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By considering bacterium death and general functional response we develop previous model of bacterial colony which focused on
the traveling speed of bacteria. The minimal wave speed for our model is expressed by parameters and the necessary and sufficient
conditions for traveling wave solutions (TWSs) are given. To prove the existence of TWSs, an auxiliary system is introduced and
the existence of TWSs for this auxiliary system is proved by Schauder’s fixed point theorem.The limit arguments show the existence
of TWSs for original system. By introducing negative one-sided Laplace transform, we prove the nonexistence of TWSs.

1. Introduction

Experiments show that bacterial colonies on agar plates with
nutrients exhibit a variety of sizes and shapes [1–7]. Accord-
ing to the substrate softness and nutrient concentration, the
colony patterns are divided into five types [6, 8]. Why were
so many rich diffusive patterns observed in bacterial experi-
ments? To answer this question, lots of diffusivemathematical
models have been proposed and studied [4, 7, 9–16]. In
these mathematical models, the colony patterns are proved
or simulated on bounded domains. For bacterial colony,
the colony speed is one of the most important focuses and
traveling wave solution (TWS) can foresee such speed. Thus
many researches studied the bacterial colony speeds through
TWSs [17–24].

Tomore exactly anticipate the traveling speed of bacterial
colony, we develop above TWS models to a more accurate
bacterial colony model with bacterium death and general
functional response, which is more complex compared with
above TWS models. Let 𝑁(𝑡, 𝑥) and 𝐵(𝑡, 𝑥) denote the
concentrations of nutrients and bacteria at time 𝑡 andposition
𝑥, respectively. Then our model is as follows:

𝑁
𝑡
= 𝑑
𝑁
𝑁
𝑥𝑥

− 𝑓 (𝑁) 𝐵,

𝐵
𝑡
= 𝑑
𝐵
𝐵
𝑥𝑥

+ 𝜅𝑓 (𝑁) 𝐵 − 𝑑𝐵,

(1)

where parameters 𝑑
𝑁

and 𝑑
𝐵
denote the motility of the

nutrients and bacteria. 𝜅 is the conversion rate of nutrients
to bacteria and 𝑑 is the death rate of bacteria. Function 𝑓(𝑁)

is the functional response to nutrients. For simplicity, we
assume 𝑓(𝑁) = 𝑘

1
𝑁/(1 + 𝑘

2
𝑁) with 𝑘

1
> 0 and 𝑘

2
> 0.

Actually, in the following proof we only use the monotonicity
and boundedness of 𝑓(𝑁).

In this paper, the minimal wave speed 𝑐
∗ is given and

the necessary and sufficient conditions for the existence of
TWSs are obtained. To arrive at such aim, the existence
of TWSs is proved by Schauder’s fixed point theorem and
the nonexistence is finished by negative one-sided Laplace
transform proposed firstly by us. To apply Schauder’s fixed
point theorem, a bounded invariant cone is needed. Such
cone is constructed generally by a pair of upper and lower
solutions. However, it is difficult for us to construct such
solutions for model (1). Consequently, an auxiliary system is
introduced, for which the upper and lower solutions can be
easily constructed and are very simple. Such type of upper
and lower solutions is motivated by Diekmann [25]. Then
limit arguments give the existence of TWSs ofmodel (1). Two-
sided Laplace transform was firstly introduced by Carr and
Chmaj [26] to prove nonexistence of TWSs and was further
applied by [27–29]. However, the introduction of negative
one-sided Laplace transform simplifies the proof.
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This paper is organized as follows. In the next section,
an auxiliary system is firstly introduced and the existence of
TWSs is proved by Schauder’s fixed point theorem.Then limit
arguments give the existence of TWSs for original system. In
Section 3, the negative one-sided Laplace transform is defined
and then the nonexistence of TWSs is obtained.

2. Existence of Traveling Wave Solution

A traveling wave solution of system (1) is a nonnegative
nontrivial solution of the form

𝑁(𝑡, 𝑥) = 𝑈 (𝜉) , 𝐵 (𝑡, 𝑥) = 𝑉 (𝜉) , 𝜉 = 𝑥 + 𝑐𝑡, (2)

satisfying boundary condition

(𝑈 (−∞) , 𝑉 (−∞)) = (𝑁
0
, 0) ,

(𝑈 (+∞) , 𝑉 (+∞)) = (𝑁
1
, 0) ,

(3)

where 𝑁
0
> 0 is initial density of nutrients. It is obvious that

𝑁
0
> 𝑁
1
≥ 0.

Define 𝑐
∗

= 2√𝑑
𝐵
[𝜅𝑓(𝑁0) − 𝑑]. The existence of travel-

ing wave solutions is given as follows.

Theorem 1. Suppose 𝑓(𝑁
0
) > 𝑑/𝜅. For any 𝑐 ≥ 𝑐

∗ system (1)
has a traveling wave solution (𝑈(𝑥 + 𝑐𝑡), 𝑉(𝑥 + 𝑐𝑡)) satisfying
boundary conditions (3) such that 𝑈(𝜉) is nonincreasing in R

and 𝑓(𝑁
1
) < 𝑑/𝜅. Furthermore, one has that

∫

+∞

−∞

𝑉 (𝜂) 𝑑𝜂 =
𝜅𝑐

𝑑
(𝑁
0
− 𝑁
1
) , 0 ≤ 𝑉 (𝜉) ≤ 𝜅 (𝑁

0
− 𝑁
1
) ,

(4)

for any 𝜉 ∈ R.

Substituting wave profile 𝑁(𝑡, 𝑥) = 𝑈(𝜉), 𝐵(𝑡, 𝑥) =

𝑉(𝜉), 𝜉 = 𝑥+𝑐𝑡 into system (1) yields the following equations:

𝑐𝑈
󸀠
= 𝑑
𝑁
𝑈
󸀠󸀠
− 𝑓 (𝑈)𝑉,

𝑐𝑉
󸀠
= 𝑑
𝐵
𝑉
󸀠󸀠
+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉,

(5)

where 󸀠 denotes the derivative with respect to 𝜉.
To prove the existence of solutions of (5) satisfying (3), we

construct an auxiliary system:

𝑐𝑈
󸀠
= 𝑑
𝑁
𝑈
󸀠󸀠
− 𝑓 (𝑈)𝑉,

𝑐𝑉
󸀠
= 𝑑
𝐵
𝑉
󸀠󸀠
+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉 − 𝛾𝑉

2
,

(6)

where 𝛾 is a positive constant and can be supposed to be small
enough according to what we will need. Next, an invariant
cone will be constructed and Schauder’s fixed point theorem
will be used to prove the existence of traveling wave solutions.
We firstly linearize the second equation of (6) at (𝑁0, 0) and
obtain

𝑐𝜙
󸀠
= 𝑑
𝐵
𝜙
󸀠󸀠
+ 𝜅𝑓 (𝑁

0
) 𝜙 − 𝑑𝜙. (7)

Obviously, the characteristic equation is

𝐻(𝜆) = 𝑑
𝐵
𝜆
2
− 𝑐𝜆 + 𝜅𝑓 (𝑁

0
) − 𝑑 = 0. (8)

Denote 𝜆
1

= (𝑐 − √𝑐2 − 𝑐∗
2
)/(2𝑑
𝐵
) and 𝜆

2
= (𝑐 +

√𝑐2 − 𝑐∗
2
)/(2𝑑
𝐵
). In the remainder of this section, we always

suppose 𝜅𝑓(𝑁
0
) > 𝑑 and 𝑐 > 𝑐

∗ hold unless other conditions
are specified. Define

𝑈 (𝜉) = max {𝑁0 − 𝜎𝑒
𝛼𝜉
, 0} ,

𝑉 (𝜉) = min {𝑒
𝜆
1
𝜉
, 𝑉
0
} ,

𝑉 (𝜉) = max {𝑒𝜆1𝜉 (1 − 𝑀𝑒
𝜀𝜉
) , 0} ,

(9)

where 𝑉
0
= (𝜅𝑓(𝑁

0
) − 𝑑)/𝛾 and 𝛾 < 𝜅𝑓(𝑁

0
) − 𝑑.

