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Coefficient conditions, distortion bounds, extreme points, convolution, convex combinations, and neighborhoods for a new class
of harmonic univalent functions in the open unit disc are investigated. Further, a class preserving integral operator and connections
with various previously known results are briefly discussed.

1. Introduction

A continuous complex-valued function 𝑓 = 𝑢 + 𝑖V is said to
be harmonic in a simply connected domain 𝐷 ⊂ C if both 𝑢
and V are real harmonic in 𝐷. There is a close interrelation
between analytic functions and harmonic functions. For
example, for real harmonic functions 𝑢 and V, there exist
analytic functions𝑈 and𝑉 so that 𝑢 = Re(𝑈) and V = Im(𝑉).
Then 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧), where ℎ and 𝑔 are, respectively, the
analytic functions (𝑈 + 𝑉)/2 and (𝑈 − 𝑉)/2. In this case, the
Jacobian of 𝑓 = ℎ + 𝑔 is given by 𝐽𝑓 = |ℎ

󸀠(𝑧)|2 − |𝑔󸀠(𝑧)|2.
The mapping 𝑧 → 𝑓(𝑧) is orientation preserving and locally
one-to-one in 𝐷 if and only if 𝐽𝑓 > 0 in 𝐷. The function
𝑓 = ℎ + 𝑔 is said to be harmonic univalent in 𝐷 if the
mapping 𝑧 → 𝑓(𝑧) is orientation preserving, harmonic,
and one-to-one in 𝐷. We call ℎ the analytic part and 𝑔 the
coanalytic part of 𝑓 (see Clunie and Sheil-Small [1]).

Denote by H the class of functions 𝑓 = ℎ + 𝑔 that are
harmonic univalent and orientation preserving in the open
unit disk U = {𝑧 : |𝑧| < 1} for which 𝑓(0) = 𝑓𝑧(0) − 1 =
0. Then for 𝑓 = ℎ + 𝑔 ∈ H, we may express the analytic
functions 𝑓 and 𝑔 as

ℎ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎𝑛𝑧
𝑛,

𝑔 (𝑧) =
∞

∑
𝑛=1

𝑏𝑛𝑧
𝑛,

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 < 1.

(1)

Note that H reduces to the class S of normalized analytic
univalent functions if the coanalytic part of its members is
zero. For this class the function 𝑓(𝑧)may be expressed as

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎𝑛𝑧
𝑛. (2)

A function 𝑓 = ℎ + 𝑔 with ℎ and 𝑔 given by (1) is said to be
harmonic starlike of order 𝛽 (0 ≤ 𝛽 < 1) for |𝑧| = 𝑟 < 1, if

𝜕

𝜕𝜃
(arg𝑓 (𝑟𝑒𝑖𝜃)) = Re(

𝑧ℎ󸀠 (𝑧) − 𝑧𝑔󸀠 (𝑧)

ℎ (𝑧) + 𝑔 (𝑧)
) ≥ 𝛽. (3)

The class of all harmonic starlike functions of order 𝛽 is
denoted by S∗𝐻(𝛽) and extensively studied by Jahangiri [2].
The cases 𝛽 = 0 and 𝑏1 = 0 were studied by Silverman and
Silvia [3] and Silverman [4]. Other related works of the class
H also appeared in [5–16].

Definition 1. Let 𝑓 = ℎ+𝑔where ℎ and 𝑔 are given by (1). Let
0 ≤ 𝛽 < 1 and 𝛼 ≥ 0. Then 𝑓 ∈ S∗𝐻(𝛼, 𝛽) if and only if

Re(
𝛼𝑧2ℎ󸀠󸀠 (𝑧) + 𝑧ℎ󸀠 (𝑧) + 𝛼𝑧2𝑔󸀠󸀠 (𝑧) + (2𝛼 − 1) 𝑧𝑔󸀠 (𝑧)

ℎ (𝑧) + 𝑔 (𝑧)
)

≥ 𝛽.

