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For an analytic univalent function 𝑓(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑎
𝑛
𝑧𝑛 in the unit disk, it is well-known that 𝑎𝑛

 ≤ 𝑛 for 𝑛 ≥ 2. But the inequality
𝑎𝑛

 ≤ 𝑛 does not imply the univalence of 𝑓. This motivated several authors to determine various radii constants associated with
the analytic functions having prescribed coefficient bounds. In this paper, a survey of the related work is presented for analytic
and harmonic mappings. In addition, we establish a coefficient inequality for sense-preserving harmonic functions to compute the
bounds for the radius of univalence, radius of full starlikeness/convexity of order 𝛼 (0 ≤ 𝛼 < 1) for functions with prescribed
coefficient bound on the analytic part.

1. Introduction

Let A denote the class of all analytic functions 𝑓 defined in
the open unit disk D := {𝑧 ∈ C : |𝑧| < 1} normalized by
𝑓(0) = 0 = 𝑓(0) − 1. For functions 𝑓 of the form

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛 (1)

belonging to the subclass S of A consisting of univalent
functions, de Branges [1] proved the famous Bieberbach
conjecture that |𝑎

𝑛
| ≤ 𝑛 for 𝑛 ≥ 2. However, the inequality

|𝑎
𝑛
| ≤ 𝑛 (𝑛 ≥ 2) does not imply that 𝑓 is univalent. A

function 𝑓 given by (1) whose coefficients satisfy |𝑎
𝑛
| ≤ 𝑛 for

𝑛 ≥ 2 is necessarily analytic inD by the usual comparison test
and hence a member of A. But it need not be univalent. For
example, the function

𝑓 (𝑧) = 𝑧 − 2𝑧2 − 3𝑧3 − ⋅ ⋅ ⋅ = 2𝑧 −
𝑧

(1 − 𝑧)2
(2)

satisfies the inequality |𝑎
𝑛
| ≤ 𝑛 (𝑛 ≥ 2) but its derivative

vanishes inside D and so the function 𝑓 is not univalent in
D. It is therefore of interest to determine the largest subdisk

|𝑧| < 𝜌 < 1 in which the functions 𝑓 satisfying the inequality
|𝑎
𝑛
| ≤ 𝑛 are univalent. Motivated by this problem, various

radii problems associated with analytic as well as harmonic
functions having prescribed coefficient bounds have been
studied and we present a brief review of the research on this
topic. Recall that given two subsets F and G of A, the G-
radius in F is the largest 𝑅 such that, for every 𝑓 ∈ F,
𝑟−1𝑓(𝑟𝑧) ∈ G for each 𝑟 ≤ 𝑅.

1.1. Analytic Case. Most of the classes in univalent function
theory are characterized by the quantities 𝑧𝑓(𝑧)/𝑓(𝑧) or 1 +
𝑧𝑓(𝑧)/𝑓(𝑧) lying in a given domain in the right half-plane.
For instance, the subclasses S∗(𝛼) and K(𝛼) (0 ≤ 𝛼 < 1)
of S consisting of starlike functions of order 𝛼 and convex
functions of order 𝛼, respectively, are defined analytically by
the equivalences

𝑓 ∈ S
∗

(𝛼) ⇐⇒ Re(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) > 𝛼,

𝑓 ∈ K (𝛼) ⇐⇒ Re(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
+ 1) > 𝛼.

(3)
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2 Abstract and Applied Analysis

These classes were introduced by Robertson [2]. The classes
S∗ := S∗(0) and K := K(0) are the familiar classes of
starlike and convex functions, respectively. Goodman [3]
introduced the class UCV of uniformly convex functions
𝑓 ∈ A, which map every circular arc 𝛾 contained in D with
center 𝜁 ∈ D onto a convex arc. For 𝑓 ∈ A, Rønning [4] and
Ma and Minda [5] independently proved that

𝑓 ∈ UCV ⇐⇒ Re(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
+ 1) >



𝑧𝑓 (𝑧)

𝑓 (𝑧)


(𝑧 ∈ D) .

