Thus we have

𝑎
2
𝑎
4
− 𝑎
2

3
= −

1

256
𝛽
2
(1 + 𝛼)

2

× [(𝛼
2
𝛽
2
− 𝛼𝛽
2
− 4𝛼𝛽 + 2) 𝑐

4

1

+ (6𝛼𝛽 − 2𝛽 − 8) 𝑐
2

1
𝑐
2
− 8𝑐
1
𝑐
3
+ 16𝑐
2

2
] ,

(59)

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
=

1

256
𝛽
2
(1 + 𝛼)

2

×
󵄨󵄨󵄨󵄨󵄨
(𝛼
2
𝛽
2
− 𝛼𝛽
2
− 4𝛼𝛽 + 2) 𝑐

4

1

+ (6𝛼𝛽 − 2𝛽 − 8) 𝑐
2

1
𝑐
2
− 8𝑐
1
𝑐
3
+ 16𝑐
2

2

󵄨󵄨󵄨󵄨󵄨
.

(60)

Since the functions 𝑝(𝑧) and 𝑝(𝑒𝑖𝜃𝑧) (𝜃 ∈ R) are members
of the class P simultaneously, we assume without loss of
generality that 𝑐

1
> 0. For convenience of notation, we take

𝑐
1
= 𝑐 (𝑐 ∈ [0, 2]). By substituting the values of 𝑐

2
and 𝑐
3
,

respectively, from (26) and (27) in (60), we have

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
=

1

256
𝛽
2
(1 + 𝛼)

2

×
󵄨󵄨󵄨󵄨󵄨
(𝛼
2
𝛽
2
− 𝛼𝛽
2
− 𝛼𝛽 − 𝛽) 𝑐

4

+ (3𝛼𝛽 − 𝛽 + 4) 𝑐
2
(4 − 𝑐

2
) 𝑥 + 2 (4 − 𝑐

2
)

× (8 − 𝑐
2
) 𝑥
2
− 4𝑐 (4 − 𝑐

2
) (1 − |𝑥|

2
) 𝑧
󵄨󵄨󵄨󵄨󵄨
.

(61)

Using the triangle inequality and |𝑧| < 1, we have

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤

1

256
𝛽
2
(1 + 𝛼)

2

× [(𝛽 + 𝛼𝛽 + 𝛼𝛽
2
− 𝛼
2
𝛽
2
) 𝑐
4

+ (3𝛼𝛽 − 𝛽 + 4) 𝑐
2
(4 − 𝑐

2
) |𝑥| + 2 (4 − 𝑐

2
)

× (8 − 𝑐
2
) |𝑥|
2
+ 4𝑐 (4 − 𝑐

2
) (1 − |𝑥|

2
)]

=
1

256
𝛽
2
(1 + 𝛼)

2

× [(𝛽 + 𝛼𝛽 + 𝛼𝛽
2
− 𝛼
2
𝛽
2
) 𝑐
4
+ 4𝑐 (4 − 𝑐

2
)

+ (4 + 3𝛼𝛽 − 𝛽) 𝑐
2
(4 − 𝑐

2
) |𝑥|

+2 (2 − 𝑐) (4 + 𝑐) (4 − 𝑐
2
) |𝑥|
2
]

= 𝐹 (𝑐, 𝜇) , (𝑠𝑎𝑦) ,

(62)

where 𝜇 = |𝑥| ≤ 1.
We next maximize the function 𝐹(𝑐, 𝜇) on the closed

square [0, 2] × [0, 1]. Differentiating 𝐹(𝑐, 𝜇) in (62) partially
with respect to 𝜇, we get

𝜕𝐹 (𝑐, 𝜇)

𝜕𝜇
=

1

256
𝛽
2
(1 + 𝛼)

2

× [(4 + 3𝛼𝛽 − 𝛽) 𝑐
2
(4 − 𝑐

2
)

+4 (2 − 𝑐) (4 + 𝑐) (4 − 𝑐
2
) 𝜇] .

(63)

For 0 < 𝜇 < 1 and for any fixed 𝑐 with 0 < 𝑐 < 2, from (63),
we observe that 𝜕𝐹(𝑐, 𝜇)/𝜕𝜇 > 0. Consequently, 𝐹(𝑐, 𝜇) is an
increasing function of𝜇 and hence it cannot have amaximum
value at any point in the interior of the closed square [0, 2] ×
[0, 1]. Moreover, for fixed 𝑐 ∈ [0, 2], we have

max
0≤𝜇≤1

𝐹 (𝑐, 𝜇) = 𝐹 (𝑐, 1) = 𝐺 (𝑐) (𝑠𝑎𝑦) . (64)

From the relations (62) and (64), upon simplification, we
obtain

𝐺 (𝑐) = 𝐹 (𝑐, 1)

=
1

256
𝛽
2
(1 + 𝛼)

2

× [(2𝛽 − 2𝛼𝛽 + 𝛼𝛽
2
− 𝛼
2
𝛽
2
− 2) 𝑐

4

+4 (3𝛼𝛽 − 𝛽 − 2) 𝑐
2
+ 64] .

