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We consider the fourth-order difference equation: Δ(𝑧(𝑘 + 1)Δ
3
𝑢(𝑘 − 1)) = 𝑤(𝑘)𝑓(𝑘, 𝑢(𝑘)), 𝑘 ∈ {1, 2, . . . , 𝑛 − 1} subject to the

boundary conditions: 𝑢(0) = 𝑢(𝑛 + 2) = ∑
𝑛+1

𝑖=1
𝑔(𝑖)𝑢(𝑖), 𝑎Δ2𝑢(0) − 𝑏𝑧(2)Δ3𝑢(0) = ∑

𝑛+1

𝑖=3
ℎ(𝑖)Δ
2
𝑢(𝑖 − 2), 𝑎Δ2𝑢(𝑛) − 𝑏𝑧(𝑛 + 1)Δ3𝑢(𝑛 −

1) = ∑
𝑛+1

𝑖=3
ℎ(𝑖)Δ
2
𝑢(𝑖 − 2), where 𝑎, 𝑏 > 0 and Δ𝑢(𝑘) = 𝑢(𝑘 + 1) − 𝑢(𝑘) for 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}, 𝑓 : {0, 1, . . . , 𝑛} × [0, +∞) →

[0, +∞) is continuous. ℎ(𝑖) is nonnegative 𝑖 ∈ {2, 3, . . . , 𝑛 + 2}; 𝑔(𝑖) is nonnegative for 𝑖 ∈ {0, 1, . . . , 𝑛}. Using fixed point theorem of
cone expansion and compression of norm type and Hölder’s inequality, various existence, multiplicity, and nonexistence results of
positive solutions for above problem are derived, which extends and improves some known recent results.

1. Introduction

Boundary value problems (BVPs) for ordinary differential
equations arise in different areas of applied mathematics and
so on.The existence of solutions for second order and higher
order nonlocal boundary value problems has been studied
by several authors; for example, see [1–11] and the references
therein. Many authors have also discussed the existence of
positive solutions for higher order difference equation BVPs
[12, 13], by using fixed point theorem of cone expansion
and compression of norm type, sufficient conditions for the
existence of positive solutions for fourth-order and third-
order difference equation BVPs are established, respectively.
Recently, there has been much attention on the existence of
positive solutions for the fourth-order differential equations
with integral boundary conditions [14–17]. In [17], Zhang and
Ge considered the differential equation BVP:

(𝑢 (𝑡) 𝑥
󸀠󸀠󸀠
(𝑡))
󸀠

= 𝑤 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = ∫

1

0

𝑔 (𝑠) 𝑥 (𝑠) 𝑑𝑠,

𝑎𝑥
󸀠󸀠
(0) − 𝑏 lim

𝑡→0
+

𝑢 (𝑡) 𝑥
󸀠󸀠󸀠
(0) = ∫

1

0

ℎ (𝑠) 𝑥
󸀠󸀠
(𝑠) 𝑑𝑠,

𝑎𝑥
󸀠󸀠
(1) + 𝑏 lim

𝑡→1
−

𝑢 (𝑡) 𝑥
󸀠󸀠󸀠
(1) = ∫

1

0

ℎ (𝑠) 𝑥
󸀠󸀠
(𝑠) 𝑑𝑠,

(1)

where 𝑎, 𝑏 > 0, 𝑢 ∈ 𝐶
1
([0, 1] → [0, +∞)) is symmetric on

[0, 1],𝑤 ∈ 𝐿
𝑝
[0, 1] for some 1 ≤ 𝑝 ≤ +∞, and it is symmetric

on the interval [0, 1], 𝑓 : [0, 1] × [0, +∞) → [0, +∞) is
continuous, and 𝑓(1 − 𝑡, 𝑥) = 𝑓(𝑡, 𝑥) for all (𝑡, 𝑥) ∈ [0, 1] ×

[0, +∞), and 𝑔, ℎ ∈ 𝐿
1
[0, 1] are nonnegative, symmetric

on [0, 1]. The authors made use of fixed point theorem of
cone expansion and compression of norm type and Hölder
inequality to prove the existence of positive solutions for the
above problem.

Motivated by the above works, we intend to study the
existence and nonexistence of positive solutions of the fol-
lowing fourth-order difference BVPwith sum formboundary
conditions:

Δ (𝑧 (𝑘 + 1) Δ
3
𝑢 (𝑘 − 1)) = 𝑤 (𝑘) 𝑓 (𝑘, 𝑢 (𝑘)) ,

𝑘 ∈ {1, 2, . . . , 𝑛 − 1} ,
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𝑢 (0) = 𝑢 (𝑛 + 2) =

𝑛+1

∑

𝑖=1

𝑔 (𝑖) 𝑢 (𝑖) ,

𝑎Δ
2
𝑢 (0) − 𝑏𝑧 (2) Δ

3
𝑢 (0) =

𝑛+1

∑

𝑖=3

ℎ (𝑖) Δ
2
𝑢 (𝑖 − 2) ,

𝑎Δ
2
𝑢 (𝑛) + 𝑏𝑧 (𝑛 + 1) Δ

3
𝑢 (𝑛 − 1) =

𝑛+1

∑

𝑖=3

ℎ (𝑖) Δ
2
𝑢 (𝑖 − 2) .

(2)

Throughout this paper, we make the following assump-
tions:

(𝐴
0
) 𝑧 is symmetric on {2, 3, . . . , 𝑛+1} and 0 < ∑𝑛+1

𝑘=2
𝑧(𝑘) <

+∞;

(𝐴
1
) there is a 𝑚 > 0 such that 𝑤(𝑘) ≥ 𝑚/(𝑛 − 1) for 1 ≤
𝑝 ≤ +∞;

(𝐴
2
) 𝑓 : {0, 1, . . . , 𝑛} × [0, +∞) → [0, +∞) is continuous;

(𝐴
3
) ℎ(𝑖) is nonnegative on {2, 3, . . . , 𝑛 + 2} and 0 ≤ V <

𝑎, 𝑔(𝑖) is nonnegative on {0, 1, . . . , 𝑛+2} and 0 ≤ 𝜇 <

1, where V = ∑𝑛+1
𝑖=3

ℎ(𝑖), 𝜇 = ∑𝑛+1
𝑖=1

𝑔(𝑖);

(𝐴
4
) 𝑎, 𝑏 > 0, 𝑄 = 2𝑎𝑏 + 𝑎

2
∑
𝑛+1

𝑗=2
(1/𝑧(𝑗)) > 0.

In order to establish the existence of positive solutions of
the problem (2), we need the following definitions, theorem,
and lemma.

Definition 1. A function 𝑥(𝑡) is said to be a solution of
problem (2) if 𝑥(𝑡) satisfying BVP (2).