(4)

Closely related to the classUCV is the class S
𝑃
of parabolic

starlike functions, introduced by Rønning [4] consisting of
functions 𝑓 = 𝑧𝑔 where 𝑔 ∈ UCV; that is, a function 𝑓 ∈
S
𝑃
satisfies

Re(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) >



𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1


(𝑧 ∈ D) . (5)

In 1970, Gavrilov [6] showed that the radius of univalence
for functions 𝑓 ∈ A satisfying |𝑎

𝑛
| ≤ 𝑛 (𝑛 ≥ 2) is the real

root 𝑟
0
≃ 0.164 of the equation 2(1− 𝑟)3 − (1+ 𝑟) = 0. In 1982,

Yamashita [7] showed that the radius of univalence obtained
by Gavrilov [6] is also the radius of starlikeness for functions
𝑓 ∈ A satisfying |𝑎

𝑛
| ≤ 𝑛. Yamashita [7] also proved that the

radius of convexity for functions 𝑓 ∈ A satisfying |𝑎
𝑛
| ≤ 𝑛

(𝑛 ≥ 2) is the real root 𝑟
0
≃ 0.090 of the equation 2(1 − 𝑟)4 −

(1 + 4𝑟 + 𝑟2) = 0.
The inequality |𝑎

𝑛
| ≤ 𝑀 holds for functions 𝑓 ∈ A

satisfying |𝑓(𝑧)| ≤ 𝑀. Gavrilov [6] proved that the radius of
univalence for functions 𝑓 ∈ A satisfying |𝑎

𝑛
| ≤ 𝑀 (𝑛 ≥ 2)

is 1 − √𝑀/(1 +𝑀), which also turned out to be their radius
of starlikeness, a result proved by Yamashita [7]. The radius
of convexity for functions 𝑓 ∈ A satisfying |𝑎

𝑛
| ≤ 𝑀 (𝑛 ≥ 2)

is the real root of the equation (𝑀+1)(1− 𝑟)3 −𝑀(1+𝑟) = 0.
For 0 ≤ 𝑏 ≤ 1, let A

𝑏
denote the class of functions 𝑓

given by (1) with |𝑎
2
| = 2𝑏. Since the second coefficient of

normalized univalent functions determines their important
properties such as Koebe-one-quarter theorem, growth and
distortion theorems, the last author [8] obtained the sharp
S∗(𝛼),K(𝛼) (0 ≤ 𝛼 < 1),UCV and S

𝑃
radii for functions

𝑓 ∈ A
𝑏
satisfying |𝑎

𝑛
| ≤ 𝑛, |𝑎

𝑛
| ≤ 𝑀, or |𝑎

𝑛
| ≤ 𝑀/𝑛 (𝑀 > 0)

for 𝑛 ≥ 3. Observe that a function 𝑓 ∈ A with Re𝑓(𝑧) > 0
satisfies |𝑎

𝑛
| ≤ 2/𝑛 for 𝑛 ≥ 2. Indeed, Ravichandran [8]

proved the following theorem, which includes the results of
Gavrilov [6] and Yamashita [7] as special cases.

Theorem 1 (see [8]). Let 𝑓 ∈ A
𝑏
be given by (1) with |𝑎

𝑛
| ≤ 𝑛

for 𝑛 ≥ 3. Then we have the following.

(i) 𝑓 satisfies the inequality


𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1


< 1 − 𝛼 (6)

in |𝑧| < 𝑟
0
where 𝑟

0
= 𝑟
0
(𝛼) is the real root in (0, 1)

of the equation 1 − 𝛼 + (1 + 𝛼) 𝑟 = 2(1 − 𝛼 + (2 −

𝛼)(1 − 𝑏) 𝑟)(1 − 𝑟)3. In particular, the number 𝑟
0
(𝛼)

is also the radius of starlikeness of order 𝛼 and the
number 𝑟

0
(1/2) is the radius of parabolic starlikeness

of the given functions.
(ii) 𝑓 satisfies the inequality



𝑧𝑓 (𝑧)