Lemma 2. The function 𝑉(𝜉) satisfies inequality

𝑐𝑉
󸀠

≥ 𝑑
𝐵
𝑉
󸀠󸀠

+ 𝜅𝑓 (𝑁
0
)𝑉 − 𝑑𝑉 − 𝛾𝑉

2

, (10)

for any 𝜉 ̸= ln𝑉
0
/𝜆
1
.

Proof. Firstly, assume 𝜉 < ln𝑉
0
/𝜆
1
and, therefore, 𝑉(𝜉) =

𝑒
𝜆
1
𝜉. Since 𝑉(𝜉) satisfies (7), we have

𝑐𝑉
󸀠

− 𝑑
𝐵
𝑉
󸀠󸀠

− 𝜅𝑓 (𝑁
0
)𝑉 + 𝑑𝑉 + 𝛾𝑉

2

= 𝛾𝑉
2

≥ 0. (11)

Secondly, let 𝜉 > ln𝑉
0
/𝜆
1
, which implies𝑉(𝜉) = 𝑉

0. We have
that

𝑐𝑉
󸀠

− 𝑑
𝐵
𝑉
󸀠󸀠

− 𝜅𝑓 (𝑁
0
)𝑉 + 𝑑𝑉 + 𝛾𝑉

2

= −𝜅𝑓 (𝑁
0
)𝑉
0
+ 𝑑𝑉
0
+ 𝛾𝑉
02

= 0.

(12)

The proof is completed.

Lemma 3. For 0 < 𝛼 < min{𝑐/𝑑
𝑁
, 𝜆
1
} and 𝜎 >

max{𝑁0, 𝑓(𝑁
0
)/(𝑐 − 𝑑

𝑁
𝛼)}, the function 𝑈(𝜉) satisfies

𝑐𝑈
󸀠
≤ 𝑑
𝑁
𝑈
󸀠󸀠
− 𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) , (13)

for any 𝜉 ̸= 1/𝛼 ln(𝑁0/𝜎).

Proof. It is easy to show that 1/𝛼 ln(𝑁0/𝜎) < 0 ≤

min{0, ln𝑉
0
/𝜆
1
}.When 𝜉 > 1/𝛼 ln(𝑁0/𝜎), then𝑈(𝜉) = 0 and

the lemma is obviously true. Now, suppose 𝜉 < 1/𝛼 ln(𝑁0/𝜎).
Then 𝑈(𝜉) = 𝑁

0
− 𝜎𝑒
𝛼𝜉 and

− 𝑐𝑈
󸀠
+ 𝑑
𝑁
𝑈
󸀠󸀠
− 𝑓 (𝑈 (𝜉)) 𝑉 (𝜉)

= 𝑐𝜎𝛼𝑒
𝛼𝜉

− 𝑑
𝑁
𝜎𝛼
2
𝑒
𝛼𝜉

− 𝑓 (𝑁
0
− 𝜎𝑒
𝛼𝜉
) 𝑒
𝜆
1
𝜉

= [𝑐𝜎𝛼 − 𝑑
𝑁
𝜎𝛼
2
− 𝑓 (𝑁

0
− 𝜎𝑒
𝛼𝜉
) 𝑒
(𝜆
1
−𝛼)𝜉

] 𝑒
𝛼𝜉

≥ [(𝑐 − 𝑑
𝑁
𝛼) 𝛼𝜎 − 𝑓 (𝑁

0
)] 𝑒
𝛼𝜉

≥ 0.

(14)

Thus the proof is completed.
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Lemma 4. Let 𝜀 < 𝛼 < min{𝜆
1
, 𝜆
2
− 𝜆
1
}/2. Then for 𝑀 > 0

large enough, the function 𝑉(𝜉) satisfies

𝑐𝑉
󸀠
≤ 𝑑
𝐵
𝑉
󸀠󸀠
+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉 − 𝛾𝑉

2
, (15)

for any 𝜉 ̸= 1/𝜀 ln(1/𝑀).

Proof. It is clear that𝑈(𝜉) = 0 if and only if 𝜉 = 1/𝛼 ln(𝑁0/𝜎),
that 𝑉(𝜉) = 0 if and only if 𝜉 = 1/𝜀 ln(1/𝑀), and that
1/𝜀 ln(1/𝑀) < 1/𝛼 ln(𝑁0/𝜎) if and only if 𝑀 > (𝜎/𝑁

0
)
(𝜀/𝛼).

Assume 𝑀 > (𝜎/𝑁
0
)
(𝜀/𝛼). When 𝜉 > 1/𝜀 ln(1/𝑀), then

𝑒
𝜆
1
𝜉
(1 − 𝑀𝑒

𝜀𝜉
) < 0, 𝑉(𝜉) = 0, and Lemma 4 holds.

In this paragraph, assume 𝜉 < 1/𝜀 ln(1/𝑀). Then 𝜉 <

1/𝛼 ln(𝑁0/𝜎), 𝑈(𝜉) = 𝑁
0
− 𝜎𝑒
𝛼𝜉

> 0, and 𝑉(𝜉) = 𝑒
𝜆
1
𝜉
(1 −

𝑀𝑒
𝜀𝜉
) > 0. To prove this lemma, it is enough to show

0 ≤ 𝑒
−𝜆
1
𝜉
[𝑑
𝐵
𝑉
󸀠󸀠
− 𝑐𝑉
󸀠
+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉 − 𝛾𝑉

2
]

= 𝑑
𝐵
𝜆
2

1
− 𝑑
𝐵
𝑀(𝜆
1
+ 𝜀)
2

𝑒
𝜀𝜉

− 𝑐𝜆
1
+ 𝑐𝑀(𝜆

1
+ 𝜀) 𝑒
𝜀𝜉

− 𝑑 + 𝑑𝑀𝑒
𝜀𝜉

+ 𝜅 [𝑓 (𝑁
0
) − 𝑓
󸀠
(𝑈
0
) 𝜎𝑒
𝛼𝜉
] (1 − 𝑀𝑒

𝜀𝜉
)