(4)

We note that for 𝛼 = 0, the class S∗𝐻(𝛼, 𝛽) reduces to the
class S∗𝐻(𝛽). Further, if the coanalytic part 𝑔(𝑧) is zero, the
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classS∗𝐻(𝛼, 𝛽) reduces to the classP(𝛼, 𝛽) of functions𝑓 ∈ S
which satisfy the condition

Re(
𝛼𝑧2𝑓󸀠󸀠 (𝑧) + 𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
) ≥ 𝛽 (5)

for some 𝛽 (0 ≤ 𝛽 < 1), 𝛼 ≥ 0, 𝑓(𝑧)/𝑧 ̸= 0 and 𝑧 ∈ U.
Observe that the classesP(𝛼, 𝛽) andP(𝛼, 0)were introduced
and studied by many authors and these include, for example,
by Obradovic and Joshi [17], Padmanabhan [18], Li and Owa
[19], Xu andYang [20], Singh andGupta [21], and Lashin [22].
We also note that for 𝛼 = 0, the classP(0, 𝛽) was studied by
Silverman [23].

2. Main Results

The first theorem of this section determines the sufficient
coefficient condition for functions 𝑓 = ℎ + 𝑔 to belong to the
classS∗𝐻(𝛼, 𝛽). The following lemma obtained by Jahangiri is
needed.

Lemma 2 (see [2, Theorem 1]). Let 𝑓 = ℎ + 𝑔 with ℎ and 𝑔 of
the form (1) and let

∞

∑
𝑛=2

𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ 1, (6)

where 0 ≤ 𝛽 < 1. Then 𝑓 is harmonic, orientation preserving,
and univalent in U, and 𝑓 ∈ S∗𝐻(𝛽).

Theorem 3. Let 𝑓 = ℎ + 𝑔 where ℎ and 𝑔 are of the form (1).
If

∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ 1

(7)

for some 𝛽, (0 ≤ 𝛽 < 1) and 𝛼 ≥ 0, then 𝑓 is harmonic,
orientation preserving, and univalent in U and 𝑓 ∈ S∗𝐻(𝛼, 𝛽).

Proof. Since (𝑛 − 𝛽) ≤ 𝛼𝑛(𝑛 − 1) + 𝑛 − 𝛽 and 𝑛 + 𝛽 ≤
𝛼𝑛(𝑛 + 1) + 𝑛 + 𝛽, (𝑛 ≥ 1), it follows from Lemma 2 that
𝑓 ∈ S∗𝐻(𝛽) and hence 𝑓 is harmonic, orientation preserving,
and univalent in U. Now, we only need to show that if (7)
holds then

Re(
𝛼𝑧2ℎ󸀠󸀠 (𝑧) + 𝑧ℎ󸀠 (𝑧) + 𝛼𝑧2𝑔󸀠󸀠 (𝑧) + (2𝛼 − 1) 𝑧𝑔󸀠 (𝑧)

ℎ (𝑧) + 𝑔 (𝑧)
)

= Re 𝐴 (𝑧)
𝐵 (𝑧)

≥ 𝛽.

(8)

Using the fact that Re(𝑤) ≥ 𝛽 if and only if |1 − 𝛽 + 𝑤| ≥
|1 + 𝛽 − 𝑤|, it suffices to show that

󵄨󵄨󵄨󵄨𝐴 (𝑧) + (1 − 𝛽) 𝐵 (𝑧)
󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝐴 (𝑧) − (1 + 𝛽) 𝐵 (𝑧)

󵄨󵄨󵄨󵄨 ≥ 0, (9)

where

𝐴 (𝑧) = 𝛼𝑧
2ℎ󸀠󸀠 (𝑧) + 𝑧ℎ

󸀠
(𝑧) + 𝛼𝑧2𝑔󸀠󸀠 (𝑧) + (2𝛼 − 1) 𝑧𝑔󸀠 (𝑧),

𝐵 (𝑧) = ℎ (𝑧) + 𝑔 (𝑧).

(10)

Substituting for 𝐴(𝑧) and 𝐵(𝑧) in (9), we obtain

󵄨󵄨󵄨󵄨𝐴 (𝑧) + (1 − 𝛽) 𝐵 (𝑧)
󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝐴 (𝑧) − (1 + 𝛽) 𝐵 (𝑧)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(2 − 𝛽) 𝑧 +

∞

∑
𝑛=2

((𝛼𝑛 + 1) (𝑛 − 1) + 2 − 𝛽) 𝑎𝑛𝑧
𝑛

+
∞

∑
𝑛=1

(𝛼𝑛 (𝑛 + 1) − (𝑛 − 1 + 𝛽)) 𝑏𝑛𝑧
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−𝛽𝑧 +