𝑓 (𝑧)


< 1 − 𝛼 (7)

in |𝑧| < 𝑠
0
where 𝑠

0
= 𝑠
0
(𝛼) is the real root in (0, 1)

of the equation 2(1 − 𝛼 + 2(2 − 𝛼)(1 − 𝑏) 𝑟)(1 − 𝑟)4 =

1−𝛼+4𝑟+(1+𝛼) 𝑟2. In particular, the number 𝑠
0
(𝛼) is

also the radius of convexity of order 𝛼 and the number
𝑠
0
(1/2) is the radius of uniform convexity of the given

functions.

The results are sharp for the function

𝑓
0
(𝑧) = 2𝑧 + 2 (1 − 𝑏) 𝑧

2 −
𝑧

(1 − 𝑧)2

= 𝑧 − 2𝑏𝑧2 − 3𝑧3 − 4𝑧4 − ⋅ ⋅ ⋅ .

(8)

It is observed that [9] if a function 𝑓 ∈ A satisfies
Re(𝑓(𝑧) + 𝑧𝑓(𝑧)) > 0 for 𝑧 ∈ D, then |𝑎

𝑛
| ≤ 2/𝑛2. Similarly,

Reade [10] proved that a close-to-star function𝑓 ∈ A satisfies
|𝑎
𝑛
| ≤ 𝑛2 for 𝑛 ≥ 2. However, the converse in both the cases is

not true, in general. Recently, Mendiratta et al. [11] obtained
sharp radii of starlikeness of order 𝛼 (0 ≤ 𝛼 < 1), convexity
of order 𝛼 (0 ≤ 𝛼 < 1), parabolic starlikeness and uniform
convexity for the classA

𝑏
when |𝑎

𝑛
| ≤ 𝑀/𝑛2 or |𝑎

𝑛
| ≤ 𝑀𝑛2

(𝑀 > 0) for 𝑛 ≥ 3. Ali et al. [12] also worked in the similar
direction and obtained similar radii constants.

1.2. Harmonic Case. In a simply connected domainΩ ⊂ C, a
complex-valued harmonic function 𝑓 has the representation
𝑓 = ℎ + 𝑔, where ℎ and 𝑔 are analytic in Ω. We call the
functions ℎ and 𝑔 the analytic and the coanalytic parts of 𝑓,
respectively. LetH denote the class of all harmonic functions
𝑓 = ℎ + 𝑔 in D normalized so that ℎ and 𝑔 take the form

ℎ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛,

𝑔 (𝑧) =
∞

∑
𝑛=1

𝑏
𝑛
𝑧𝑛.

(9)

Since the Jacobian of 𝑓 is given by 𝐽
𝑓

= |ℎ|2 − |𝑔|2, by
a theorem of Lewy [13], 𝑓 is sense-preserving if and only
if |𝑔| < |ℎ|, or equivalently if ℎ(𝑧) ̸= 0 and the second
dilatation 𝑤

𝑓
= 𝑔/ℎ satisfies |𝑤

𝑓
(𝑧)| < 1 in D. Let Hsp be

the subclass of H consisting of sense-preserving functions.
Then it is easy to see that |𝑏

1
| < 1 for functions in the class

Hsp. Set H
0 := {𝑓 ∈ H : 𝑏

1
= 0} and H0sp := Hsp ∩ H0.

Finally, letS
𝐻
andS0

𝐻
be subclasses ofHsp andH

0

sp, respec-
tively, consisting of univalent functions.