Definition 2 (see [18]). Let 𝐸 be a real Banach space over R.
A nonempty closed set 𝑃 ⊂ 𝐸 is said to be a cone provided
that

(i) 𝑎𝑢 + 𝑏V ∈ 𝑃 for all 𝑢, V ∈ 𝑃 and all 𝑎 ≥ 0, 𝑏 ≥ 0 and

(ii) 𝑢, −𝑢 ∈ 𝑃 implies 𝑢 = 0.

Every cone 𝑃 ⊂ 𝐸 induces an ordering in 𝐸 given by 𝑥 ≤
𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃.

Theorem 3 (see [18]). Let 𝑃 be a cone in a real Banach
space 𝐸. Assume that Ω

1
, Ω
2
are bounded open sets in 𝐸 with

0 ∈ Ω
1
, Ω
1
⊂ Ω
2
. If

𝐴 : 𝑃 ∩ (Ω
2
\ Ω
1
) 󳨀→ 𝑃 (3)

is completely continuous such that either

(i) ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω
1
and ‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈

𝑃 ∩ 𝜕Ω
2
,

or

(ii) ‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω
1
and ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈

𝑃 ∩ 𝜕Ω
2
,

then 𝐴 has at least one fixed point in 𝑃 ∩ (Ω
2
\ Ω
1
).

Lemma 4 (Hölder). Suppose that 𝑢 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
} is a

real-valued column; let

‖𝑢‖𝑝 =

{{{{

{{{{

{

(

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

, 0 < 𝑝 < ∞,

sup
𝑘∈{1,2,...,𝑛}

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨 , 𝑝 = ∞,

(4)

𝑝, 𝑞 satisfy the condition 1/𝑝 + 1/𝑞 = 1 which are called
conjugate exponent, and 𝑞 = ∞ for 𝑝 = 1. If 1 ≤ 𝑝 ≤ ∞,
then

‖𝑢V‖1 ≤ ‖𝑢‖𝑝‖V‖𝑞, (5)

which can be recorded as

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑢𝑘V𝑘
󵄨󵄨󵄨󵄨 ≤

{{{{{{{{{{{

{{{{{{{{{{{

{

(

𝑛

∑

𝑘=1

|𝑢
𝑘
|
𝑝
)

1/𝑝

(

𝑛

∑

𝑘=1

|V
𝑘
|
𝑞
)

1/𝑞

, 1 < 𝑝 < ∞,

(

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨)( sup
𝑘∈{1,2,...,𝑛}

󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨) , 𝑝 = 1,

( sup
𝑘∈{1,2,...,𝑛}

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨)(

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨) , 𝑝 = ∞.

(6)

2. Preliminaries

Let 𝐽 = {0, 1, . . . , 𝑛+2}; 𝐸 = {𝑢(𝑘) : {0, 1, . . . , 𝑛+2} → R} is
a real Banach space with the norm ‖ ⋅ ‖ defined by

‖𝑢‖ = max
𝑘∈𝐽

|𝑢 (𝑘)| . (7)

Let 𝐾 be a cone of 𝐸, and

𝐾
𝑟
= {𝑢 ∈ 𝐾 : ‖𝑢‖ ≤ 𝑟} ,

𝜕𝐾
𝑟
= {𝑢 ∈ 𝐾 : ‖𝑢‖ = 𝑟} ,

𝐾
𝑟,𝑅

= {𝑢 ∈ 𝐾 : 𝑟 ≤ ‖𝑢‖ ≤ 𝑅} ,

(8)

where 0 < 𝑟 < 𝑅.
In our main results, we will use the following lemmas and

properties.

Lemma 5. Suppose that (𝐴
0
) and (𝐴

1
) hold and V ̸= 1; then,

for all 𝑦 ∈ 𝐸, the BVP

−Δ (𝑧 (𝑘 + 1) Δ𝑢 (𝑘 + 1)) = 𝑦 (𝑘 + 2) , 𝑘 ∈ {1, 2, . . . , 𝑛 + 1} ,

𝑎𝑢 (2) − 𝑏𝑧 (2) Δ𝑢 (2) =

𝑛+1

∑

𝑖=3

ℎ (𝑖) 𝑢 (𝑖) ,

𝑎𝑢 (𝑛 + 2) + 𝑏𝑧 (𝑛 + 1) Δ𝑢 (𝑛 + 1) =

𝑛+1

∑

𝑖=3

ℎ (𝑖) 𝑢 (𝑖)

(9)

has unique solution 𝑢 given by

𝑢 (𝑘) =

𝑛+1

∑

𝑖=3

𝐻(𝑘, 𝑖) 𝑦 (𝑖) , (10)
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where

𝐻(𝑘, 𝑖) = 𝐺 (𝑘, 𝑖) +
1

𝑎 − V

𝑛+1

∑

𝜏=3

𝐺 (𝑖, 𝜏) ℎ (𝜏) ,

𝐺 (𝑘, 𝑖)

=
1

𝑄

{{{{{{

{{{{{{

{

(𝑏 + 𝑎

𝑛+1

∑

𝑗=𝑘

1

𝑧 (𝑗)
)(𝑏 + 𝑎

𝑖−1

∑

𝑗=2

1

𝑧 (𝑗)
) , 2 ≤ 𝑖 < 𝑘,

(𝑏 + 𝑎

𝑛+1

∑

𝑗=𝑖

1

𝑧 (𝑗)
)(𝑏 + 𝑎

𝑘−1

∑

𝑗=2

1

𝑧 (𝑗)
) , 𝑘 ≤ 𝑖 ≤ 𝑛 + 2,

(11)

where 𝑄 = 2𝑎𝑏 + 𝑎
2
∑
𝑛+1

𝑗=2
(1/𝑧(𝑗)), V = ∑𝑛+1

𝑖=3
ℎ(𝑖).

Proposition 6. Assume that 0 ≤ V < 𝑎; then

𝐻(𝑘, 𝑖) > 0, 𝐺 (𝑘, 𝑖) > 0, 𝑘, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2} . (12)

Proposition 7. Assume that 𝑘, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2}; then

1

𝑄
𝑏
2
≤ 𝐺 (𝑘, 𝑖) ≤ 𝐺 (𝑖, 𝑖) ≤

1

𝑄
𝐷,

𝐺 (𝑛 + 4 − 𝑘, 𝑛 + 4 − 𝑖) = 𝐺 (𝑘, 𝑖) ,

(13)

where

𝐷 = (𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧(𝑗)
)

2

, 𝑘, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2} . (14)

Proposition 8. Suppose that 0 ≤ V < 𝑎; then

1

𝑄
V𝑏2𝛾 < 𝐻 (𝑘, 𝑖) ≤ 𝐻 (𝑖, 𝑖) ≤

1

𝑄
𝛾𝐷𝑎,

𝑘, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2} ,

(15)

where

𝐷 = (𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

, 𝛾 =
1

𝑎 − V
,

𝑘, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2} .

