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This paper is concerned with the sufficient conditions for the existence of solutions for a class of generalized antiperiodic boundary
value problem for nonlinear fractional impulsive differential equations involving the Riemann-Liouville fractional derivative.
Firstly, we introduce the fractional calculus and give the generalized R-L fractional integral formula of R-L fractional derivative
involving impulsive. Secondly, the sufficient condition for the existence and uniqueness of solutions is presented. Finally, we give

some examples to illustrate our main results.

1. Introduction

Fractional calculus is a generalization of ordinary differenti-
ation and integration; it is also as old as ordinary differential
calculus. For the last decades, fractional differential equa-
tions have been receiving intensive attention because they
provide an excellent tool for the description of memory and
hereditary properties of various materials and processes, such
as physics, mechanics, chemistry, and engineering; for more
details, one can see Kilbas et al. [1] and Podlubny [2] and the
references therein.

There have been considerable developments in the theory
of impulsive differential equations in the last few decades.
Impulsive differential equations have become more impor-
tant in some mathematical models of real phenomena, espe-
cially in control, biology, medicine, and information (see [3,
4]). So the study of fractional impulsive differential equations
is a more meaningful work. Some significant developments
in fractional impulsive differential equations with Caputo
derivative have been presented [5-27]. Recently, Fe¢kan et
al. defined the solutions for fractional impulsive differential
equations with Caputo derivative (for more details, see [17]).
They considered the Cauchy problems for the following
impulsive fractional differential equations:

‘Dlut)= ftu(t), te],

u(ty) =u(t)+ye k=1,...,m,
M(O) = uO)
€))
where y, (k = 1,...,m), u, are constants. ‘D] (0 < g <

1) denotes Caputos fractional derivative. Some sufficient
conditions for existence of the solutions have been established
by applying Schaefer’s fixed point theorem, Banach fixed
point theorem, and the theorem of nonlinear alternative of
Leray-Schauder type.

But as far as we know, there are few papers that consider
the fractional impulsive differential equations with Riemann-
Liouville derivative (only see [15, 24]).

Motivated by [15, 17, 24] and some related literature,
we study the existence and uniqueness of solutions for
the generalized antiperiodic boundary value problem for
fractional differential equations with impulsive effects

"DSu(t)

=f(tu), te], t#t, k=1,...,m,

1-« (2)
A10*' u(t)|t:tk = Vi k=1,...,m,

1- 1—
L u ()|, = ~Io-“u(®)|
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where LDg+ is the Riemann-Liouville fractional derivative,
feCJxRR),]=(0,T],0=t,<t; < <t,<t
T, y, € R are given constants and

m+l —

Aléf“u(t)'t:t = éfau(t)L:t;— L u )] _ o0

and Il+ “ult)l,- - and I} o u(t) It:t; denote the left and the right

limit of I,; “u(t) at t = t;, respectively.

For clarity and brevity, we restrict that the impulsive
functions are constants y;, k = 1,...,m. Indeed, we can also
define the impulsive functions as [, (u(t;)) (Ji € C(R,R)).

Remark 1. For o = 1, (2) reduces to the first order nonlinear
impulsive differential equation with antiperiodic boundary
value problem.

To the best of the authors’ knowledge, no one has studied
the existence of solutions for (2). The purpose of this paper
is to study the existence and uniqueness of solution of
the generalized antiperiodic boundary value problem for
nonlinear fractional impulsive differential equation involving
Riemann-Liouville fractional derivative by using some fixed
point theorems.

2. Preliminaries and Lemmas

In this section, we introduce notations, definitions, and
preliminaries that will be used in this paper. In order to define
the solution of (2), we will consider the following spaces.

PC(J,R) ={x:] — R:x(t) € Clty, ty1 ], k=0,...,m;
there exist x(tZ) and x(t;) with x(t;) = x(t;), k = 1,...,m}.

PC*(J,R) = {x € PC"'(J,R) : x(t) € Cltsoti];
k = 0,...,m; there exist x(”)(t,t)x(")(t,;) with x(”)(t,;)
£, k=1,...,m}.