∞

∑
𝑛=2

((𝛼𝑛 + 1) (𝑛 − 1) − 𝛽) 𝑎𝑛𝑧
𝑛

+
∞

∑
𝑛=1

(𝛼𝑛 (𝑛 + 1) − (𝑛 + 1 + 𝛽)) 𝑏𝑛𝑧
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ (2 − 𝛽) |𝑧|

−
∞

∑
𝑛=2

((𝛼𝑛 + 1) (𝑛 − 1) + 2 − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

−
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝛼𝑛 (𝑛 + 1) − (𝑛 − 1 + 𝛽)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛 − 𝛽 |𝑧|

−
∞

∑
𝑛=2

((𝛼𝑛 + 1) (𝑛 − 1) − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

−
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝛼𝑛 (𝑛 + 1) − (𝑛 + 1 + 𝛽)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

≥ 2 (1 − 𝛽) |𝑧|

− 2
∞

∑
𝑛=2

(𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

− 2
∞

∑
𝑛=1

(𝛼𝑛 (𝑛 + 1) + (𝑛 + 𝛽))
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

≥ 2 (1 − 𝛽) |𝑧|

× (1 −
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

−
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + (𝑛 + 𝛽)

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) ≥ 0,

(11)

by the given condition (7).
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The harmonic function

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

1 − 𝛽

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽
𝑥𝑛𝑧
𝑛

+
∞

∑
𝑛=2

1 − 𝛽

𝛼𝑛 (𝑛 + 1) + (𝑛 + 𝛽)
𝑦𝑛𝑧
𝑛,

(12)

where ∑∞𝑛=2 |𝑥𝑛| + ∑
∞
𝑛=1 |𝑦𝑛| = 1 shows that the coefficient

bound given in (7) is sharp. The functions of the form (12)
are in S∗𝐻(𝛼, 𝛽) since

∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

=
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑦𝑛
󵄨󵄨󵄨󵄨 = 1.

(13)

Remark 4. Setting 𝑔(𝑧) = 0 in Theorem 3 yields the result
obtained by Lashin [22, Theorem 2.1].

We denote by S
∗

𝐻(𝛼, 𝛽) the class of functions 𝑓 ∈
S∗𝐻(𝛼, 𝛽) whose coefficients satisfy the condition (7).

Theorem5. Let 0 ≤ 𝛼1 < 𝛼2 and 0 ≤ 𝛽 < 1.ThenS
∗

𝐻(𝛼2, 𝛽) ⊂

S
∗

𝐻(𝛼1, 𝛽).

Proof. For 𝑓 ∈ S
∗

𝐻(𝛼2, 𝛽), it follows from (7) that

∞

∑
𝑛=2

𝛼1𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝛼1𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

<
∞

∑
𝑛=2

𝛼2𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼2𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ 1.

(14)

Hence 𝑓 ∈ S
∗

𝐻(𝛼1, 𝛽).

As a consequence ofTheorem 5, the functions inS
∗

𝐻(𝛼, 𝛽)
are starlike harmonic in U.

Corollary 6. For 𝛼 ≥ 0 and 0 ≤ 𝛽 < 1, S∗𝐻(𝛼, 𝛽) ⊂ S∗𝐻(𝛽).

3. Distortion Bounds and Extreme Points

In this section, we obtain the distortion bounds and extreme
points for functions in the class S

∗

𝐻(𝛼, 𝛽).

Theorem 7. Let 𝑓 = ℎ + 𝑔 where ℎ and 𝑔 are of the form (1)
and 𝑓 ∈ S

∗

𝐻(𝛼, 𝛽). Then for |𝑧| = 𝑟 < 1, we have

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ (1 +

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟

+ (
1 − 𝛽

2𝛼 + 2 − 𝛽
−
2𝛼 + 1 + 𝛽

2𝛼 + 2 − 𝛽

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟
2,

(15)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≥ (1 −

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟

− (
1 − 𝛽

2𝛼 + 2 − 𝛽
−
2𝛼 + 1 + 𝛽

2𝛼 + 2 − 𝛽

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟
2,

(16)

where

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 ≤

1 − 𝛽

2𝛼 + 1 + 𝛽
. (17)

The result is sharp.