(16)

Proof. From Lemma 5 and Proposition 7, we have

𝐻(𝑘, 𝑖) = 𝐺 (𝑘, 𝑖) +
1

𝑎 − V

𝑛+1

∑

𝜏=3

𝐺 (𝑖, 𝜏) ℎ (𝜏)

>
1

𝑎 − V

𝑛+1

∑

𝜏=3

𝐺 (𝑖, 𝜏) ℎ (𝜏)

≥
1

𝑎 − V
1

𝑄
𝑏
2

𝑛+1

∑

𝜏=3

ℎ (𝜏)

=
1

𝑄
𝛾𝑏
2V.

(17)

On the other hand, using 𝐺(𝑘, 𝑖) ≤ 𝐺(𝑖, 𝑖) ≤ (1/𝑄)𝐷, we
get

𝐻(𝑘, 𝑖) = 𝐺 (𝑘, 𝑖) +
1

𝑎 − V

𝑛+1

∑

𝜏=3

𝐺 (𝑖, 𝜏) ℎ (𝜏)

≤ 𝐺 (𝑖, 𝑖) +
1

𝑎 − V

𝑛+1

∑

𝜏=3

𝐺 (𝑖, 𝜏) ℎ (𝜏)

≤
1

𝑄
𝐷 +

1

𝑄
𝐷

1

𝑎 − V

𝑛+1

∑

𝜏=3

ℎ (𝜏)

≤
1

𝑄
𝐷(1 +

V
𝑎 − V

)

=
1

𝑄
𝐷𝑎𝛾.

(18)

Lemma 9. Suppose that 𝜇 ̸= 1, for all 𝑦 ∈ 𝐸; the BVP

−Δ
2
𝑢 (𝑘 − 1) = 𝑦 (𝑘) , 𝑘 ∈ {1, 2, . . . , 𝑛 + 1} ,

𝑢 (0) = 𝑢 (𝑛 + 2) =

𝑛+1

∑

𝑖=1

𝑔 (𝑖) 𝑢 (𝑖)

(19)

has unique solution 𝑢 given by

𝑢 (𝑘) =

𝑛+1

∑

𝑖=1

𝐻
1
(𝑘, 𝑖) 𝑦 (𝑖) , (20)

where

𝐻
1
(𝑘, 𝑖) = 𝐺

1
(𝑘, 𝑖) +

1

1 − 𝜇

𝑛+1

∑

𝜏=1

𝐺
1
(𝜏, 𝑖) 𝑔 (𝜏) ,

𝐺
1 (𝑘, 𝑖) =

{{{

{{{

{

𝑖

𝑛 + 2
(𝑛 + 2 − 𝑘) , 0 ≤ 𝑖 < 𝑘,

𝑘

𝑛 + 2
(𝑛 + 2 − 𝑖) , 𝑘 ≤ 𝑖 < 𝑛 + 2.

(21)

Proof. From the properties of difference operator, we can get

−Δ𝑢 (𝑘) + Δ𝑢 (𝑘 − 1) = 𝑦 (𝑘) ; (22)

then we have
−Δ𝑢 (1) + Δ𝑢 (0) = 𝑦 (1) ,

−Δ𝑢 (2) + Δ𝑢 (1) = 𝑦 (2) ,

−Δ𝑢 (3) + Δ𝑢 (2) = 𝑦 (3) ,

...

−Δ𝑢 (𝑘 − 1) + Δ𝑢 (𝑘 − 2) = 𝑦 (𝑘 − 1) .

(23)

It can imply that

−Δ𝑢 (𝑘 − 1) + Δ𝑢 (0) =

𝑘−1

∑

𝑖=1

𝑦 (𝑖) . (24)
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Let Δ𝑢(0) = 𝐴; we have

−Δ𝑢 (𝑘 − 1) = 𝐴 −

𝑘−1

∑

𝑖=1

𝑦 (𝑖) . (25)

That is

𝑢 (𝑘) − 𝑢 (𝑘 − 1) = 𝐴 −

𝑘−1

∑

𝑖=1

𝑦 (𝑖) ; (26)

thus,

𝑢 (1) − 𝑢 (0) = 𝐴,

𝑢 (2) − 𝑢 (1) = 𝐴 −

1

∑

𝑖=1

𝑦 (𝑖) ,

𝑢 (3) − 𝑢 (2) = 𝐴 −

2

∑

𝑖=1

𝑦 (𝑖) ,

...

𝑢 (𝑘) − 𝑢 (𝑘 − 1) = 𝐴 −

𝑘−1

∑

𝑖=1

𝑦 (𝑖) .

(27)

We can get

𝑢 (𝑘) = 𝑢 (0) + 𝑘𝐴 −

𝑘−1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖) ,

𝑢 (𝑛 + 2) = 𝑢 (0) + (𝑛 + 2)𝐴 −

𝑛+1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖) .

(28)

From the boundary conditions, we have

𝐴 =
1

𝑛 + 2

𝑛+1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖) ; (29)

thus,

𝑢 (𝑘) =

𝑛+1

∑

𝑖=1

𝑔 (𝑖) 𝑢 (𝑖) +
𝑘

𝑛 + 2

𝑛+1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖)

−

𝑘−1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖) .

(30)

Because

𝑘

𝑛 + 2

𝑛+1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖)

=
𝑘

𝑛 + 2

× [𝑦 (1) + (𝑦 (1) + 𝑦 (2))

+ (𝑦 (1) + 𝑦 (2) + 𝑦 (3))

+ ⋅ ⋅ ⋅ + (𝑦 (1) + 𝑦 (2) + ⋅ ⋅ ⋅ + 𝑦 (𝑛 + 1))]

=
𝑘

𝑛 + 2
[(𝑛 + 1) 𝑦 (1) + 𝑛𝑦 (2)

+ (𝑛 − 1) 𝑦 (3) + ⋅ ⋅ ⋅ + 𝑦 (𝑛 + 1)]

=
𝑘

𝑛 + 2
(𝑛 + 1) 𝑦 (1) +

𝑘

𝑛 + 2
𝑛𝑦 (2)

+ ⋅ ⋅ ⋅ +
𝑘

𝑛 + 2
𝑦 (𝑛 + 1) ,

𝑘−1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖) = 𝑦 (1) + (𝑦 (1) + 𝑦 (2))

+ ⋅ ⋅ ⋅ + (𝑦 (1) + 𝑦 (2) + ⋅ ⋅ ⋅ + 𝑦 (𝑘 − 1))

= (𝑘 − 1) 𝑦 (1) + (𝑘 − 2) 𝑦 (2) + ⋅ ⋅ ⋅ + 𝑦 (𝑘 − 1) ,

(31)

we have

𝑘

𝑛 + 2

𝑛+1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖) −

𝑘−1

∑

𝑗=1

𝑗

∑

𝑖=1

𝑦 (𝑖)

= [
𝑘 (𝑛 + 1)

𝑛 + 2
− (𝑘 − 1)] 𝑦 (1)

+ [
𝑘𝑛

𝑛 + 2
− (𝑘 − 2)] 𝑦 (2)

+ ⋅ ⋅ ⋅ + [
𝑘

𝑛 + 2
(𝑛 − 𝑘 + 3) − 1] 𝑦 (𝑘 − 1)

+ [
𝑘

𝑛 + 2
(𝑛 − 𝑘 + 2)] 𝑦 (𝑘) + ⋅ ⋅ ⋅ +

𝑘

𝑛 + 2
𝑦 (𝑛 + 1) .