PC,(J,R) = {x: (t = t;)"xl,
m}, where 0 <y < 1.

It is easy to check that the space PC, (], R) is a Banach
space with norm

| € Cltptn ] k=0,

sber1

sup (t—t;)" |x (t)

k=0,...,m.
> > 4
te(tpotys] (4)

”x”PCy =

Let us recall the following known definitions. For more
details see [1].

Definition 2. Let Q = [a,b] (—00 < a < b < 00) be a finite
interval on the real axis R. The Riemann-Liouville fractional
integral of order « > 0 is defined by

Iy () = J t-9s)"y(s)ds, t>0. (5

I ()

Definition 3. The Riemann-Liouville derivative of order o >
0, n = [x] + 1 can be written as

%%ym=<%)0$90»

1 d"

n—a—1
e a)dt"J(t_s) yids >0

(6)
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Lemma 4 (see Lemma 2.5in [1]). Leta > 0, n = [«] + 1 and
let f,,_o(t) = Iy f(t) be the fractional integral of order n — «.
If f(t) € L,(a,b) and f,_,(t) € C"[a,b], we have the following
equality:

aL n (Vl l)(o)
Dy f (t) t) . 7
Of( =f® lzl"((x i+1) @
Lemma5. Ifa;,b;#0 (i=1,2,....k j=0,1,...,k=1), then

k i k
Z . aibj = Z aibj, (8)
wherek € N,.

Proof. If k = 1, then we obtain
a,by = a,by. 9)
Suppose k = n; the result holds; that is,

i ‘ a;b; = i a;b;. (10)

When k = n + 1, we obtain that

n+li— n i-1 n
> Z“ =) Db+ au b
i=1 j=0 i=1 j=0 j=0
n-1 n n
= Z Z a;b; +an+12bj
=0 i=j+1 =0
(11)
n-1 n+l n—-1 n
= z Z a;b; — anHij + anHij
=0 i=j+1 j=0 j=0
n—-1 n+l n_ ntl
= Z Z a;b; + a,.,b, = Z Z a;b;.
j=0i=j+1 j=0i=j+1
The proof is completed. 0

Lemma 6. Letax > 0,n—1 < a < n, f,_(t) = I7* f(t). If
f(t) € L,(0,T) and f,_,(t) € PC"(J,R), then fort € [0,,],
one has

Ot L C frgﬁ;i) (0) a—i,
D f (t) = f“‘%?@:?ﬁ s (12)
fort € (ty,te ], k=1,...,m, one has
(n—i)
I (0)
Ig- DG f (8) = “”2%&1+N

k n Af”l)( ) (13)
S

where

() = A5 () - 50 (5) - a9
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Proof. Firstly, according to the fractional integral definitions,
we get

DS (1)

1 ‘ a— o
= .[o (t - )" LDO+f (s)ds (15)

-4 {ﬁj (t— )" LD0+f(s)ds}

Ift € [0,¢,], by Lemma 4, the result is easily to get.
Ift € (t;,t,], integrating by parts repeatedly, we obtain
1

ol
m J (t - ) D0+f(5) ds

= [ s

T(x+1)

1
T'a+1)I'(n-«)

t n s
« L (t - s)“% JO (s— 7" f (r) dr ds

1
Ta+1)I'(n-«)

X J: (t-s)* d_”r(s )" f (1) drds

1
T+ DI (n-a)

t nooot)
« L (t - s)“% L (s— 7)™ f (1) dr ds

1
T+ DI (n-a)
X J: (t - s)“;—:n J: (s—17)" " f(r)drds

1
Ta-n+1)T(n-«)

X J: t—-s)*" Ls (s—1)"* " f(r)drds

1
"T-i+)Tn-a

% Z |: oc 1+1% J: (S _ T)n—zx—lf(_[) dT]

N 1
IlNa—-n+1)T(n-«)

s=ty

s=0

X J:l t-s)*" -Ltl (s—1)"* " f(r)drds

N 1
lNa—i+2)T(n—«)

s=t

% i |: o¢ i+1 ddnn ll Jtl (S _ T)n—oc—lf (T) dT:|

i=1

s=t

1
+F(oc—n+1)F(n—oc)