− 𝛾𝑒
𝜆
1
𝜉
(1 − 𝑀𝑒

𝜀𝜉
)
2

= 𝑑
𝐵
𝜆
2

1
− 𝑐𝜆
1
+ 𝜅𝑓 (𝑁

0
) − 𝑑

+ 𝑀[−𝑑
𝐵
(𝜆
1
+ 𝜀)
2

+ 𝑐 (𝜆
1
+ 𝜀) − 𝜅𝑓 (𝑁

0
) + 𝑑] 𝑒

𝜀𝜉

− 𝜅𝑓
󸀠
(𝑈
0
) 𝜎𝑒
𝛼𝜉

−𝛾𝑒
𝜆
1
𝜉
(1 − 𝑀𝑒

𝜀𝜉
)
2

+𝑀𝜅𝑓
󸀠
(𝑈
0
) 𝜎𝑒
𝛼𝜉
𝑒
𝜀𝜉

= [ − 𝑀𝐻(𝜆
1
+ 𝜀) − 𝜅𝑓

󸀠
(𝑈
0
) 𝜎𝑒
(𝛼−𝜀)𝜉

−𝛾(1 − 𝑀𝑒
𝜀𝜉
)
2

𝑒
(𝜆
1
−𝜀)𝜉

] 𝑒
𝜀𝜉

+ 𝑀𝜅𝑓
󸀠
(𝑈
0
) 𝜎𝑒
𝛼𝜉
𝑒
𝜀𝜉
,

(16)

where 𝑈(𝜉) < 𝑈
0
< 𝑁
0. Since 𝑓

󸀠
(𝑈
0
) > 0, we only need to

show

−𝑀𝐻(𝜆
1
+ 𝜀) ≥ 𝜅𝑓

󸀠
(𝑈
0
) 𝜎𝑒
(𝛼−𝜀)𝜉

+ 𝛾(1 − 𝑀𝑒
𝜀𝜉
)
2

𝑒
(𝜆
1
−𝜀)𝜉

.

(17)

Since 𝜉 < 1/𝛼 ln(𝑁0/𝜎) < 0 by 𝜎 > 𝑁
0 and 0 < 𝑓

󸀠
(𝑁) < 𝑘

1

for any𝑁 ≥ 0, we have

𝜅𝑘
1
𝜎 > 𝜅𝑓

󸀠
(𝑈
0
) 𝜎𝑒
(𝛼−𝜀)𝜉

,

𝛾 ≥ 𝛾(1 − 𝑀𝑒
𝜀𝜉
)
2

𝑒
(𝜆
1
−𝜀)𝜉

.

(18)

Since𝐻(𝜆
1
+ 𝜀) < 0, inequality (17) is satisfied if

𝑀 > −
𝜅𝑘
1
𝜎 + 𝛾

𝐻 (𝜆
1
+ 𝜀)

. (19)

The proof is completed.

To apply Schauder’s fixed point theorem, we will intro-
duce a topology in 𝐶(R,R2). Let Λ

11
< 0 < Λ

12
be the roots

of

𝑑
𝑁
Λ
2
− 𝑐Λ − 𝛽

1
= 0 (20)

and Λ
21

< 0 < Λ
22
the roots of

𝑑
𝐵
Λ
2
− 𝑐Λ − 𝛽

2
= 0, (21)

where𝛽
1
and𝛽
2
are positive constants thatwill be determined

later. Let 𝜇 be a positive constant which can be small enough.
ForΦ(𝜉) = (𝜙

1
(𝜉), 𝜙
2
(𝜉)), define

|Φ (⋅)|
𝜇
= max{sup

𝜉∈R

󵄨󵄨󵄨󵄨𝜙1 (𝜉)
󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

, sup
𝜉∈R

󵄨󵄨󵄨󵄨𝜙2 (𝜉)
󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

} ,

𝐵
𝜇
(R,R

2
) = {Φ (⋅) ∈ 𝐶 (R,R

2
) : |Φ (⋅)|

𝜇
< +∞} .

(22)

We will find the traveling wave solution in the following
profile set:

Γ = {(𝑈 (⋅) , 𝑉 (⋅)) ∈ 𝐶 (R,R
2
) : 𝑈 (𝜉) ≤ 𝑈 (𝜉) ≤ 𝑁

0
,

𝑉 (𝜉) ≤ 𝑉 (𝜉) ≤ 𝑉 (𝜉) for any 𝜉 ∈ R} .

(23)

Obviously, Γ is closed and convex in 𝐶(R,R2). Firstly, we
change system (6) into the following form:

−𝑑
𝑁
𝑈
󸀠󸀠
+ 𝑐𝑈
󸀠
+ 𝛽
1
𝑈 = 𝐻

1
(𝑈, 𝑉) (𝜉) ,

−𝑑
𝐵
𝑉
󸀠󸀠
+ 𝑐𝑉
󸀠
+ 𝛽
2
𝑉 = 𝐻

2
(𝑈, 𝑉) (𝜉) ,

(24)

where 𝛽
1
≥ 𝑉
0, 𝛽
2
≥ 2𝛾𝑉

0
+ 𝑑 = 2[𝜅𝑓(𝑁

0
) − 𝑑] + 𝑑, and

𝐻
1
(𝑈, 𝑉) (𝜉) = 𝛽

1
𝑈 (𝜉) − 𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) ,

𝐻
2
(𝑈, 𝑉) (𝜉) = [𝛽

2
− 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉) .

(25)

Furthermore, define 𝐹 = (𝐹
1
, 𝐹
2
) : Γ → 𝐶(R,R2) by

𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=
1

𝑑
𝑁
Λ
1

[∫

𝜉

−∞

𝑒
Λ
11
(𝜉−𝑡)

𝐻
1
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
12
(𝜉−𝑡)

𝐻
1
(𝑈, 𝑉) (𝑡) 𝑑𝑡] ,

𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=
1

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡] ,

(26)

where Λ
1
= Λ
12

− Λ
11
, Λ
2
= Λ
22

− Λ
21
.

Lemma 5. Consider 𝐹(Γ) ⊂ Γ.
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Proof. Suppose (𝑈(⋅), 𝑉(⋅)) ∈ Γ; that is, 𝑈(𝜉) ≤ 𝑈(𝜉) ≤

𝑁
0
, 𝑉(𝜉) ≤ 𝑉(𝜉) ≤ 𝑉(𝜉) for any 𝜉 ∈ R. Then we will prove

that

𝑈 (𝜉) ≤ 𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑁

0
,

𝑉 (𝜉) ≤ 𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑉 (𝜉) ,

(27)

for any 𝜉 ∈ R.
If 𝜉 ≥ 𝜉

0
≜ 1/𝜀 ln(1/𝑀), then 𝑉(𝜉) = 0, which implies

that 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≥ 𝑉(𝜉) since 𝑈(𝜉) ≥ 𝑈(𝜉) ≥ 0, 𝑉(𝜉) ≥

𝑉(𝜉) ≥ 0. Assume 𝜉 < 𝜉
0
. From Lemma 4 and 𝛽

2
≥ 2𝛾𝑉

0
+𝑑,

it is clear that

− 𝑑
𝐵
𝑉
󸀠󸀠
+ 𝑐𝑉
󸀠
+ 𝛽
2
𝑉 (𝜉)

≤ [𝛽
2
− 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉)

≤ [𝛽
2
− 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉)

= 𝐻
2
(𝑈, 𝑉) (𝜉) ,

(28)

which implies that

𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=
1

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡]

≥
1

𝑑
𝐵
Λ
2

∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

[−𝑑
𝐵
𝑉
󸀠󸀠
(𝑡) + 𝑐𝑉

󸀠
(𝑡) + 𝛽

2
𝑉 (𝑡)] 𝑑𝑡

+
1

𝑑
𝐵
Λ
2

∫

𝜉
0

𝜉

𝑒
Λ
22
(𝜉−𝑡)

[−𝑑
𝐵
𝑉
󸀠󸀠
(𝑡) + 𝑐𝑉

󸀠
(𝑡) + 𝛽

2
𝑉 (𝑡)] 𝑑𝑡

+
1

𝑑
𝐵
Λ
2

∫

+∞

𝜉
0

𝑒
Λ
22
(𝜉−𝑡)

[−𝑑
𝐵
𝑉
󸀠󸀠
(𝑡) + 𝑐𝑉

󸀠
(𝑡) + 𝛽

2
𝑉 (𝑡)] 𝑑𝑡

= 𝑉 (𝜉) +
1

Λ
2

𝑒
Λ
22
(𝜉−𝜉
0
)
[𝑉
󸀠
(𝜉
0
+ 0) − 𝑉

󸀠
(𝜉
0
− 0)]

≥ 𝑉 (𝜉) ,

(29)

where the final inequality is due to𝑉
󸀠
(𝜉
0
+0) = 0 and𝑉

󸀠
(𝜉
0
−

0) < 0. In conclusion, 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≥ 𝑉(𝜉) for any 𝜉 ∈ R.