One of the important questions in the study of class S0
𝐻

and its subclasses is related to coefficient bounds. In 1984,
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Clunie and Sheil-Small [14] conjectured that the Taylor coef-
ficients of the series of ℎ and 𝑔 satisfy the inequality

𝑎𝑛
 ≤

1

6
(2𝑛 + 1) (𝑛 + 1) ,

𝑏𝑛
 ≤

1

6
(2𝑛 − 1) (𝑛 − 1) ,

∀𝑛 ≥ 2

(10)

and it is still open.These researchers proposed this coefficient
conjecture because the harmonic Koebe function𝐾 = 𝐻+𝐺
where

𝐻(𝑧) =
𝑧 − (1/2) 𝑧2 + (1/6) 𝑧3

(1 − 𝑧)3

= 𝑧 +
1

6

∞

∑
𝑛=2

(𝑛 + 1) (2𝑛 + 1) 𝑧
𝑛,

𝐺 (𝑧) =
(1/2) 𝑧2 + (1/6) 𝑧3

(1 − 𝑧)3

=
1

6

∞

∑
𝑛=2

(𝑛 − 1) (2𝑛 − 1) 𝑧
𝑛

(11)

is expected to play the extremal role in the classS0
𝐻
. However,

this conjecture is proved for all functions 𝑓 ∈ S0
𝐻
with real

coefficients and all functions𝑓 ∈ S0
𝐻
for which either𝑓(D) is

starlike with respect to the origin, close-to-convex, or convex
in one direction (see [14–16]).

If 𝑓 ∈ S0
𝐻
for which 𝑓(D) is convex, Clunie and Sheil-

Small [14] proved that the Taylor coefficients of ℎ and𝑔 satisfy
the inequalities

𝑎𝑛
 ≤

𝑛 + 1

2
,

𝑏𝑛
 ≤

𝑛 − 1

2
, ∀𝑛 ≥ 2, (12)

and equality occurs for the harmonic half-plane mapping

𝐿 (𝑧) = 𝑀 (𝑧) + 𝑁 (𝑧),

𝑀 (𝑧) :=
𝑧 − (1/2) 𝑧2

(1 − 𝑧)2
,

𝑁 (𝑧) :=
− (1/2) 𝑧2

(1 − 𝑧)2
.

(13)

LetK0
𝐻
and S∗0

𝐻
be subclasses of S0

𝐻
consisting of func-

tions 𝑓 for which 𝑓(D) is convex and 𝑓(D) is starlike with
respect to origin, respectively. Recall that convexity and star-
likeness are not hereditary properties for univalent harmonic
mappings (see [17–19]). Chuaqui et al. [19] introduced the
notion of fully starlike and fully convex harmonic functions
that do inherit the properties of starlikeness and convex-
ity, respectively. The last two authors [18] generalized this
concept to fully starlike functions of order 𝛼 and fully con-
vex harmonic functions of order𝛼 for 0 ≤ 𝛼 < 1. LetFS∗

𝐻
(𝛼)

and FK
𝐻
(𝛼) (0 ≤ 𝛼 < 1) be subclasses of S

𝐻
consisting

of fully starlike functions of order 𝛼 and fully convex func-
tions of order 𝛼, with FS∗

𝐻
:= FS∗

𝐻
(0) and FK

𝐻
:=

FK
𝐻
(0).The functions in the classesFS∗

𝐻
(𝛼) andFK

𝐻
(𝛼)

are characterized by the conditions (𝜕/𝜕𝜃) arg𝑓(𝑟𝑒𝑖𝜃) > 𝛼

and (𝜕/𝜕𝜃)(arg{(𝜕/𝜕𝜃)𝑓(𝑟𝑒𝑖𝜃)}) > 𝛼 for every circle |𝑧| = 𝑟,
𝑧 = 𝑟𝑒𝑖𝜃, respectively, where 0 ≤ 𝜃 < 2𝜋, 0 < 𝑟 < 1.

The radius of full convexity of the class K0
𝐻
is √2 − 1

while the radius of full convexity of the class S∗0
𝐻

is 3 − √8
(see [14, 16, 20]). The corresponding problems for the radius
of full starlikeness are still unsolved. However, Kalaj et al.
[21] worked in this direction and determined the radius of
univalence and full starlikeness of functions 𝑓 = ℎ+𝑔 whose
coefficients satisfy the conditions (10) and (12). This, in turn,
provides a bound for the radius of full starlikeness for convex
and starlike mappings inS0

𝐻
. These results are generalized in

context of fully starlike and fully convex functions of order 𝛼
(0 ≤ 𝛼 < 1) in [18]. The authors [18] proved the following
result.