X Ltl t—-s)*" fl (s—1)"* " f(r)drds

N 1
Ta-i+2)T(n—«)

Xi[(t az+1jnnll

s=t

x JS (s—7)""f(z) dr]
f

s=t

1
Ta-n+1)T(n-«a)

« Lt f@)de r (t — )" (s — 1)\ ds

N 1
Ta-n+1)T(n-«)

X Ltl f(r)dr J: (t—9)""(s—1)"* ds

1
+I‘(oc—n+1)F(n—oc)

y r fo)dr r (t = )""(s — 1)\ ds

i (n l) (0) oc i+1
D (a—i+ 2)
i Afnnocl) ) f—t )oc—i+1
T (a—i+ 2) !

e L& SO
—Lf(r)dr Z t

Sl(a—-i+2)
i A - 1) ) )(x—i+l
=T (oc —i+ 2) !
(16)
where the integral
t
J (t—s)* (s —1)"“ds
17)

1

=j (1-2)"2"*"'dz=B(a-n+1,n-a)
0

=Il'la-n+1NI'n-«a),

where using the substitution s = 7 + z(t — 7).



4 Abstract and Applied Analysis

So,if t € (t,,1,], by (15), we have _ 1
lNa—-n+1)T(n-«)
oL RN (0) X rl (t—s)*™" r (s— )" f(r)drds
Igs "Dy f (8) = f(t)—z ”“Hl) 0 0
18 1
nAfOD ) 1) i I'(n—o)

Zr t—1,)"" S
(x—i+ 1) n Jpr P i
2 [(f o

Ift € (tp,t], k = 2,...,m, integrating by parts and

s=ty

using Lemma 5 and (17) repeatedly, we get X r (s—1)" ! f(r) d‘r]
0 s=0
1 X !
al Tl p20)
r((m)j (t - 9 D5 f (5) ds Fla-p+2)
1
+ —_—
1 e IFa+1)I'(n-a)
T T(a+l) .[ { o f O ds e A
1 xy L t- 9"y, L’ (s— 7" f (1) dr ds
= m i=1 "t Jj=0""j
1
n S +
x Lt (t-9)" jsn L (s— " f (r) drds [n-a)
k-1 n n—p
_ ; f— (x—p+1d_
T+ DI (n-a) Xizzl pzl[( T
h o dn s _ n—a—1 i
X L a5 L (s—7)" " f(r)drds y < ! J'fm (s — 1yo!
1 j=0 7t
+ —_—
IFa+1)IT'(n—«) s=t;,
k=1 ot Ld x f (1) dr)]
) j (t-9° 3
XZJ (s— )" f (1) drds ['(x—p+2)
j=0 7t 1
1 T+ DI (n-a)

+F(0¢+l)r(n—0¢) k=1 ¢, s
% Z J " (t — )" J (s—7)" " f(r)drds

k-1 ti+1 n s

g z; J.t,- “js” L (5= T)’HHf (r)drds i=1
L1

P S e

la+1)I'(n—«) o .

n k1 [ S)a p+1 =
J $ D) J (s= 0" f () drds Z {Z s
a tj s S=tiyy
: XJ (s—-1)" ' f(7) dr] }

T DT =@ i s=t;

lNa+1)I'(n—«) |

t n s 1
L (t - s)* d—J (s— )" f (1) drds “Tla-p+2)

k
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1
T+ DIn-a)
k-1 tiy
J (t-s)" ZJ — )"V f (1) dr ds
j=0 7%
1
I'n-«)

s=t

k-1 tj+1
X (Z L -1 f(r) dr)

T(e-p+2)
1
T+ DI (n-w)

s=ty

X

X f (t -s)* J-: (s—7)" " f(r)drds

1
+F(n—oc)

n a dn,
Z:: [ p+1 = P

s=t

X L (s—7)" ! f(T)dr]

S=ty
-
F(a—p+2)
1
lNa—-n+1)T(n-«)