(32)

Thus, we get

𝑢 (𝑘) =

𝑛+1

∑

𝑖=1

𝑔 (𝑖) 𝑢 (𝑖) +

𝑛+1

∑

𝑖=1

𝐺
1
(𝑘, 𝑖) 𝑦 (𝑖) , (33)

where

𝐺
1
(𝑘, 𝑖) =

{{{

{{{

{

𝑖

𝑛 + 2
(𝑛 + 2 − 𝑘) , 0 ≤ 𝑖 < 𝑘,

𝑘

𝑛 + 2
(𝑛 + 2 − 𝑖) , 𝑘 ≤ 𝑖 < 𝑛 + 2.

(34)

Multiplying the above equation with 𝑔(𝑘), summing
them from 1 to 𝑛 + 1, we have

𝑛+1

∑

𝑘=1

𝑔 (𝑘) 𝑢 (𝑘) =

𝑛+1

∑

𝑘=1

𝑔 (𝑘)

𝑛+1

∑

𝑖=1

𝑔 (𝑖) 𝑢 (𝑖)

+

𝑛+1

∑

𝑘=1

𝑔 (𝑘)

𝑛+1

∑

𝑖=1

𝐺
1
(𝑘, 𝑖) 𝑦 (𝑖) ,

𝑛+1

∑

𝑖=1

𝑔 (𝑖) 𝑢 (𝑖) =
1

1 − ∑
𝑛+1

𝑘=1
𝑔 (𝑘)

𝑛+1

∑

𝑘=1

𝑔 (𝑘)

𝑛+1

∑

𝑖=1

𝐺
1 (𝑘, 𝑖) 𝑦 (𝑖) .

(35)
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So, we can get

𝑢 (𝑘) =

𝑛+1

∑

𝑖=1

𝐺
1
(𝑘, 𝑖) 𝑦 (𝑖)

+
1

1 − ∑
𝑛+1

𝑘=1
𝑔 (𝑘)

𝑛+1

∑

𝑘=1

𝑔 (𝑘)

𝑛+1

∑

𝑖=1

𝐺
1 (𝑘, 𝑖) 𝑦 (𝑖)

=

𝑛+1

∑

𝑖=1

𝐻
1
(𝑘, 𝑖) 𝑦 (𝑖) .

(36)

Proposition 10. Assume that 0 ≤ 𝜇 < 1; then

𝐻
1
(𝑘, 𝑖) > 0, 𝐺

1
(𝑘, 𝑖) > 0,

𝑘, 𝑖 ∈ {1, 2, . . . , 𝑛 + 1} ,

𝐻
1
(𝑘, 𝑖) ≥ 0, 𝐺

1
(𝑘, 𝑖) ≥ 0,

𝑘, 𝑖 ∈ 𝐽.

(37)

Proposition 11. For 𝑘, 𝑖 ∈ 𝐽, one has
1

𝑛 + 2
𝑒 (𝑖) 𝑒 (𝑘) ≤ 𝐺1 (𝑘, 𝑖) ≤ 𝐺1 (𝑖, 𝑖)

= 𝑖 (1 −
𝑖

𝑛 + 2
) = 𝑒 (𝑖) ≤

𝑛 + 2

4
,

𝐺
1
(𝑛 + 2 − 𝑘, 𝑛 + 2 − 𝑖) = 𝐺

1
(𝑘, 𝑖) ,

(38)

where 𝑒(𝑖) = (𝑖/(𝑛 + 2))(𝑛 + 2 − 𝑖).

Proposition 12. If 0 ≤ 𝜇 < 1, then, for all 𝑘, 𝑖 ∈ 𝐽, one has

𝜌𝑒 (𝑖) ≤ 𝐻
1
(𝑘, 𝑖) ≤ 𝐻

1
(𝑖, 𝑖) ≤ 𝛾

∗ 𝑖

𝑛 + 2
(𝑛 + 2 − 𝑖)

≤
𝑛 + 2

4
𝛾
∗
,

(39)

where 𝛾∗ = 1/(1 − 𝜇), 𝜌 = ∑𝑛+1
𝜏=1

𝑒(𝜏)𝑔(𝜏)/(𝑛 + 2)(1 − 𝜇).

We construct a cone on 𝐸 by

𝐾 = {𝑢 ∈ 𝐸 : 𝑢 ≥ 0, Δ
2
𝑢 (𝑘) ≤ 0 on

{0, 1, . . . , 𝑛} , and min
𝑘∈𝐽

𝑢 (𝑘) ≥ 𝛿
∗ ‖𝑢‖} ,

(40)

where

𝛿
∗
=

2 (𝑛 + 3) V𝑏2𝜌

3 (𝑛 + 2) 𝛾
∗𝑎(𝑏 + 𝑎∑

𝑛+1

𝑗=2
(1/𝑧 (𝑗)))

2
. (41)

Obviously, 𝐾 is a closed convex cone of 𝐸.
Define an operator 𝑇 : 𝐸 → 𝐸 as

(𝑇𝑢) (𝑘)

=

𝑛+1

∑

𝜏=1

𝐻
1
(𝑘, 𝜏)

𝑛+1

∑

𝑖=3

𝐻(𝜏 + 1, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2)) .

(42)

Let

Ψ (𝑘, 𝑖) =

𝑛+1

∑

𝜏=1

𝐻
1
(𝑘, 𝜏)𝐻 (𝜏 + 1, 𝑖) . (43)

Then we can obtain the following properties.

Proposition 13. If (𝐴
3
) and (𝐴

4
) hold, then

0 < Ψ (𝑘, 𝑖) ≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
𝐻 (𝑖, 𝑖) ,

𝑘 ∈ 𝐽, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2} .

(44)

Proposition 14. If (𝐴
3
) and (𝐴

4
) hold, then, for all 𝑘 ∈

𝐽, 𝑖 ∈ {2, 3, . . . , 𝑛 + 2}, one has

(𝑛 + 1) (𝑛 + 3)

6𝑄
V𝑏2𝛾𝜌

< Ψ (𝑘, 𝑖) ≤
(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎.