Theorem 2 (see [18]). Let ℎ and 𝑔 have the form (9) with 𝑏
1
=

𝑔(0) = 0 and 0 ≤ 𝛼 < 1. Then we have the following.

(a) If the coefficients of the series satisfy the conditions (10),
then 𝑓 = ℎ + 𝑔 is univalent and fully starlike of order
𝛼 in the disk |𝑧| < 𝑟

𝑆
, where 𝑟

𝑆
= 𝑟
𝑆
(𝛼) is the real root

in (0, 1) of the equation 2(1 − 𝛼)(1 − 𝑟)4 + 𝛼(1 − 𝑟)2 −

(1 + 𝑟)2 = 0.

(b) If the coefficients of the series satisfy the conditions (12),
then 𝑓 = ℎ+𝑔 is univalent and fully starlike of order 𝛼
in the disk |𝑧| < 𝑟

𝑆
, where 𝑟

𝑆
= 𝑟
𝑆
(𝛼) is the real root in

(0, 1) of the equation (2−𝛼)(1−𝑟)3+𝛼𝑟(1−𝑟)2−1−𝑟 = 0.

Moreover, the results are sharp for each 𝛼 ∈ [0, 1).

Theorem 2 gives the bounds for the radius of full starlike-
ness of order 𝛼 (0 ≤ 𝛼 < 1) for the classes S∗0

𝐻
and K0

𝐻
. In

addition, the authors in [18] also determined the bounds for
the radius of full convexity of order 𝛼 (0 < 𝛼 < 1) for these
classes.

The analytic part of harmonic mappings plays a vital role
in shaping their geometric properties. For instance, if 𝑓 =
ℎ+𝑔 ∈ Hsp and ℎ is convex univalent, then𝑓 ∈ S

𝐻
andmaps

D onto a close-to-convex domain (see [14, Theorem 5.17, p.
20]). However, if 𝑓 = ℎ+𝑔 ∈ Hsp where ℎ and 𝑔 are given by
(9) and |𝑎

𝑛
| ≤ 1 for 𝑛 ≥ 2, then 𝑓 need not be even univalent;

for example, the function

𝑓 (𝑧) = 𝑧 −
𝑧2

2
+

𝑧2

2
−

𝑧3

3
, 𝑧 ∈ D (14)

belongs to Hsp but is not univalent in D since 𝑓(𝑧
0
) =

𝑓(𝑧
0
) = 3/4 where 𝑧

0
= (3 + √3𝑖)/4 ∈ D. Note that a convex

univalent function 𝑧 + 𝑎
2
𝑧2 + 𝑎

3
𝑧3 + ⋅ ⋅ ⋅ satisfies |𝑎

𝑛
| ≤ 1

for 𝑛 = 2, 3, . . .. This paper aims to determine the coefficient
inequalities and radius constants for certain subfamilies of
Hsp with the prescribed coefficient bound on the analytic
part.
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A coefficient inequality for functions in the class Hsp is
obtained in Section 2 which, in particular, improves the coef-
ficient inequality proved by Polatoğlu et al. [22] for perturbed
harmonicmappings. Using this inequality, the bounds for the
radius of univalence, full starlikeness, and full convexity of
order 𝛼 (0 ≤ 𝛼 < 1) are obtained for functions 𝑓 = ℎ + 𝑔 ∈

H0sp where the coefficients of the analytic part ℎ satisfy one of
the conditions |𝑎

𝑛
| ≤ 𝑛, |𝑎

𝑛
| ≤ 1, or |𝑎

𝑛
| ≤ 1/𝑛 for 𝑛 ≥ 2.

In addition, we will also discuss a case under which these
bounds can be improved.