X

[ e[ - o

1
+r(oc—n+1)1"(n—oc)

k-1i-1 ti
X Z J T) dTI (t _ S)lxin(s _ T)nfocflds
1 j=0 £

i= ] ]
1
+
[a-n+1)I'(n-«a)

k=1 ot

X Z j f (T) dr J:i-v-l (t _ s)a—n(s _ T)n—lx—lds

. 1
lNa-n+1)I'(n-«)

<3 [ s

j=0 7t

— s)‘x_”(s _ T)n—a—lds

1

+F(oc—n+1)1‘(n—oc)

1
T (n-a)

e arr
z [ p+l TP

s=t,

x L (-0 f (@) dr]

s=0
-
T(a—p+2)
1
I'(n-—«)
k-1i-1 n _
p AP
X (t— S)a p+1T
z;jzo {;; [ ds" P
L1
XJ (s—1)" " f (1) d‘r]
£
1
F(a—p+2)
1
+
I'n-«)
k=1 n n—p
a-p+1 d
x ‘|Z[( ) pldnp
i=1 Lp=1
s s=tipy
x[6-0mtr @ dr]
i s=t;
o
F(a-p+2)
1
+
I'n-«)
k-1 n n—p
OMN[ERR
j=0p=1 P
tJ+1 s=t
X J (s— T)"f“flf (1) dr]
tj s=ty
L
I(a-p+2)
1
r( )

<3 [0 i

s=t

X E (s—1)" " f(r) d‘r]

s=ty

s=liyy

s=t;

|

|



1
8 I(a—p+2)
1
lNa—-n+1)T(n-«)

X Ltl f(r)dr Ltl (t—s) " Ms—1)"“ds

1
+
lNa—-n+1)T'(n-«)
k=2 k-1

tv ti+1
X z Z J f (T) dr J;i (t — s)“‘”(s _ T)n_a_lds

j=0i=j+1
1
+
lNa-n+1)T'(n-«)

x Z J f(odr Jti (t - $)* (s — 1) 'ds

1
+F(oc—n+1)r(n—oc)

k=1t t _ o1
X];)th f(T)dTL t-95)""(s-1) ds

1
+1"((x—n+1)1“(n—oc)

x Jt f(r)dr Jt (t—9)""(s—7)"* ds

1
+
I'n-—«)

n—

” 1 d
‘- a—p+l “w
" p; [( 9 ds" P

s=t,

X L (s— 1) £ (7) dr]

1
+
I'n-«)

i e

i=1j=0 Lp=1

£

X L (s—1)" " f(r) dr]

s=0 F((x—p+2)

X thﬂ (s—1)" " f(r) dr]

S=tiv

s=t;
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1
x I[(a—p+2)

-
I'n-a)

k-1 n dn—
XZZ[(t ocp+1

j=0p=1

+

s=t

tj+1
X J (s—1)" " f(r) dr]

7]

S=ty
DU S
F(a—p+2)

I'n-a)

n a i
Z:: [ p+l Tp

s=t

x J;i (s—1)" ' f(r) dT]

S=ty

1
“T(a-p+2)
_ C fnnzxp) (0) a—p+l
J () dt Z—p+2)t
k n (" P
t, -
_ZZ ( )(t—tl) p+1‘
i:1p:1r(“_P+2)
(19)
By (15), if t € (ty, tgyq], k = 2,...,m, we have
n (n—i)
o L« f —o ( )
I IDEf () = f () - ;F(a_l”
k (n—i) (20)
Py e
SET(@-i+l) /
The proof is completed. O

Remark 7. In Lemma 6, if the assumption f,,_,(t) € PC"(J,R)
is replaced by f,,_,(t) € C"(J, R), we will get the same result
of Lemma 4.