(45)

Lemma 15. Suppose that (𝐴
0
)–(𝐴
4
) hold; if 𝑢 ∈ 𝐸 is a solu-

tion of the equation

𝑢 (𝑘) = (𝑇𝑢) (𝑘) =

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2)) ,

(46)

then 𝑢 is a solution of the BVP (2).

Lemma 16. Assume that (𝐴
0
)–(𝐴
4
) hold; then 𝑇(𝐾) ⊂ 𝐾

and 𝑇 : 𝐾 → 𝐾 is completely continuous.

Proof. From above works, for all 𝑢 ∈ 𝐾, we have

Δ
2
(𝑇𝑢) (𝑘 − 1)

= −

𝑛+1

∑

𝑖=3

𝐻(𝑘 + 1, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 1)) ≤ 0,

𝑘 ∈ {1, 2, . . . , 𝑛 + 1} .

(47)

Because

(𝑇𝑢) (0) = (𝑇𝑢) (𝑛 + 2)

=

𝑛+1

∑

𝜏=1

𝐻
1 (0, 𝜏)

×

𝑛+1

∑

𝑖=3

𝐻(𝜏 + 1, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))
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=

𝑛+1

∑

𝜏=1

𝐻
1 (𝑛 + 2, 𝜏)

×

𝑛+1

∑

𝑖=3

𝐻(𝜏 + 1, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

=

𝑛+1

∑

𝜏=1

1

1 − 𝜇

𝑛+1

∑

𝑗=1

𝐺
1
(𝑗, 𝜏) 𝐺 (𝑗)

×

𝑛+1

∑

𝑖=3

𝐻(𝜏 + 1, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥ 0.

(48)

That is to say (𝑇𝑢)(𝑘) ≥ 0 for 𝑘 ∈ 𝐽.
On the other hand, for 𝑘 ∈ 𝐽, we have

(𝑇𝑢) (𝑘) =

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤
(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

× 𝑎

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2)) .

(49)

Similarly, we can get

(𝑇𝑢) (𝑘) =

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥
(𝑛 + 2) (𝑛 + 1)

6𝑄
V𝑏2𝛾𝜌

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

= 𝛿
∗

(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

× 𝑎

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥ 𝛿
∗ ‖𝑇𝑢‖ , 𝑘 ∈ 𝐽.

(50)

So, 𝑇𝑢 ∈ 𝐾 and 𝑇(𝐾) ⊂ 𝐾. It is easy to see that 𝑇 : 𝐾 →

𝐾 is completely continuous.

3. The Existence of One Positive Solution

In this part, we apply Theorem 3 and Lemma 4 to prove
the existence of one positive solution for BVP (2). We need
consider the following cases for: 𝑝 > 1, 𝑝 = 1, and 𝑝 = ∞.

Let

𝑓
𝛽
= lim
𝑛→𝛽

supmax
𝑘∈𝐽

𝑓 (𝑘, 𝑢)

𝑢
, 𝑓

𝛽
= lim
𝑢→𝛽

inf min
𝑘∈𝐽

𝑓 (𝑘, 𝑢)

𝑢
,

(51)

where 𝛽 denotes 0 or ∞, and

𝐵 = max
{

{

{

(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
(

𝑛+1

∑

𝑖=3

|𝐻|
𝑝
)

1/𝑝

(

𝑛+1

∑

𝑖=3

|𝑤|
𝑞
)

1/𝑞

,

(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾𝛾
∗
𝑎

× (𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)(

𝑛+1

∑

𝑖=3

|𝑤|)
}

}

}

,

𝜂 = [

[

(𝑛 + 2)(𝑛 + 1)𝛾𝛾
∗
(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧(𝑗)
)

2

𝑎]

]

−1

.

(52)

Remark 17. If we only consider the case 𝑝 = ∞, then we can
take

𝐵 =
(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧(𝑗)
)

2

(

𝑛+1

∑

𝑖=3

|𝑤|) . (53)

Firstly, the following theorem deals with the case 𝑝 > 1.

Theorem 18. Suppose that (𝐴
0
)–(𝐴
4
) hold. If there exist two

constants 𝑟, 𝑅 with 0 < 𝑟 < 𝛿
∗
𝑅 such that

(𝐶
1
) 𝑓(𝑘, 𝑢) ≤ 𝐵

−1
𝑟 for all (𝑘, 𝑢) ∈ 𝐽 × [𝛿

∗
𝑟, 𝑟] and

𝑓(𝑘, 𝑢) ≥ (4𝜂/𝑚𝛿
∗
)𝑄𝑅 for all (𝑘, 𝑢) ∈ 𝐽 × [𝛿

∗
𝑅, 𝑅];

or
(𝐶
2
) 𝑓(𝑘, 𝑢) ≥ (4𝜂/𝑚𝛿

∗
)𝑄𝑅 for all (𝑘, 𝑢) ∈ 𝐽 × [𝛿

∗
𝑟, 𝑟] and

𝑓(𝑘, 𝑢) ≤ 𝐵
−1
𝑅 for all (𝑘, 𝑢) ∈ 𝐽 × [𝛿

∗
𝑅, 𝑅], then BVP

(2) has at least one positive solution.

Proof. We only consider condition (𝐶
1
). For 𝑢 ∈ 𝐾, from the

definition of 𝐾 we obtain that

min
𝑘∈𝐽

𝑢 (𝑘) ≥ 𝛿∗ ‖𝑢‖ . (54)

So, for 𝑢 ∈ 𝜕𝐾
𝑟
, we have 𝑢(𝑘) ∈ [𝛿

∗
𝑟, 𝑟], which implies

that 𝑓(𝑘, 𝑢(𝑘)) ≤ 𝐵−1𝛾. Thus, for 𝑘 ∈ 𝐽, from (𝐶
1
) we get

(𝑇𝑢) (𝑘) =

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
𝐵
−1
𝛾

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2)

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
(

𝑛+1

∑

𝑖=3

|𝐻|
𝑝
)

1/𝑝

(

𝑛+1

∑

𝑖=3

|𝑤|
𝑞
)

1/𝑞

𝐵
−1
𝛾

= 𝑟 = ‖𝑢‖ ;

(55)

that is, 𝑢 ∈ 𝜕𝐾
𝑟
implies that

‖𝑇𝑢‖ ≤ ‖𝑢‖ . (56)
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On the other hand, for 𝑢 ∈ 𝜕𝐾
𝑅
, we have 𝑢(𝑘) ∈ [𝛿

∗
𝑅, 𝑅],

which implies that 𝑓(𝑘, 𝑢(𝑘)) ≥ (4𝜂/𝑚𝛿
∗
)𝑄𝑅; therefore

for 𝑘 ∈ 𝐽, from (𝐶
1
) we have

(𝑇𝑢) (𝑘) =

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥
(𝑛 + 1) (𝑛 + 3)

6𝑄
V𝑏2𝛾𝜌

4𝜂

𝑚𝛿
∗

𝑄𝑅

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2)

≥ 𝛿
∗

(𝑛 + 1) (𝑛 + 2)

4𝑄
𝛾
∗
𝛾

× (𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎
4𝜂

𝑚𝛿
∗

𝑄𝑅𝑚

= 𝑅 = ‖𝑢‖ ;

(57)

that is, 𝑢 ∈ 𝜕𝐾
𝑅
implies that

‖𝑇𝑢‖ ≥ ‖𝑢‖ . (58)

From the above works, we apply (i) of Theorem 3 to
yield that 𝑇 has a fixed point 𝑢∗ ∈ 𝐾

𝑟,𝑅
, 𝑟 ≤ ‖𝑢

∗
‖ ≤

𝑅 and 𝑢
∗
(𝑘) ≥ 𝛿

∗
‖𝑢
∗
‖ > 0, 𝑘 ∈ 𝐽. Thus, it follows that BVP

(2) has at least one positive solution 𝑢
∗.