Similarly, it can be proved that

𝑈 (𝜉) ≤ 𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑁

0
,

𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑉 (𝜉) ,

(30)

for any 𝜉 ∈ R. The proof is completed.

Lemma 6. For 𝜇 small enough, map 𝐹 = (𝐹
1
, 𝐹
2
) : Γ →

𝐶(R,R2) is continuous with respect to the norm | ⋅ |
𝜇
in

𝐵
𝜇
(R,R2).

Proof. SupposeΦ
𝑖
(⋅) = (𝑈

𝑖
(⋅), 𝑉
𝑖
(⋅)) ∈ Γ, which implies

0 ≤ 𝑈
𝑖
(𝜉) ≤ 𝑁

0
, 0 ≤ 𝑉

𝑖
(𝜉) ≤ 𝑉

0
, (31)

for any 𝜉 ∈ R, where 𝑖 = 1, 2. Then we have

󵄨󵄨󵄨󵄨𝐻2 (Φ1) (𝜉) − 𝐻
2
(Φ
2
) (𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

=
󵄨󵄨󵄨󵄨(𝛽2 − 𝑑) [𝑉

1
(𝜉) − 𝑉

2
(𝜉)] − 𝛾 [𝑉

1
(𝜉) + 𝑉

2
(𝜉)]

× [𝑉
1
(𝜉) − 𝑉

2
(𝜉)] + 𝜅𝑓 (𝑈

1
(𝜉)) [𝑉

1
(𝜉) − 𝑉

2
(𝜉)]

+ 𝜅𝑉
2
(𝜉) [𝑓 (𝑈

1
(𝜉)) − 𝑓 (𝑈

2
(𝜉))]

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

≤ [𝛽
2
− 𝑑 + 2𝛾𝑉

0
+ 𝜅𝑓 (𝑁

0
)]

󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ
2
(⋅)

󵄨󵄨󵄨󵄨𝜇

+ 𝜅𝑉
2
(𝜉) 𝑓
󸀠
(𝑈
∗
)
󵄨󵄨󵄨󵄨𝑈1 (𝜉) − 𝑈

2
(𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

≤ [𝛽
2
− 𝑑 + 2𝛾𝑉

0
+ 𝜅𝑓 (𝑁

0
) + 𝜅𝑉

0
𝑓
󸀠
(0)]

󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ
2
(⋅)

󵄨󵄨󵄨󵄨𝜇

= 𝑀
1

󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ
2
(⋅)

󵄨󵄨󵄨󵄨𝜇
,

(32)

where 𝑈
∗ is between 𝑈

1
(𝜉) and 𝑈

2
(𝜉) and

𝑀
1
= 𝛽
2
− 𝑑 + 2𝛾𝑉

0
+ 𝜅𝑓 (𝑁

0
) + 𝜅𝑉

0
𝑓
󸀠
(0) > 0. (33)

Therefore,

󵄨󵄨󵄨󵄨𝐹2 (Φ1 (⋅)) (𝜉) − 𝐹
2
(Φ
2
(⋅)) (𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

≤
𝑒
−𝜇|𝜉|

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡) 󵄨󵄨󵄨󵄨𝐻2 (Φ1) (𝑡) − 𝐻

2
(Φ
2
) (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡) 󵄨󵄨󵄨󵄨𝐻2 (Φ1) (𝑡) − 𝐻

2
(Φ
2
) (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡]

≤
𝑀
1
𝑒
−𝜇|𝜉|

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)+𝜇|𝑡|

𝑑𝑡

+∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)+𝜇|𝑡|

𝑑𝑡]
󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ

2
(⋅)

󵄨󵄨󵄨󵄨𝜇
.

(34)
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Set 𝜇 < min{−Λ
21
, Λ
22
}. If 𝜉 < 0, it holds that

󵄨󵄨󵄨󵄨𝐹2 (Φ1 (⋅)) (𝜉) − 𝐹
2
(Φ
2
(⋅)) (𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

≤
𝑀
1
𝑒
𝜇𝜉

𝑑
𝐵
Λ
2

[𝑒
Λ
21
𝜉
∫

𝜉

−∞

𝑒
−(Λ
21
+𝜇)𝑡

𝑑𝑡 + 𝑒
Λ
22
𝜉
∫

0

𝜉

𝑒
−(Λ
22
+𝜇)𝑡

𝑑𝑡

+ 𝑒
Λ
22
𝜉
∫

+∞

0

𝑒
(𝜇−Λ

22
)𝑡
𝑑𝑡]

󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ
2
(⋅)

󵄨󵄨󵄨󵄨𝜇

=
𝑀
1

𝑑
𝐵
Λ
2

[
1

−Λ
21

− 𝜇
+

1 − 𝑒
(Λ
22
+𝜇)𝜉

Λ
22

+ 𝜇
+

𝑒
(Λ
22
+𝜇)𝜉

Λ
22

− 𝜇
]

×
󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ

2
(⋅)

󵄨󵄨󵄨󵄨𝜇

≤
𝑀
1

𝑑
𝐵
Λ
2

(
1

−Λ
21

− 𝜇
+

1

Λ
22

+ 𝜇
+

1

Λ
22

− 𝜇
)

×
󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ

2
(⋅)

󵄨󵄨󵄨󵄨𝜇
.

(35)

If 𝜉 ≥ 0, we have

󵄨󵄨󵄨󵄨𝐹2 (Φ1 (⋅)) (𝜉) − 𝐹
2
(Φ
2
(⋅)) (𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

≤
𝑀
1
𝑒
−𝜇𝜉

𝑑
𝐵
Λ
2

[𝑒
Λ
21
𝜉
∫

0

−∞

𝑒
−(Λ
21
+𝜇)𝑡

𝑑𝑡 + 𝑒
Λ
21
𝜉
∫

𝜉

0

𝑒
(𝜇−Λ

21
)𝑡
𝑑𝑡

+ 𝑒
Λ
22
𝜉
∫

+∞

𝜉

𝑒
(𝜇−Λ

22
)𝑡
𝑑𝑡]

󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ
2
(⋅)

󵄨󵄨󵄨󵄨𝜇

=
𝑀
1

𝑑
𝐵
Λ
2

[
𝑒
(Λ
21
−𝜇)𝜉

−Λ
21

− 𝜇
+

1 − 𝑒
(Λ
21
−𝜇)𝜉

𝜇 − Λ
21

+
1

Λ
22

− 𝜇
]

×
󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ

2
(⋅)

󵄨󵄨󵄨󵄨𝜇

≤
𝑀
1

𝑑
𝐵
Λ
2

(
1

−Λ
21

− 𝜇
+

1

𝜇 − Λ
21

+
1

Λ
22

− 𝜇
)

×
󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ

2
(⋅)

󵄨󵄨󵄨󵄨𝜇
.