Lemma 8. The impulsive antiperiodic boundary value prob-
lem

'Du)=p),

O<a<l, te], t#t, k=1,...,m

21
AI&:“U (t)'t=t = yk> k = ]-)- .., m, ( )

I u®)|_, = I u®|_,.
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where p(t) € C(J, R), has a unique solution u(t) € PC,_,(J,R)
given by

u (f)
L a-1 + —
I'(a) I'(a)
t
XJ (t-5)""p(s)ds, te(0,t,],
0
a a—1
—t
T (x)
= < yl (t t')(x—l
0<t;<t ( ) l
L
F («)
J ) p(s)ds, te(tptpn], k=1,2,....,m,
(22)
where

1< T
a=-3 (;yi+J0 p(s)ds). (23)

Proof. Let u(t) be a solution of (21). By Lemma 6 (n = 1), we
have

u (t)
@ er, 1
I'(a) ' ()
xJ;(t —-5)* p(s)ds, te(0,t,],
_4 a1
T'(x)
= ;V, a—1
+ t—t,
0;<tr( )( )
1
I'(x)
xJ;(t —5)p(s)ds, te(tptry], k=1,2,...,m,

(24)
where Ié:“u(t)ltzo =a.
According to the following properties:
Ié+0‘toc L= F((X) 5
- Z yi(t—t)""
0<t;<t
:;J(—s) Zys—to‘1
r (1 0<t;<s 1 (25)
! j t-s) Z (s —t,)" 'd
r (1-a) 0<t;<s l
=T(@) ) ¥
0<t;<t

7
we obtain
Iy u(t)
t
+J p(s)ds, te(0,t,],
0
= Ja+t Z Vi (26)
0<t;<t
t
+J p(s)ds, te(ttiy]> k=1,2,...,m
0

Then by the antiperiodic boundary value condition, we have

1 m T
a=-2 (;yi+.[o p(s)ds). (27)

Conversely, assuming that u(t) is a solution of the
impulsive fractional integral equation (22), we can obtain the
impulsive fractional differential equation (21).

This completes the proof. O

3. Main Results

This section deals with the existence and uniqueness of
solutions for the problem (2).

Firstly, for t € (t;,t,11, kK = 0,1,...
operator T as

,m, we define an

[X

T
(Tu) (t) = - T )(Zyl J f(s,u(s))ds>
yz a—-1
+ t—t; 28
LT @8)

+ 1 Jt (t - s)“_lf (s,u(s))ds.
T ((X) 0 ’

Theorem 9. If the following condition is satisfied:
(H1): there exist constants £, N > 0 such that

|f ¢ w)| <€+ NJul’, Vvte],
(29)

ueR 0<H<1,

then the fractional impulsive differential equation (2)
has at least one solution.

Proof. Assume (H1) hold; let

A= {2r(<x)z|y’

1 1 1/(1_0)
[3( ; —) NT] . G0
M () T(a+l)

: < 2rl(¢x) T (ocl+ 1) ) eT}




and define A} _ = {u € PC,_,(J,R) : [lull < A}.
When t € (t,t;1], k = 0,1,...,m, for Vu € A1 )
(H1), we have

(t—6) " |(Tw) ()]

t—,) %!
< k

2T (@)
1 ata 1 .7
XZ|y1|+ 2T( ) J |f(s,u(s))|d5
(t _ tk) - a—-1
w2 M
+Lﬁ%‘]“‘ylvﬁwmws (3D

I/\

0
2r(a)z|y’ o (o )(HN’\ )

0
+F(a+1)(e+m)

3 1 1 0
- 2F(oc);|yi|+<2r(oc) " r(oc+1)>NTA

1 1
+<2T((x) " r(a+1)>£TSA’

which implies that T': A){_a — A’}_a
In view of the continuity of f, we get that the operator T
is continuous easily. O

Next, we will prove that T is a completely continuous
operator.

For (ti,tpq ], kK = 0,...,m,ift;, < 7, < T,
,when 1, — 1, by (H1), we have

'(Tl - tk)l_oc (Tu) (1)
~(r,— 1) " (Tw) (Tz)'

1-
- '(Tl —t) T -

B 2I' ()

< tk+1’ u €
AA/

1-a

-1
(n-t)" '

m
Xz,b’i'

’(Tl _tk)1 * T ' ( _tk)l_aT?_l'

2T (&)

T
xj |f (5,1(s))| ds

> il -t)

0<t;<t

(R -4)""
- r((x) Z yl 1

0<t;<t

(Tl - tk)
r (oc)
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N '(T1 - tk)l_a - (r - fk)l_a'