The following theorem deals with the case 𝑝 = 1.

Theorem 19. Suppose that (𝐴
0
)–(𝐴
4
) hold and (𝐶

1
) or (𝐶

2
)

holds. Then BVP (2) has at least one positive solution.

Proof. Let (∑𝑛+1
𝑖=3

|𝐻(𝑖, 𝑖)|)(sup
𝑖∈{3,4,...,𝑛+1}

|𝑤(𝑖 − 2)|) replace
(∑
𝑛+1

𝑖=3
|𝐻(𝑖, 𝑖)|

𝑝
)
1/𝑝

(∑
𝑛+1

𝑖=3
|𝑤(𝑖 − 2)|

𝑞
)
1/𝑞

and repeat the argu-
ment of Theorem 18.

Finally we consider the case 𝑝 = ∞.

Theorem 20. Suppose that (𝐴
0
)–(𝐴
4
) hold and (𝐶

1
) or (𝐶

2
)

holds. Then BVP (2) has at least one positive solution.

Proof. Similar to the proof of Theorem 18, for 𝑥 ∈ 𝜕𝐾
𝑟
, we

have

(𝑇𝑢) (𝑘)

=

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤
(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎𝐵
−1
𝑟

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2)

≤
(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎𝐵
−1
𝑟

𝑛+1

∑

𝑖=3

|𝑤|

≤ 𝑟 = ‖𝑢‖ .

(59)

So, for 𝑥 ∈ 𝜕𝐾
𝑟
, we have ‖𝑇𝑢‖ ≤ ‖𝑢‖. And from the proof

of Theorem 18, ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑘 ∈ 𝐽 for 𝑢 ∈ 𝜕𝐾
𝑅
. Thus

Theorem 20 is proved.

Theorem 21. Assume that (𝐴
0
)–(𝐴
4
) hold. If one of the

following conditions is satisfied

(𝐶
3
) 𝑓
0
> 4𝜂𝑄/𝑚𝛿

∗
and 𝑓∞ < 1/𝐵 (particularly, 𝑓

0
= ∞

and 𝑓∞ = 0);
(𝐶
4
) 𝑓
0
< 1/𝐵 and 𝑓

∞
> 4𝜂𝑄/𝑚𝛿

2

∗
(particularly, 𝑓0 = 0

and 𝑓
∞
= ∞),

then BVP (2) has at least one positive solution.

Proof. We only consider the case (𝐶
3
). The proof of case (𝐶

4
)

is similar to case (𝐶
3
). Considering 𝑓

0
> 4𝜂𝑄/𝑚𝛿

2

∗
, there

exists 𝑟
1
> 0 such that 𝑓(𝑘, 𝑢) ≥ (𝑓

0
− 𝜀
1
)𝑢 for 𝑘 ∈ 𝐽,

𝑢 ∈ [0, 𝑟
1
], where 𝜀

1
> 0 satisfies 𝑓

0
− 𝜀
1
≥ 4𝜂𝑄/𝑚𝛿

2

∗
. Then,

for 𝑘 ∈ 𝐽, 𝑢 ∈ 𝜕𝐾
𝑟
1

, from (𝐶
3
) we have

(𝑇𝑢) (𝑘)

=

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥
(𝑛 + 1) (𝑛 + 3)

6𝑄
V𝑏2𝛾𝜌

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥ 𝛿
2

∗

(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎 (𝑓
0
− 𝜀
1
)

×

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2) 𝑢 (𝑖 − 2)

≥ 𝛿
2

∗

(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎 (𝑓
0
− 𝜀
1
)𝑚 ‖𝑢‖

≥ 𝛿
2

∗

(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾(𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎
4𝜂𝑄

𝑚𝛿2
∗

𝑚‖𝑢‖

≥ ‖𝑢‖ ;

(60)

that is, 𝑥 ∈ 𝜕𝐾
𝑟
1

implies that ‖𝑇𝑢‖ ≥ ‖𝑢‖.
Next, considering 𝑓∞ < 1/𝐵, then there exists 𝑅

1
> 0

such that

𝑓 (𝑘, 𝑢) ≤ (𝑓
∞
+ 𝜀
2
) 𝑢, 𝑘 ∈ 𝐽, 𝑢 ∈ (𝑅

1
,∞) , (61)

where 𝜀
2
> 0 satisfies 𝐵(𝑓∞ + 𝜀

2
) < 1; assume that

𝑀 = max
0≤𝑢≤𝑅

1
,𝑘∈𝐽

𝑓 (𝑘, 𝑢) ; (62)

then

𝑓 (𝑘, 𝑢) ≤ 𝑀 + (𝑓
∞
+ 𝜀
2
) 𝑢𝜀. (63)

Choosing 𝑅
1
> max{𝑟

1
, 𝑅
1
,𝑀𝐵(1 − 𝐵(𝑓

∞
+ 𝜀
2
))
−1
}.
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Thus, for 𝑢 ∈ 𝐾
𝑅
1

, we obtain

‖(𝑇𝑢) (𝑘)‖

=

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2) (𝑀 + (𝑓
∞
+ 𝜀
2
) ‖𝑢‖)

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
(

𝑛+1

∑

𝑖=3

|𝐻|
𝑝
)

1/𝑝

(

𝑛+1

∑

𝑖=3

|𝑤|
𝑞
)

1/𝑞

× (𝑀 + (𝑓
∞
+ 𝜀
2
) ‖𝑢‖)

≤ 𝐵 (𝑀 + (𝑓
∞
+ 𝜀
2
) ‖𝑢‖)

≤ 𝐵𝑀 + (𝑓
∞
+ 𝜀
2
) ‖𝑢‖ 𝐵

< 𝑅
1
− 𝑅
1
(𝑓
∞
+ 𝜀
2
) 𝐵 + (𝑓

∞
+ 𝜀
2
) ‖𝑢‖ 𝐵

≤ 𝑅
1
− (𝑓
∞
+ 𝜀
2
) ‖𝑢‖ 𝐵 + (𝑓

∞
+ 𝜀
2
) ‖𝑢‖ 𝐵

= 𝑅
1
;

(64)

that is, 𝑢 ∈ 𝜕𝐾
𝑅
1

, we have ‖𝑇𝑢‖ < ‖𝑢‖.
From above works and (ii) of Theorem 3 we know

that 𝑇 has a fixed point 𝑢∗ ∈ 𝐾
𝑟
1
,𝑅
1

, 𝑟
1

≤ 𝑢
∗

< 𝑅
1
,

and 𝑢
∗
(𝑘) ≥ 𝛿

∗
‖𝑢
∗
‖ > 0, 𝑘 ∈ 𝐽. Thus, it implies that BVP

(2) has a positive solution 𝑢
∗.