Proof. We shall prove the first inequality. Let 𝑓 ∈ S
∗

𝐻(𝛼, 𝛽).
Then we have

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ (1 +

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟 +

∞

∑
𝑛=2

(
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) 𝑟
𝑛

≤ (1 +
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟 + 𝑟

2
∞

∑
𝑛=2

(
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨)

= (1 +
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟 +

1 − 𝛽

2𝛼 + 2 − 𝛽

×
∞

∑
𝑛=2

2𝛼 + 2 − 𝛽

1 − 𝛽
(
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) 𝑟
2

(18)

and so
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 ≤ (1 +
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟

+
1 − 𝛽

2𝛼 + 2 − 𝛽

×
∞

∑
𝑛=2

(
𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) 𝑟
2

≤ (1 +
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟

+
1 − 𝛽

2𝛼 + 2 − 𝛽
(1 −

2𝛼 + 1 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟
2

= (1 +
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟

+ (
1 − 𝛽

2𝛼 + 2 − 𝛽
−
2𝛼 + 1 + 𝛽

2𝛼 + 2 − 𝛽

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑟
2.

(19)

The proof of the inequality (16) is similar to the proof of
the inequality (15), thus we omit it.
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The upper bound given for 𝑓 ∈ S
∗

𝐻(𝛼, 𝛽) is sharp and the
equality occurs for the function

𝑓 (𝑧) = 𝑧 +
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 𝑧

+ (
1 − 𝛽

2𝛼 + 2 − 𝛽
−
2𝛼 + 1 + 𝛽

2𝛼 + 2 − 𝛽

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨) 𝑧
2

(𝑧 = 𝑟) ,

(20)

where |𝑏1| ≤ (1 − 𝛽)/(2𝛼 + 1 + 𝛽). This completes the proof of
Theorem 7.

Now, we determine the extreme points of the closed
convex hull of the class S

∗

𝐻(𝛼, 𝛽) denoted by clcoS
∗

𝐻(𝛼, 𝛽).

Theorem8. Let𝑓 = ℎ+𝑔where ℎ and 𝑔 are given by (1).Then
𝑓 ∈ 𝑐𝑙𝑐𝑜S

∗

𝐻(𝛼, 𝛽) if and only if

𝑓 (𝑧) =
∞

∑
𝑛=1

(𝑋𝑛ℎ𝑛 + 𝑌𝑛𝑔𝑛) , (21)

where

ℎ1 (𝑧) = 𝑧,

ℎ𝑛 (𝑧) = 𝑧 +
1 − 𝛽

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽
𝑧𝑛 (𝑛 = 2, 3, . . .) ;

𝑔𝑛 (𝑧) = 𝑧 +
1 − 𝛽

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽
𝑧𝑛 (𝑛 = 1, 2, 3, . . .) ,

∞

∑
𝑛=1

(𝑋𝑛 + 𝑌𝑛) = 1, 𝑋𝑛 ≥ 0, 𝑌𝑛 ≥ 0.

(22)

In particular, the extreme points of the class S
∗

𝐻(𝛼, 𝛽) are {ℎ𝑛}
and {𝑔𝑛}, respectively.

Proof. For a function 𝑓 of the form (21), we have

𝑓 (𝑧) =
∞

∑
𝑛=1

(𝑋𝑛ℎ𝑛 + 𝑌𝑛𝑔𝑛)

=
∞

∑
𝑛=1

(𝑋𝑛 + 𝑌𝑛) 𝑧

+
∞

∑
𝑛=2

1 − 𝛽

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽
𝑋𝑛𝑧
𝑛

+
∞

∑
𝑛=1

1 − 𝛽

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽
𝑌𝑛𝑧
𝑛

= 𝑧 +
∞

∑
𝑛=2

1 − 𝛽

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽
𝑋𝑛𝑧
𝑛

+
∞

∑
𝑛=1

1 − 𝛽

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽
𝑌𝑛𝑧
𝑛.

(23)

But

∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽
(

1 − 𝛽

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽
𝑋𝑛)

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽
(

1 − 𝛽

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽
𝑌𝑛)

=
∞

∑
𝑛=2

𝑋𝑛 +
∞

∑
𝑛=1

𝑌𝑛 = 1 − 𝑋1 ≤ 1.