I'(a)

X j t -9 |f (s,u(s))|ds
0

- tm) ™ - (- )

B 2I' ()

|Z|yl

- tm) -0 nm)™
2T (&)

1
X(f‘f’N)te)T'f'T(x)

k-1
-1
X Zyi(Tl - ;)"
i=1

k-1 .
‘Z}’i(fz -t)
=1

N '(71 - tk)Hx — (5, - tk)lia'

IF'(x+1)

x (£+NA)T* — 0.
(32)

According to the Ascoli-Arzela theorem, we can obtain

T: A)La — A’La which is a completely continuous operator.
Therefore, by Schauder’s fixed point theorem, the operator
T has at least one fixed point, which implies that fractional
impulsive differential equation (2) has at least one solution

u(t).
Theorem 10. Assume that

(H2): there exists constant L > 0 such that

|f (tw) - f(t.w)| <L|uy -], Vuy,u, € PC,(J,R).
(33)
Then problem (2) has a unique solution if
1 1
— |LT < 1.
<2F(oc)+F(oc+1)> < (34)

Proof. We define sup, ;| f(t,0)| = M and choose

(32T (@) X2, || + (1/2T (@) + 1/T (a + 1)) MT
B 1-(1/2T (&) + 1/T (x + 1)) LT

(35)
Firstly, we prove that Tu € B]_,, where B]_, = {u €
PC_o(J,R) : |lull < r}.
For Vu € B_,, by (H2), we have
(t = 1) (Tw) ()]
( tk)l o (X 1 m
<2

2T (@) =
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_ - a-1 .1
+ w J |f(s,u(s))|ds

2T (@)

0
(t-1)""
I'(x)
X < Z |yif (- £
0<t;<t

t
+ J -9 |f (su(s)) d5>
0

3 & 1
= ZF(a);|yi|+21"(oc)

T
<[ (U cue) - F o)+ If soDds

(t- tk)l_a
T'(x)

x (|f (s,u(s)) = £ (5,0)| +|f (5,0)]) ds

3 & LTr
oT (oc),.zz1 il + 5 (@)

IN

MT LTr MT
+ + +
2I'() T(x+1) T(ax+1)

3 & 1 1
- 2r(a)i_zl|yfl+<zr(a) " r(a+1)>LTr

+< : +;>MT:1'.
2T (@) T(x+1)

(36)
Next, for Vu, v € B]_,, by (H2), we get
(t = )~ 1(Tw) (1) - (Tv) (0)]
_ (g e
2T (&)
T
X L |f(s,u(s)) - f(s,v(s))| ds
(t _ tk)l—oc (37)
+ e —
I'(x)

t
X L -9 (If (s u) = f(s,v(s)])ds

<< LT IT >||u—v||
“\2l (@) T(a+1) Bia®

According to inequality (34), we obtain that the operator
T is a contractive mapping on B]_,. Hence, by Banach fixed
point theorem, problem (2) has a unique solution.

The proof is completed. O

4. Examples

Example 1. Choose « = 1/2,t; = 1/2,and T = 1,
and consider the following fractional impulsive generalized
antiperiodic boundary value problem:

1
DPut) = ftu), t#2, telo1],
Au(%):b, b eR, (38)
LPu)|_ = L],

where

f(tu(t) =sint +e " \eu (). (39)

Let £ = N = 1,0 = 1/2; clearly, assumption (HI) is
satisfied. By Theorem 9, the fractional impulsive generalized
antiperiodic boundary value problem (38) has at least one
solution.

Example 2. Choose o« = 2/3,¢; = 1/2,and T = 1; consider
the following fractional impulsive generalized antiperiodic
boundary value problem:

DPu(t) = f(tu(t), t#%, tef0,1],

AuG):b, beR, (40)

lu (t)|t:0 = -12lu (t)|t:1,

where

fawa»=ﬁ+ﬂ%%gg

tBu). (41)
Letting L = T'(2/3)/3, condition (H2) of Theorem 10 can be
verified, so Example 2 has at least one solution.
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