Theorem 22. Suppose that (𝐴
0
)–(𝐴
4
) hold. If there exist two

constants 𝑟
2
, 𝑅
2
with 0 < 𝑟

2
< 𝑅
2
such that

(𝐶
5
) 𝑓(𝑘, ⋅) is nondecreasing on [0, 𝑅

2
] for all 𝑘 ∈ 𝐽;

(𝐶
6
) 𝑓(𝑘, 𝛿

∗
𝑟
2
) ≥ (4𝜂𝑄/𝑚𝛿

∗
)𝑟
2
and 𝑓(𝑘, 𝑅

2
) ≤ 𝐵
−1
𝑅
2
for

all 𝑘 ∈ 𝐽,

then the BVP (2) has at least one positive solution.

Proof. For 𝑢 ∈ 𝐾, from the definition of 𝐾 we have
min
𝑘∈𝐽
𝑢(𝑡) ≥ 𝛿

∗
‖𝑢‖. So, for 𝑢 ∈ 𝜕𝐾

𝑟
2

, we have 𝑢(𝑘) ≥

𝛿
∗
‖𝑢‖ = 𝛿

∗
𝑟
2
, 𝑘 ∈ 𝐽, from conditions (𝐶

5
) and (𝐶

6
), we obtain

(𝑇𝑢) (𝑘)

=

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≥

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝛿
∗
𝑟
2
)

≥
(𝑛 + 1) (𝑛 + 3)

6𝑄
V𝑏2𝛾𝜌

4𝜂𝑄

𝑚𝛿
∗

𝑟
2

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2)

= 𝛿
∗

(𝑛 + 2) (𝑛 + 1)

4𝑄
𝛾
∗
𝛾

× (𝑏 + 𝑎

𝑛+1

∑

𝑗=2

1

𝑧 (𝑗)
)

2

𝑎
4𝜂𝑄

𝑚𝛿
∗

𝑟
2

𝑛+1

∑

𝑖=3

𝑤 (𝑖 − 2)

= 𝑟
2
= ‖𝑢‖ ,

(65)

that is, for 𝑢 ∈ 𝜕𝐾
𝑟
2

, we can imply that

‖𝑇𝑢‖ ≥ ‖𝑢‖ . (66)

On the other hand, for 𝑢 ∈ 𝜕𝐾
𝑅
2

, we have 𝑢(𝑘) ≤ 𝑅
2
, 𝑘 ∈

𝐽, this together with (𝐶
5
) and (𝐶

6
), we have

(𝑇𝑢) (𝑘)

=

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑅2)

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑅
2
)

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
(

𝑛+1

∑

𝑖=3

|𝐻|
𝑝
)

1/𝑝

(

𝑛+1

∑

𝑖=3

|𝑤|
𝑞
)

1/𝑞

𝐵
−1
𝑅
2

= 𝑅
2
= ‖𝑢‖ ,

(67)

that is, for 𝑢 ∈ 𝜕𝐾
𝑅
2

, we can imply that

‖𝑇𝑢‖ ≤ ‖𝑢‖ . (68)

From above works and Theorem 3, we prove that 𝑇 has
a fixed point 𝑢∗ ∈ 𝐾

𝑟
2
,𝑅
2

, 𝑟
2
≤ ‖𝑢
∗
‖ ≤ 𝑅

2
, and 𝑢

∗
(𝑘) ≥

𝛿
∗
‖𝑢
∗
‖ > 0, 𝑘 ∈ 𝐽. So the BVP (2) has at least one positive

solution.

4. The Existence of Multiple Positive Solutions

Theorem 23. Assume that (𝐴
0
)–(𝐴
4
) hold, and the following

two conditions hold:

(𝐶
7
) 𝑓
0
> 4𝜂𝑄/𝑚𝛿

2

∗
and 𝑓

∞
> 4𝜂𝑄/𝑚𝛿

2

∗
(particularly,

𝑓
0
= 𝑓
∞
= ∞);

(𝐶
8
) there exists 𝑙 > 0 such that max

𝑘∈𝐽,𝑢∈𝜕𝐾
𝑙

𝑓(𝑘, 𝑢) <

𝐵
−1
𝑙.

Then BVP (2) has at least two positive solutions 𝑢∗(𝑘),
𝑢
∗∗
(𝑘), which satisfy

0 <
󵄩󵄩󵄩󵄩𝑢
∗∗󵄩󵄩󵄩󵄩 < 𝑙 <

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 . (69)
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Proof. We can take two constants 𝑟, 𝑅 and suppose that 0 <
𝑟 < 𝑙 < 𝑅. If 𝑓

0
> 4𝜂𝑄/𝑚𝛿

2

∗
; from the proof of Theorem 21

we have

‖𝑇𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝜕𝐾
𝑟
. (70)

If 𝑓
∞
> 4𝜂𝑄/𝑚𝛿

2

∗
, similarly, we have

‖𝑇𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝜕𝐾
𝑅
. (71)

On the other hand, from (𝐶
8
), for 𝑢 ∈ 𝜕𝐾

𝑙
, we have

‖𝑇𝑢‖ =

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

<
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2) 𝐵
−1
𝑙

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
(

𝑛+1

∑

𝑖=3

|𝐻|
𝑝
)

1/𝑝

(

𝑛+1

∑

𝑖=3

|𝑤|
𝑞
)

1/𝑞

𝐵
−1
𝑙 = 𝑙;

(72)

that is,

‖𝑇𝑢‖ < 𝑙 = ‖𝑢‖ , 𝑢 ∈ 𝜕𝐾
𝑙
. (73)

Applying Theorem 3, we can prove that 𝑇 has a fixed
point 𝑢∗∗ ∈ 𝐾

𝑟,𝑙
and a fixed point 𝑢∗ ∈ 𝐾

𝑙,𝑅
. Thus, we prove

that BVP (2) has two positive solutions 𝑢∗, 𝑢∗∗. From above
formula we obtain ‖𝑢

∗
‖ ̸= 𝑙 and ‖𝑢

∗∗
‖ ̸= 𝑙. So 0 < ‖𝑢∗∗‖ < 𝑙 <

‖𝑢
∗
‖.