(36)

Consequently, we conclude that
󵄨󵄨󵄨󵄨𝐹2 (Φ1 (⋅)) (⋅) − 𝐹

2
(Φ
2
(⋅)) (⋅)

󵄨󵄨󵄨󵄨𝜇
≤ 𝑀
2

󵄨󵄨󵄨󵄨Φ1 (⋅) − Φ
2
(⋅)

󵄨󵄨󵄨󵄨𝜇
,

(37)

where

𝑀
2
=

𝑀
1

𝑑
𝐵
Λ
2

max {
1

−Λ
21

− 𝜇
+

1

Λ
22

+ 𝜇
+

1

Λ
22

− 𝜇
,

1

−Λ
21

− 𝜇
+

1

𝜇 − Λ
21

+
1

Λ
22

− 𝜇
} .

(38)

Thus 𝐹
2

: Γ → 𝐶(R,R) is continuous with respect to the
norm | ⋅ |

𝜇
in 𝐵
𝜇
(R,R). Similarly, it can be proved that 𝐹

1
:

Γ → 𝐶(R,R) is also continuous with respect to the norm
| ⋅ |
𝜇
in 𝐵
𝜇
(R,R). The proof is completed.

Lemma 7. Map 𝐹 = (𝐹
1
, 𝐹
2
) : Γ → Γ is compact with respect

to the norm | ⋅ |
𝜇
in 𝐵
𝜇
(R,R2).

Proof. Assume Φ(⋅) = (𝑈(⋅), 𝑉(⋅)) ∈ Γ. Then we have

󵄨󵄨󵄨󵄨𝐻2 (Φ) (𝜉)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨[𝛽2 − 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝑀

3
,

(39)

where

𝑀
3
= (𝛽
2
+ 𝑑 +

𝜅𝑘
1

𝑘
2

+ 𝛾𝑉
0
)𝑉
0
. (40)

Then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝜉
𝐹
2
(Φ (⋅)) (𝜉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

𝑑
𝐵
Λ
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Λ
21

∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝐻
2
(Φ) (𝑡) 𝑑𝑡

+Λ
22

∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝐻
2
(Φ) (𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑀
3

𝑑
𝐵
Λ
2

[
󵄨󵄨󵄨󵄨Λ 21

󵄨󵄨󵄨󵄨 ∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝑑𝑡 + Λ
22

∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝑑𝑡]

=
2𝑀
3

𝑑
𝐵
Λ
2

,

(41)

which implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝜉
𝐹
2
(Φ (⋅)) (⋅)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇

<
2𝑀
3

𝑑
𝐵
Λ
2

. (42)

Consequently, |(𝑑/𝑑𝜉)𝐹
2
(Φ(⋅))(⋅)|

𝜇
is bounded. Similarly,

|(𝑑/𝑑𝜉)𝐹
1
(Φ(⋅))(⋅)|

𝜇
is also bounded, which shows that 𝐹(Γ)

is uniformly bounded and equicontinuous with respect to the
norm | ⋅ |

𝜇
.

Furthermore, for any positive integer 𝑛, we define

𝐹
𝑛
(Φ (⋅)) (𝜉) =

{{

{{

{

𝐹 (Φ (⋅)) (𝜉) , 𝜉 ∈ [−𝑛, 𝑛] ,

𝐹 (Φ (⋅)) (−𝑛) , 𝜉 ∈ (−∞, −𝑛] ,

𝐹 (Φ (⋅)) (𝑛) , 𝜉 ∈ [𝑛, +∞) .

(43)

Obviously, for fixed 𝑛, 𝐹
𝑛
(Γ) is uniformly bounded and

equicontinuous with respect to the norm | ⋅ |
𝜇
in 𝐵
𝜇
(R,R2),

implying that 𝐹𝑛 : Γ → Γ is a compact operator. Since

󵄨󵄨󵄨󵄨𝐹2 (Φ (⋅)) (𝜉)
󵄨󵄨󵄨󵄨

≤
𝑀
3

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝑑𝑡 + ∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝑑𝑡]

=
𝑀
3

𝑑
𝐵

󵄨󵄨󵄨󵄨Λ 21
󵄨󵄨󵄨󵄨 Λ 22

,

(44)
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we have
󵄨󵄨󵄨󵄨𝐹
𝑛

2
(Φ (⋅)) (⋅) − 𝐹

2
(Φ (⋅)) (⋅)

󵄨󵄨󵄨󵄨𝜇

= sup
𝜉∈R

󵄨󵄨󵄨󵄨𝐹
𝑛

2
(Φ (⋅)) (𝜉) − 𝐹

2
(Φ (⋅)) (𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

= sup
𝜉∈(−∞,−𝑛]∪[𝑛,+∞)

󵄨󵄨󵄨󵄨𝐹
𝑛

2
(Φ (⋅)) (𝜉) − 𝐹

2
(Φ (⋅)) (𝜉)

󵄨󵄨󵄨󵄨 𝑒
−𝜇|𝜉|

≤
2𝑀
3

𝑑
𝐵

󵄨󵄨󵄨󵄨Λ 21
󵄨󵄨󵄨󵄨 Λ 22

𝑒
−𝜇𝑛

󳨀→ 0, as 𝑛 󳨀→ +∞.

(45)

Similarly, we can prove that
󵄨󵄨󵄨󵄨𝐹
𝑛

1
(Φ (⋅)) (⋅) − 𝐹

1
(Φ (⋅)) (⋅)

󵄨󵄨󵄨󵄨𝜇
󳨀→ 0, (46)

when 𝑛 → +∞. Thus, |𝐹𝑛(Φ(⋅))(⋅) − 𝐹(Φ(⋅))(⋅)|
𝜇

→ 0

when 𝑛 → +∞. By Proposition 2.1 in Zeidler [30] we see
that 𝐹𝑛 converges to 𝐹 in Γ with respect to the norm | ⋅ |

𝜇
.

Consequently, 𝐹 : Γ → Γ is compact with respect to the
norm | ⋅ |

𝜇
. The proof is completed.

Lemma 8. Let 𝑐 > 𝑐
∗; then (6) has a solution (𝑈(𝜉), 𝑉(𝜉))

satisfying (3):

∫

+∞

−∞

[𝑑𝑉 (𝜂) + 𝛾𝑉
2
(𝜂)] 𝑑𝜂 = 𝜅𝑐 (𝑁

0
− 𝑁
1
) ,

0 ≤ 𝑉 (𝜉) ≤ 𝜅 (𝑁
0
− 𝑁
1
) ,

(47)

for any 𝜉 ∈ R.