(65)

Next, since

𝐺
󸀠
(𝑐) =

1

64
𝛽
2
(1 + 𝛼)

2
𝑐

× [(2𝛽 − 2𝛼𝛽 + 𝛼𝛽
2
− 𝛼
2
𝛽
2
− 2) 𝑐

2

+2 (3𝛼𝛽 − 𝛽 − 2) ] ,

(66)
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we get that 𝐺󸀠(𝑐) ≤ 0 for 0 < 𝑐 ≤ 2 and 𝐺(𝑐) has real critical
point at 𝑐 = 0. Therefore, the maximum of 𝐺(𝑐) occurs at
𝑐 = 0. Thus, the upper bound of 𝐹(𝑐, 𝜇) corresponds to 𝜇 = 1
and 𝑐 = 0. Hence,

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤
1

4
𝛽
2
(1 + 𝛼)

2
. (67)

Equality holds for the function

𝑓
4
(𝑧) =

{{{{{{{

{{{{{{{

{

∫
𝑧

0

(1 − 𝛼𝛽𝜇
2
)
−(1+𝛼)/2𝛼

×(
1 + 𝛽𝜇

2

1 − 𝛼𝛽𝜇2
)𝑑𝜇, 0 < 𝛼 ≤ 1,

∫
𝑧

0

𝑒
𝛽𝜇
2
/2
(1 + 𝛽𝜇

2
) 𝑑𝜇, 𝛼 = 0.

(68)

By calculating, we have

2𝑧𝑓
󸀠

4
(𝑧)

𝑓
4
(𝑧) − 𝑓

4
(−𝑧)

=
1 + 𝛽𝑧

2

1 − 𝛼𝛽𝑧2
≺

1 + 𝛽𝑧

1 − 𝛼𝛽𝑧
(69)

and 𝑎
2
= 0, 𝑎
3
= −(1/2)𝛽(1+𝛼), and 𝑎

4
= 0. So𝑓

4
(𝑧) ∈ 𝑆(𝛼, 𝛽)

and equality holds.This shows that the result is sharp, and the
proof of Theorem 11 is complete.

Setting 𝛼 = 𝛽 = 1 in Theorem 11, we obtain the following
result due to Janteng et al. [28].

Corollary 12. If 𝑓(𝑧) ∈ 𝑆∗
𝑠
, then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤ 1. (70)

The result is sharp, with the extremal function

𝑓
5
(𝑧) = ∫

𝑧

0

1 + 𝜇
2

(1 − 𝜇2)
2
𝑑𝜇. (71)

By using the similarmethod as in the proof ofTheorem 11,
one can similarly proveTheorem 13.

Theorem 13. Let 0 ≤ 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. Suppose that the
function 𝑓(𝑧) given by (1) is in the class 𝐾

𝑠
(𝛼, 𝛽). Then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤

1

36
𝛽
2
(1 + 𝛼)

2
. (72)

The result is sharp, with the extremal function

𝑓
6
(𝑧) =

{{{{{{{{{

{{{{{{{{{

{

∫
𝑧

0

1

𝜔
{∫
𝜔

0

(
2

2 − 𝛼𝛽𝜇2
)

(1+𝛼)/2𝛼

× (
2 + 𝛽𝜇

2

2 − 𝛼𝛽𝜇2
)𝑑𝜇}𝑑𝜔, 0 < 𝛼 ≤ 1,

∫
𝑧

0

1

𝜔
{∫
𝜔

0

𝑒
𝛽𝜇
2
/2
(1 +

𝛽𝜇
2

2
)𝑑𝜇}𝑑𝜔, 𝛼 = 0.

(73)

Setting 𝛼 = 𝛽 = 1 in Theorem 13, one obtains the
following result due to Janteng et al. [28].

Corollary 14. If 𝑓(𝑧) ∈ 𝐾
𝑠
, then

󵄨󵄨󵄨󵄨󵄨
𝑎
2
𝑎
4
− 𝑎
2

3

󵄨󵄨󵄨󵄨󵄨
≤
1

9
. (74)

The result is sharp, with the extremal function

𝑓
7
(𝑧) = 2∫

𝑧

0

1

𝜔
{∫
𝜔

0

2 + 𝜇
2

(2 − 𝜇2)
2
𝑑𝜇}𝑑𝜔. (75)
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