Remark 24. From the proof of Theorem 23 we obtain that
if (𝐶
8
) holds and 𝑓

0
> 4𝜂𝑄/𝑚𝛿

2

∗
(or 𝑓
∞
> 4𝜂𝑄/𝑚𝛿

2

∗
), then

BVP (2) has at least one positive solution 𝑢. It satisfies 0 <

‖𝑢‖ < 𝑙 (or 𝑙 < ‖𝑢‖).

Using a similar method we can obtain the following
results.

Theorem25. Suppose that (𝐴
0
)–(𝐴
4
) hold, and the following

two conditions hold

(𝐶
9
) 𝑓
0
< 1/𝐵 and 𝑓∞ < 1/𝐵;

(𝐶
10
) there exists 𝐿 > 0 such that min

𝑘∈𝐽,𝑢∈𝜕𝐾
2

𝑓(𝑘, 𝑢) >

(4𝜂𝑄/𝑚𝛿
∗
)𝐿,

then BVP (2) has at least two positive solutions 𝑢∗(𝑘),
𝑢
∗∗
(𝑘), which satisfy

0 <
󵄩󵄩󵄩󵄩𝑢
∗∗󵄩󵄩󵄩󵄩 < 𝐿 <

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 . (74)

Remark 26. If (𝐶
10
) holds and 𝑓

0
< 1/𝐵 (or 𝑓∞ < 1/𝐵),

then BVP (2) has at least one positive solution 𝑢 satisfying
0 < ‖𝑢‖ < 𝐿 (or 𝐿 < ‖𝑢‖).

Theorem 27. Assume that (𝐴
0
)–(𝐴
4
) hold. If there

exist 2𝑛 positive numbers 𝑑
𝑡
, 𝐷
𝑡
, 𝑡 = 1, 2, . . . , 𝑛, with 𝑑

1
<

𝛿
∗
𝐷
1
< 𝐷
1
< 𝑑
2
< 𝛿
∗
𝐷
2
< 𝐷
2
< ⋅ ⋅ ⋅ < 𝑑

𝑛
< 𝛿
∗
𝐷
𝑛
< 𝐷
𝑛
such

that

(𝐶
11
) 𝑓(𝑘, 𝑢) ≤ 𝐵

−1
𝑑
𝑡
, for (𝑘, 𝑢) ∈ 𝐽 × (𝛿

∗
𝑑
𝑡
, 𝑑
𝑡
) and

𝑓(𝑘, 𝑢) ≥ (4𝜂𝑄/𝑚𝛿
∗
)𝐷
𝑡
for (𝑘, 𝑢) ∈ 𝐽 × [𝛿

∗
𝐷
𝑡
, 𝐷
𝑡
],

𝑘 = 1, 2, . . . , 𝑛; or

(𝐶
12
) 𝑓(𝑘, 𝑢) ≥ (4𝜂𝑄/𝑚𝛿

∗
)𝑑
𝑡
, for (𝑘, 𝑢) ∈ 𝐽 × (𝛿

∗
𝑑
𝑡
, 𝑑
𝑡
)

and 𝑓(𝑘, 𝑢) ≤ 𝐵
−1
𝐷
𝑡
for (𝑘, 𝑢) ∈ 𝐽 × [𝛿

∗
𝐷
𝑡
, 𝐷
𝑡
], 𝑡 =

1, 2, . . . , 𝑛,

then BVP (2) has at least 𝑛 positive solutions 𝑢
𝑘

satisfying 𝑑
𝑡
≤ ‖𝑢
𝑡
‖ ≤ 𝐷

𝑡
, 𝑡 = 1, 2, . . . , 𝑛.

Theorem 28. Assume that (𝐴
0
)–(𝐴
4
) hold. If there exist 2𝑛

positive numbers 𝑑
𝑡
, 𝐷
𝑡
, 𝑡 = 1, 2, . . . , 𝑛, with 𝑑

1
< 𝐷
1
< 𝑑
2
<

𝐷
2
< ⋅ ⋅ ⋅ < 𝑑

𝑛
< 𝐷
𝑛
such that

(𝐶
13
) 𝑓(𝑘, ⋅) is nondecreasing on [0, 𝐷

𝑛
] for all 𝑘 ∈ 𝐽;

(𝐶
14
) 𝑓(𝑘, 𝛿

∗
𝑑
𝑘
) ≥ (4𝜂𝑄/𝑚𝛿

∗
)𝑑
𝑡
, and 𝑓(𝑘,𝐷

𝑡
) ≤ 𝐵

−1
𝐷
𝑡
,

𝑡 = 1, 2, . . . , 𝑛,

then BVP (2) has at least 𝑛 positive solutions 𝑢
𝑡

satisfying 𝑑
𝑡
≤ ‖𝑢
𝑡
‖ ≤ 𝐷

𝑡
, 𝑡 = 1, 2, . . . , 𝑛.

5. The Nonexistence of Positive Solution

Theorem 29. Suppose that (𝐴
0
)–(𝐴
4
) hold, and 𝐵𝑓(𝑘, 𝑢) <

𝑢, for all 𝑘 ∈ 𝐽, 𝑢 > 0; then BVP (2) has no positive solution.

Proof. Assume that 𝑢(𝑘) is a positive solution of BVP (2).
Then 𝑢 ∈ 𝐾, 𝑢(𝑘) > 0, 𝑘 ∈ {0, 1, . . . , 𝑛 + 2} and

‖𝑇𝑢‖ = ‖𝑢‖ = max
𝑘∈𝐽

‖𝑢 (𝑘)‖

= max
𝑘∈𝐽

𝑛+1

∑

𝑖=3

Ψ (𝑘, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

≤
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2) 𝑓 (𝑖 − 2, 𝑢 (𝑖 − 2))

<
(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2) 𝐵
−1
𝑢 (𝑖 − 2)

≤ 𝐵
−1
‖𝑢‖

(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)

𝑛+1

∑

𝑖=3

𝐻(𝑖, 𝑖) 𝑤 (𝑖 − 2)

≤ 𝐵
−1
‖𝑢‖

(𝑛 + 2) (𝑛 + 1)

4 (1 − 𝜇)
(

𝑛+1

∑

𝑖=3

|𝐻|
𝑝
)

1/𝑝

(

𝑛+1

∑

𝑖=3

|𝑤|
𝑞
)

1/𝑞

= ‖𝑢‖ ,

(75)

which is a contradiction.

Similarly, we can get the following result.

Theorem 30. Suppose that (𝐴
0
)–(𝐴
4
) hold and (𝑚𝛿

2

∗
/

4𝜂𝑄)𝑓(𝑘, 𝑢) > 𝑢, for all 𝑘 ∈ 𝐽, 𝑢 > 0; then BVP (2) has no
positive solution.
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