Proof. Combination of Schauder’s fixed point theorem, Lem-
mas 5, 6, and 7 shows that there exists a nonnegative traveling
wave solution (𝑈

𝑐
(⋅), 𝑉
𝑐
(⋅)) ∈ Γ such that (𝑈

𝑐
(𝜉), 𝑉
𝑐
(𝜉)) →

(𝑁
0
, 0) when 𝜉 → −∞. Since (𝑈

𝑐
(⋅), 𝑉
𝑐
(⋅)) is the fixed point

of 𝐹, L’Hospital principal shows that 𝑈󸀠(−∞) = 0, 𝑉
󸀠
(−∞) =

0. Then from (6) we have that 𝑈󸀠󸀠(−∞) = 0, 𝑉
󸀠󸀠
(−∞) = 0.

Since (𝑈
𝑐
(𝜉), 𝑉
𝑐
(𝜉)) is the solution of (6), thus

𝑐𝑈
󸀠

𝑐
= 𝑑
𝑁
𝑈
󸀠󸀠

𝑐
− 𝑓 (𝑈

𝑐
) 𝑉
𝑐
,

𝑐𝑉
󸀠

𝑐
= 𝑑
𝐵
𝑉
󸀠󸀠

𝑐
+ 𝜅𝑓 (𝑈

𝑐
) 𝑉
𝑐
− 𝑑𝑉
𝑐
− 𝛾𝑉
2

𝑐
.

(48)

The first equation of (48) can be changed into

𝑐

𝑑
𝑁

𝑈
󸀠

𝑐
− 𝑈
󸀠󸀠

𝑐
= −

1

𝑑
𝑁

𝑓 (𝑈
𝑐
) 𝑉
𝑐
. (49)

Multiplying this equation by 𝑒
−𝑐/𝑑
𝑁
𝜉 yields

−[𝑒
−𝑐/𝑑
𝑁
𝜉
𝑈
󸀠

𝑐
(𝜉)]
󸀠

= −
1

𝑑
𝑁

𝑓 (𝑈
𝑐
) 𝑉
𝑐
𝑒
−𝑐/𝑑
𝑁
𝜉
. (50)

From the proof of Lemma 7, we have 𝑈
󸀠

𝑐
(𝜉) =

𝐹
󸀠

1
(𝑈
𝑐
(⋅), 𝑉
𝑐
(⋅)) (𝜉) is bounded in R. Then integrating

above equality from 𝜉 to +∞, we have

𝑈
󸀠

𝑐
(𝜉) = −

1

𝑑
𝑁

𝑒
𝑐/𝑑
𝑁
𝜉
∫

+∞

𝜉

𝑓 (𝑈
𝑐
(𝜂)) 𝑉

𝑐
(𝜂) 𝑒
−𝑐/𝑑
𝑁
𝜂
𝑑𝜂 ≤ 0,

(51)

which implies that 𝑈
𝑐
(𝜉) is nonincreasing in R and has limit

𝑁
1 as 𝜉 → +∞. By the definition of 𝑈(𝜉) and 𝑉(𝜉) there

is a 𝜉
0
< 0 such that 𝑈(𝜉) > 0 and 𝑉(𝜉) > 0 when 𝜉 < 𝜉

0
.

Therefore, if 𝜉 < 𝜉
0
, we have that 𝑈󸀠

𝑐
(𝜉) < 0 which implies

that𝑁0 > 𝑁
1
≥ 0.

Integrating the first equation of (48) from −∞ to 𝜉 gives

∫

𝜉

−∞

𝑓 (𝑈
𝑐
(𝜂)) 𝑉

𝑐
(𝜂) 𝑑𝜂 = 𝑑

𝑁
𝑈
󸀠

𝑐
(𝜉) − 𝑐 [𝑈

𝑐
(𝜉) − 𝑁

0
] ,

(52)

which implies that ∫+∞
−∞

𝑓(𝑈
𝑐
(𝜂))𝑉
𝑐
(𝜂)𝑑𝜂 < +∞. Integrating

the second equation of (48) from −∞ to 𝜉 gives

𝑐𝑉
𝑐
(𝜉) = 𝑑

𝐵
𝑉
󸀠

𝑐
(𝜉) + ∫

𝜉

−∞

𝜅𝑓 (𝑈
𝑐
(𝜂)) 𝑉

𝑐
(𝜂) 𝑑𝜂

− 𝑑∫

𝜉

−∞

𝑉
𝑐
(𝜂) 𝑑𝜂 − 𝛾∫

𝜉

−∞

𝑉
2

𝑐
(𝜂) 𝑑𝜂.

(53)

Thus ∫+∞
−∞

𝑉
𝑐
(𝜂)𝑑𝜂 < +∞ and lim

𝜉→+∞
𝑉
𝑐
(𝜉) = 0 since 𝑉

󸀠

𝑐
(𝜉)

is bounded in R. By (51) and L’Hospital principal, it follows
𝑈
󸀠

𝑐
(+∞) = 0. Then using (52) and (53) shows that

∫

+∞

−∞

[𝑑𝑉
𝑐
(𝜂) + 𝛾𝑉

2

𝑐
(𝜂)] 𝑑𝜂 = 𝜅𝑐 (𝑁

0
− 𝑁
1
) . (54)

Next, we prove that 0 ≤ 𝑉
𝑐
(𝜉) ≤ 𝑑(𝑁

0
−𝑁
1
)/(𝑑 − 𝛼

2
). Let

𝑅 (𝜉) =
1

𝑐
∫

𝜉

−∞

[𝑑𝑉
𝑐
(𝜂) + 𝛾𝑉

2

𝑐
(𝜂)] 𝑑𝜂

+
1

𝑐
∫

+∞

𝜉

𝑒
𝑐(𝜉−𝜂)/𝑑

𝐵 [𝑑𝑉
𝑐
(𝜂) + 𝛾𝑉

2

𝑐
(𝜂)] 𝑑𝜂.

(55)

It is clear that 𝑅(−∞) = 0 and 𝑅(+∞) = 𝜅(𝑁
0
− 𝑁
1
). Define

𝑆(𝜉) = 𝑉
𝑐
(𝜉) + 𝑅(𝜉). Calculations show that

𝑐𝑆
󸀠
(𝜉) − 𝑑

𝐵
𝑆
󸀠󸀠
(𝜉) = 𝜅𝑓 (𝑈

𝑐
(𝜉)) 𝑉

𝑐
(𝜉) . (56)

Multiplying this equality by 𝑒
−𝑐𝜉/𝑑

𝐵 and then integrating from
𝜉 to +∞ show that

𝑆
󸀠
(𝜉) =

𝜅

𝑑
𝐵

∫

+∞

𝜉

𝑒
𝑐(𝜉−𝜁)/𝑑

𝐵 [𝑓 (𝑈
𝑐
(𝜁)) 𝑉

𝑐
(𝜁) 𝑑𝜂] 𝑑𝜁 ≥ 0 (57)

for any 𝜉 ∈ R. Consequently, 𝑆(𝜉) is nondecreasing in R.
Since

𝑆 (+∞) = 𝑅 (+∞) = 𝜅 (𝑁
0
− 𝑁
1
) , (58)

we have that 0 ≤ 𝑉
𝑐
(𝜉) ≤ 𝜅(𝑁

0
−𝑁
1
) for any 𝜉 ∈ R.The proof

is completed.