(24)

Thus 𝑓 ∈ clcoS
∗

𝐻(𝛼, 𝛽).
Conversely, suppose that 𝑓 ∈ clcoS

∗

𝐻(𝛼, 𝛽). Set

𝑋𝑛 =
𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 (𝑛 = 2, 3, . . .) ,

𝑌𝑛 =
𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (𝑛 = 1, 2, 3, . . .) .

(25)

Then by the inequality (7), we have 0 ≤ 𝑋𝑛 ≤ 1 (𝑛 =
2, 3, . . .) and 0 ≤ 𝑌𝑛 ≤ 1 (𝑛 = 1, 2, . . .). Define 𝑋1 =
1 − ∑

∞
𝑛=2𝑋𝑛 − ∑

∞
𝑛=1 𝑌𝑛 and note that 𝑋1 ≥ 0. Thus we obtain

𝑓(𝑧) = ∑
∞
𝑛=1(𝑋𝑛ℎ𝑛 + 𝑌𝑛𝑔𝑛). This completes the proof of the

theorem.

4. Convolution and Convex Combinations

For two harmonic functions

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝑏𝑛𝑧
𝑛,

𝐹 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝐴𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝐵𝑛𝑧
𝑛

(26)

we define their convolution

(𝑓 ∗ 𝐹) (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎𝑛𝐴𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝑏𝑛𝐵𝑛𝑧
𝑛. (27)

Using this definition,we show that the classS
∗

𝐻(𝛼, 𝛽) is closed
under convolution.

Theorem 9. For 0 ≤ 𝛽 < 1 and 𝛼 ≥ 0, let 𝑓, 𝐹 ∈ S
∗

𝐻(𝛼, 𝛽).
Then 𝑓 ∗ 𝐹 ∈ S

∗

𝐻(𝛼, 𝛽).
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Proof. We note that |𝐴𝑛| ≤ 1 and |𝐵𝑛| ≤ 1. For the
convolution (𝑓 ∗ 𝐹), we have

∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝐴𝑛𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝐵𝑛𝑏𝑛
󵄨󵄨󵄨󵄨

≤
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ 1.

(28)

Therefore 𝑓 ∗ 𝐹 ∈ S
∗

𝐻(𝛼, 𝛽).

We show that the class S
∗

𝐻(𝛼, 𝛽) is closed under convex
combination of its members.

Theorem 10. The class S
∗

𝐻(𝛼, 𝛽) is closed under convex
combination.

Proof. For 𝑖 = 1, 2, 3, . . ., let𝑓𝑖 ∈ S
∗

𝐻(𝛼, 𝛽)where𝑓𝑖(𝑧) is given
by

𝑓𝑖 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎𝑛𝑖𝑧
𝑛 +
∞

∑
𝑛=1

𝑏𝑛𝑖𝑧
𝑛. (29)

Then by (7), we have
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛𝑖
󵄨󵄨󵄨󵄨 ≤ 1.

(30)

For ∑∞𝑖=1 𝑡𝑖 = 1, 0 ≤ 𝑡𝑖 ≤ 1, the convex combination of 𝑓𝑖 may
be written as
∞

∑
𝑖=1

𝑡𝑖𝑓𝑖 = 𝑧 +
∞

∑
𝑛=2

(
∞

∑
𝑖=1

𝑡𝑖𝑎𝑛𝑖)𝑧
𝑛 +
∞

∑
𝑛=1

(
∞

∑
𝑖=1

𝑡𝑖𝑏𝑛𝑖)𝑧
𝑛. (31)

Then by (7), we have
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑖=1

𝑡𝑖𝑎𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑖=1

𝑡𝑖𝑏𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∞

∑
𝑖=1

𝑡𝑖 (
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛𝑖
󵄨󵄨󵄨󵄨)

≤
∞

∑
𝑖=1

𝑡𝑖 = 1.

(32)

Therefore ∑∞𝑖=1 𝑡𝑖𝑓𝑖 ∈ S
∗

𝐻(𝛼, 𝛽).

5. Neighborhood Results

Following the earlier investigations by Goodman [24],
Ruscheweyh [25], Altintas et al. [26], and Porwal and Aouf
[27], we define the 𝛿-neighborhood of function 𝑓(𝑧) ∈H by

𝑁𝛿 (𝑓) = {𝐹 ∈H : 𝐹 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝐴𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝐵𝑛𝑧
𝑛,

∞

∑
𝑛=2

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛 − 𝐴𝑛

󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛 − 𝐵𝑛

󵄨󵄨󵄨󵄨 ≤ 𝛿} .