Proof of Theorem 1. Firstly, we consider the case 𝑐 > 𝑐
∗. Let

{𝜀
𝑛
} be a sequence such that 0 < 𝜀

𝑖+1
< 𝜀
𝑖

< 1 and
𝜀
𝑛

→ 0. By Lemma 8, there exists a traveling wave solution
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Φ
𝑛
(𝜉) = (𝑈

𝑛
(𝜉), 𝑉
𝑛
(𝜉)) of system (6) for 𝛾 = 𝜀

𝑛
satisfying the

conclusion of Theorem 1. From (51), we have

󵄨󵄨󵄨󵄨󵄨
𝑈
󸀠

𝑛
(𝜉)

󵄨󵄨󵄨󵄨󵄨
=

1

𝑑
𝑁

𝑒
𝑐/𝑑
𝑁
𝜉
∫

+∞

𝜉

𝑓 (𝑈
𝑛
(𝜂)) 𝑉

𝑛
(𝜂) 𝑒
−𝑐/𝑑
𝑁
𝜂
𝑑𝜂 ≤ 0

≤

𝑓 (𝑁
0
) 𝜅 (𝑁

0
− 𝑁
1
)

𝑑
𝑁

𝑒
𝑐/𝑑
𝑁
𝜉
∫

+∞

𝜉

𝑒
−𝑐/𝑑
𝑁
𝜂
𝑑𝜂

=

𝑓 (𝑁
0
) 𝜅 (𝑁

0
− 𝑁
1
)

𝑐
.

(59)

Similarly, it can be shown that |𝑉󸀠
𝑛
(𝜉)| ≤ 𝑀

0
, where 𝑀

0
is

independent of 𝜀
𝑛
due to 𝜀

𝑛
< 1. By (6), there is a positive

constant 𝑀
4
independent of 𝜀

𝑛
such that |𝑈

󸀠󸀠

𝑛
(𝜉)|, |𝑉󸀠󸀠

𝑛
(𝜉)|,

|𝑈
󸀠󸀠󸀠

𝑛
(𝜉)|, and |𝑉

󸀠󸀠󸀠

𝑛
(𝜉)| are bounded in 𝜉 ∈ R by𝑀

4
.

Therefore, {Φ
𝑛
(𝜉)}, {Φ󸀠

𝑛
(𝜉)}, {Φ󸀠󸀠

𝑛
(𝜉)} are equicontinuous

and uniformly bounded in R. Then Arzela-Ascoli’s theorem
implies that there exists a subsequence {𝜀

𝑛
𝑘

} such that

Φ
𝑛
𝑘
(𝜉) 󳨀→ Ψ (𝜉) , Φ

󸀠

𝑛
𝑘

(𝜉) 󳨀→ Ψ
󸀠
(𝜉) ,

Φ
󸀠󸀠

𝑛
𝑘

(𝜉) 󳨀→ Ψ
󸀠󸀠
(𝜉)

(60)

uniformly in any bounded closed interval when 𝑘 → ∞ and
pointwise on R, where Ψ(𝜉) = (𝜓

1
(𝜉), 𝜓
2
(𝜉)). Since Φ

𝑛
𝑘

(𝜉) is
the solution of (6) and 𝜀

𝑛
→ 0, we get

𝑐𝜓
󸀠

1
(𝜉) = 𝑑

𝑁
𝜓
󸀠󸀠

1
(𝜉) − 𝑓 (𝜓

1
(𝜉)) 𝜓

2
(𝜉) ,

𝑐𝜓
󸀠

2
(𝜉) = 𝑑

𝐵
𝜓
󸀠󸀠

2
(𝜉) + 𝜅𝑓 (𝜓

1
(𝜉)) 𝜓

2
(𝜉) − 𝑑𝜓

2
(𝜉) .

(61)

That is, Ψ(𝜉) is a solution of (5) satisfying (3):

∫

+∞

−∞

𝜓
2
(𝜂) 𝑑𝜂 =

𝜅𝑐

𝑑
(𝑁
0
− 𝑁
1
) ,

0 ≤ 𝜓
2
(𝜉) ≤ 𝜅 (𝑁

0
− 𝑁
1
) .

(62)

To complete the proof of case 𝑐 > 𝑐
∗, we need to prove

𝑓(𝑁
1
) < 𝑑/𝜅. Integrating the second equation of system (5)

from −∞ to +∞ and noting that 𝑈(𝜉) is decreasing from𝑁
0

to𝑁
1, we have

𝑑∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉

= 𝜅∫

+∞

−∞

𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) 𝑑𝜉 > 𝜅𝑓 (𝑁
1
)∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉,

(63)

which implies 𝑓(𝑁
1
) < 𝑑/𝜅.

To prove case 𝑐 = 𝑐
∗, let the parameter 𝑐 = 𝑐

𝑛
in system

(5), 𝑐∗ < 𝑐
𝑛
< 𝑐
∗
+ 1, and 𝑐

𝑛
→ 𝑐
∗. Similar to above proof

about case 𝑐 > 𝑐
∗, we can finish the proof.

3. Nonexistence of Traveling Wave Solution

In this section, we give the conditions onwhich system (1) has
no traveling wave solutions.

Theorem 9. (I) Assume 𝑓(𝑁
0
) > 𝑑/𝜅. Then for any 0 <

𝑐 < 𝑐
∗, system (1) has no nonnegative traveling wave solutions

(𝑈(𝑥 + 𝑐𝑡), 𝑉(𝑥 + 𝑐𝑡)) satisfying boundary condition (3).
(II) Suppose 𝑓(𝑁

0
) ≤ 𝑑/𝜅. Then for any 𝑐 > 0, system (1)

has no traveling wave solutions (𝑈(𝑥+𝑐𝑡), 𝑉(𝑥+𝑐𝑡)) satisfying
boundary condition (3).

Proof of Theorem 9(I). Suppose (I) fails. That is, system
(5) has a nonnegative nontrivial traveling wave solu-
tion (𝑈(𝜉), 𝑉(𝜉)) satisfying boundary condition (3). Since
𝑈(−∞) = 𝑁

0 and 𝑓(𝑁
0
) > 𝑑/𝜅, there exists a 𝜉

0
< 0 such

that 𝑓(𝑈(𝜉)) ≥ [𝑓(𝑁
0
) + 𝑑/𝜅]/2 for any 𝜉 < 𝜉

0
. Thus, we get

𝑐𝑉
󸀠
(𝜉) = 𝑑

𝐵
𝑉
󸀠󸀠
(𝜉) + 𝜅𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) − 𝑑𝑉 (𝜉)

≥ 𝑑
𝐵
𝑉
󸀠󸀠
(𝜉) +

𝜅𝑓 (𝑁
0
) + 𝑑

2
𝑉 (𝜉) − 𝑑𝑉 (𝜉)

= 𝑑
𝐵
𝑉
󸀠󸀠
(𝜉) +

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝑉 (𝜉) ,

(64)

for any 𝜉 ≤ 𝜉
0
. That is,

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝑉 (𝜉) ≤ 𝑐𝑉

󸀠
(𝜉) − 𝑑

𝐵
𝑉
󸀠󸀠
(𝜉) , (65)

for any 𝜉 < 𝜉
0
. Now we show 𝑉

󸀠
(−∞) = 0. Denote 𝑊(𝜉) ≜

𝑉
󸀠
(𝜉). From the second equation of (5), we have

𝑑
𝐵
𝑊
󸀠
(𝜉) = 𝑐𝑊 (𝜉) + 𝐺 (𝜉) , (66)

where 𝐺(𝜉) = 𝑑𝑉(𝜉) − 𝜅𝑓(𝑈(𝜉))𝑉(𝜉). Since (𝑈(𝜉), 𝑉(𝜉))

satisfies boundary condition (3), it follows 𝐺(−∞) = 0.
If 𝑊(−∞) ̸= 0, then 𝑊(−∞) = +∞ or 𝑊(−∞) = −∞,
which imply 𝑉(−∞) = −∞ or 𝑉(−∞) = +∞ contradicting
𝑉(−∞) = 0.