(33)

In particular, for the identity function 𝑒(𝑧) = 𝑧, we
immediately have

𝑁𝛿 (𝑒) = {𝐹 ∈H : 𝐹 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝐴𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝐵𝑛𝑧
𝑛,

∞

∑
𝑛=2

𝑛
󵄨󵄨󵄨󵄨𝐴𝑛

󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝐵𝑛
󵄨󵄨󵄨󵄨 ≤ 𝛿} .

(34)

Theorem 11. S∗𝐻(𝛼, 𝛽) ⊆ 𝑁𝛿(𝑒), where

𝛿 =
(1 − 𝛽) (2𝛼 + 1)

(𝛼 + 1) (2𝛼 + 1 − 𝛽)
. (35)

Proof. Let 𝑓 ∈ S
∗

𝐻(𝛼, 𝛽). Then, in view of (7), since 𝛼𝑛(𝑛 −
1) + 𝑛 − 𝛽 and 𝛼𝑛(𝑛 + 1) + 𝑛 + 𝛽 are increasing functions of
𝑛 (𝑛 ≥ 1), we have

(2𝛼 + 1 − 𝛽)(
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨)

≤ (2𝛼 + 2 − 𝛽)
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + (2𝛼 + 1 + 𝛽)

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

≤
∞

∑
𝑛=2

(𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

(𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽)
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ (1 − 𝛽) ,

(36)

which yields

∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

1 − 𝛽

(2𝛼 + 1 − 𝛽)
. (37)
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On the other hand, we also find from (7)

((𝛼 + 1)
∞

∑
𝑛=2

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 − 𝛽
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

+ ((𝛼 + 1)
∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 − 𝛽
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨)

≤
∞

∑
𝑛=2

((𝛼 (𝑛 − 1) + 1) 𝑛 − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

((𝛼 (𝑛 + 1) + 1) 𝑛 + 𝛽)
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

≤ (1 − 𝛽) .

(38)

From (37) and (38), we obtain

(𝛼 + 1) (
∞

∑
𝑛=2

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨)

≤ (1 − 𝛽) + 𝛽(
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨)

= (1 − 𝛽) + 𝛽
1 − 𝛽

(2𝛼 + 1 − 𝛽)
,

(39)

which is equivalent to

∞

∑
𝑛=2

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +
∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

(1 − 𝛽) (2𝛼 + 1)

(𝛼 + 1) (2𝛼 + 1 − 𝛽)
= 𝛿. (40)

6. A Family of Class Preserving
Integral Operator

In this section, we consider the closure property of the class
S
∗

𝐻(𝛼, 𝛽) under the Bernardi integral operator 𝐹(𝑧), which is
defined by

𝐹 (𝑧) =
𝑐 + 1

𝑧𝑐
∫
𝑧

0
𝑡𝑐−1ℎ (𝑡) 𝑑𝑡 +

𝑐 + 1

𝑧𝑐
∫
𝑧

0
𝑡𝑐−1𝑔 (𝑡) 𝑑𝑡

(𝑐 > −1) .

(41)

Theorem 12. Let 𝑓 = ℎ + 𝑔 be in the class S
∗

𝐻(𝛼, 𝛽), where ℎ
and 𝑔 are given by (1). Then 𝐹(𝑧) defined by (41) also belongs
to the class S

∗

𝐻(𝛼, 𝛽).

Proof. From the representation of 𝐹, it follows that

𝐹 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑐 + 1

𝑐 + 𝑛
𝑎𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝑐 + 1

𝑐 + 𝑛
𝑏𝑛𝑧
𝑛. (42)

Now
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽
(
𝑐 + 1

𝑐 + 𝑛

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽
(
𝑐 + 1

𝑐 + 𝑛

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨)

≤
∞

∑
𝑛=2

𝛼𝑛 (𝑛 − 1) + 𝑛 − 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

+
∞

∑
𝑛=1

𝛼𝑛 (𝑛 + 1) + 𝑛 + 𝛽

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤ 1

(43)

by (7). Thus 𝐹(𝑧) ∈ S
∗

𝐻(𝛼, 𝛽).
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