Defining 𝐽(𝜉) = ∫
𝜉

−∞
𝑉(𝜂)𝑑𝜂 and integrating (65) from

−∞ to 𝜉, we have that

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝐽 (𝜉) ≤ 𝑐𝑉 (𝜉) − 𝑑

𝐵
𝑉
󸀠
(𝜉) . (67)

Integrating (67) from −∞ to 𝜉 with 𝜉 ≤ 𝜉
0
yields

𝜅𝑓 (𝑁
0
) − 𝑑

2
∫

𝜉

−∞

𝐽 (𝜂) 𝑑𝜂 + 𝑑
𝐵
𝑉 (𝜉) ≤ 𝑐𝐽 (𝜉) . (68)

Therefore, we get

𝜅𝑓 (𝑁
0
) − 𝑑

2
∫

0

−∞

𝐽 (𝜉 + 𝜂) 𝑑𝜂 ≤ 𝑐𝐽 (𝜉) , (69)

for any 𝜉 ≤ 𝜉
0
. Since 𝐽(𝜂) is increasing in R, it is clear that

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝜂𝐽 (𝜉 − 𝜂) ≤ 𝑐𝐽 (𝜉) , (70)

for any 𝜉 ≤ 𝜉
0
and 𝜂 > 0. Therefore, there is 𝜂

0
> 0 large

enough such that

𝐽 (𝜉 − 𝜂
0
) ≤

1

2
𝐽 (𝜉) , (71)
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for any 𝜉 ≤ 𝜉
0
. Let 𝑝(𝜉) = 𝐽(𝜉)𝑒

−𝜇
0
𝜉 and 𝜇

0
= (1/𝜂

0
) ln 2. We

get that

𝑝 (𝜉 − 𝜂
0
) = 𝐽 (𝜉 − 𝜂

0
) 𝑒
−𝜇
0
(𝜉−𝜂
0
)
≤

1

2
𝐽 (𝜉) 𝑒

−𝜇
0
(𝜉−𝜂
0
)
= 𝑝 (𝜉) ,

(72)

for any 𝜉 ≤ 𝜉
0
. Since 𝐽(𝜉) is bounded in R, thus 𝑝(𝜉) → 0 as

𝜉 → +∞, which implies that there exists 𝑝
0
> 0 such that

𝑝(𝜉) ≤ 𝑝
0
for any 𝜉 ∈ R. Hence, we have that

𝐽 (𝜉) ≤ 𝑝
0
𝑒
𝜇
0
𝜉
, (73)

for 𝜉 ∈ R and that there exists 𝑞
0
> 0 such that ∫𝜉

−∞
𝐽(𝜂)𝑑𝜂 ≤

𝑞
0
𝑒
𝜇
0
𝜉. In addition, inequalities (65)–(68) imply that

sup
𝜉∈R

{𝑉 (𝜉) 𝑒
−𝜇
0
𝜉
} < +∞,

sup
𝜉∈R

{
󵄨󵄨󵄨󵄨󵄨
𝑉
󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇
0
𝜉
} < +∞,

sup
𝜉∈R

{
󵄨󵄨󵄨󵄨󵄨
𝑉
󸀠󸀠
(𝜉)

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜇
0
𝜉
} < +∞.

(74)

To complete the proof, we define negative one-sided
Laplace transform as follows:

V (𝜆) = N [𝑉 (⋅)] (𝜆) := ∫

0

−∞

𝑒
−𝜆𝜉

𝑉 (𝜉) 𝑑𝜉, (75)

for 𝜆 ≥ 0. Obviously V(𝜆) is increasing in [0, 𝜆
∗
) such that

𝜆
∗

< +∞ satisfying lim
𝜆→𝜆

∗−V(𝜆) = +∞ or 𝜆
∗

= +∞.
Since sup

𝜉∈R{𝑉(𝜉)𝑒
−𝜇
0
𝜉
} < +∞, we have 𝜆

∗
≥ 𝜇
0
. Trivial

calculations show thatN[⋅] satisfies

N [𝑉
󸀠
(⋅)] (𝜆) = 𝜆V (𝜆) + 𝑉 (0) ,

N [𝑉
󸀠󸀠
(⋅)] (𝜆) = 𝜆

2
V (𝜆) + 𝜆𝑉 (0) + 𝑉

󸀠
(0) .

(76)

The second equation of (5) can be rewritten as

𝐿 [𝑉 (⋅)] (𝜉) = 𝜅 [𝑓 (𝑁
0
) − 𝑓 (𝑈 (𝜉))] 𝑉 (𝜉) , (77)

where

𝐿 [𝑉 (⋅)] (𝜉) = 𝑑
𝐵
𝑉
󸀠󸀠
(𝜉) − 𝑐𝑉

󸀠
(𝜉) + [𝜅𝑓 (𝑁

0
) − 𝑑]𝑉 (𝜉) .

(78)

Define 𝜌 = min{𝐻(𝜆) : 𝜆 ≥ 0}. Noticing 0 < 𝑐 < 𝑐
∗

yields 𝜌 > 0. Since (5) is autonomous, then for any 𝑎 ∈

R, (𝑈(𝜉 − 𝑎), 𝑉(𝜉 − 𝑎)) is also a solution of (5) satisfying
boundary condition (3) and 𝑈(𝜉 − 𝑎) → 𝑁

0 as 𝑎 → +∞.
Hence, without losing generality we can assume

𝜅 [𝑓 (𝑁
0
) − 𝑓 (𝑈 (𝜉))] <

𝜌

2
, (79)

for all 𝜉 ≤ 0. That is,

𝐿 [𝑉 (⋅)] (𝜉) ≤
𝜌

2
𝑉 (𝜉) . (80)

Applying the operator N[⋅] to this inequality and using the
properties ofN[⋅] concluded above yield that

𝜌

2
V (𝜆) ≥ N [𝐿 [𝑉 (⋅)] (⋅)] (𝜆) ≥ 𝐻 (𝜆)V (𝜆) + 𝑞 (𝜆) , (81)

where𝐻(𝜆) is the characteristic function of (7) and

𝑞 (𝜆) = 𝑑
𝐵
𝑉
󸀠
(0) + (𝑑

𝐵
𝜆 − 𝑐)𝑉 (0) . (82)

Consequently, we have

H (𝜆) := [𝐻 (𝜆) −
𝜌

2
]V (𝜆) + 𝑞 (𝜆) ≤ 0. (83)

If 𝜆
∗

< +∞, then lim
𝜆→𝜆

∗−V(𝜆) = +∞ and, therefore,
lim
𝜆→𝜆

∗−H(𝜆) = +∞, which is a contradiction. If 𝜆∗ = +∞,
we have that lim

𝜆→+∞
H(𝜆) = +∞ by the monotonicity of

V(𝜆) and the definitions of 𝐻(𝜆) and 𝑞(𝜆), which is still a
contradiction. The proof of Theorem 9(I) is completed.

Proof of Theorem 9(II). Suppose (𝑈(𝜉), 𝑉(𝜉)) is a nontrivial
solution of system (5) satisfying boundary condition (3).
Similar to the arguments about (66), it is easy to show that
𝑉
󸀠
(±∞) = 0. Then integrating the second equation of (5)

from −∞ to +∞ yields

𝑑∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉

= 𝜅∫

+∞

−∞

𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) 𝑑𝜉 < 𝜅𝑓 (𝑁
0
)∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉

≤ 𝑑∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉,

(84)

which is a contradiction. The proof is completed.
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