In the third section, sharp bounds on 𝛽 (depending upon
𝛼 and |𝑏

1
|) are determined for a function 𝑓 = ℎ + 𝑔 ∈

H, where ℎ and 𝑔 are given by (9), satisfying either of the
following two conditions:
∞

∑
𝑛=2

𝑛
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛
𝑏𝑛

 ≤ 𝛽 or
∞

∑
𝑛=2

𝑛2
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛2
𝑏𝑛

 ≤ 𝛽,

(15)

to be either fully starlike of order 𝛼 or fully convex of order 𝛼.
The obtained results are applied to hypergeometric functions
in Section 4.

2. A Coefficient Inequality and
Radius Constants

Firstly, we will obtain a coefficient inequality for functions in
the classHsp.

Theorem 3. Let 𝑓 = ℎ + 𝑔 ∈ H
𝑠𝑝
, where ℎ and 𝑔 are given by

(9). Then

𝑏𝑛
 ≤

𝑏1

𝑎𝑛

 +
(1 −

𝑏1

2

)

𝑛

𝑛−1

∑
𝑘=1

𝑘
𝑎𝑘

 , (16)

for 𝑛 ≥ 2, with 𝑎
1
= 1. In particular, one has

𝑏𝑛
 ≤

1

𝑛

𝑛

∑
𝑘=1

𝑘
𝑎𝑘

 , 𝑛 = 2, 3, . . . . (17)

Proof. Since 𝑓 ∈ Hsp, the function 𝑤(𝑧) = 𝑔(𝑧)/ℎ(𝑧) =

∑
∞

𝑛=0
𝑤
𝑛
𝑧𝑛 is analytic in D and |𝑤(𝑧)| < 1 in D. On equating

the coefficients of 𝑧𝑛−1 in 𝑔(𝑧) = 𝑤(𝑧) ℎ(𝑧), we obtain

𝑛𝑏
𝑛
= 𝑎
1
𝑤
𝑛−1

+ 2𝑤
𝑛−2

𝑎
2
+ 3𝑤
𝑛−3

𝑎
3

+ ⋅ ⋅ ⋅ + (𝑛 − 1)𝑤
1
𝑎
𝑛−1

+ 𝑛𝑤
0
𝑎
𝑛
,

(18)

where 𝑎
1

= 1. Since |𝑤
𝑛
| ≤ 1 − |𝑤

0
|2 (see [23, p. 172]), it

immediately follows that

𝑛
𝑏𝑛

 ≤ (1 −
𝑤0


2

)
𝑛−1

∑
𝑘=1

𝑘
𝑎𝑘

 + 𝑛
𝑤0


𝑎𝑛

 , (𝑎
1
= 1) . (19)

Since 𝑤
0
= 𝑔(0)/ℎ(0) = 𝑏

1
, the desired result follows.

For specific choices of the analytic part ℎ in a harmonic
function 𝑓 = ℎ + 𝑔 ∈ Hsp, Theorem 3 yields the following
result.

Corollary 4. Let 𝑓 = ℎ + 𝑔 ∈ H
𝑠𝑝
, where ℎ and 𝑔 are given

by (9). Then we have the following.

(i) If |𝑎
𝑛
| ≤ 𝑛 or, in particular, ℎ is univalent, then |𝑏

𝑛
| ≤

(2𝑛 + 1)(𝑛 + 1)/6, 𝑛 = 2, 3, . . ..

(ii) If |𝑎
𝑛
| ≤ 1 or, in particular, ℎ is convex univalent, then

|𝑏
𝑛
| ≤ (𝑛 + 1)/2, 𝑛 = 2, 3, . . ..

(iii) If |𝑎
𝑛
| ≤ 1/𝑛 or, in particular, Re ℎ(𝑧) > 0, then |𝑏

𝑛
| ≤

1, 𝑛 = 2, 3, . . ..

Remark 5. Polatoğlu et al. [22] determined the coefficient
inequality for harmonic functions in a subclass of Hsp, for
which the analytic part is a univalent function in D. They
proved that if 𝑓 = ℎ + 𝑔 ∈ Hsp where ℎ and 𝑔 are given
by (9) and if ℎ is univalent in D, then

𝑏𝑛
 ≤

1

𝑛
(2𝑛6 − 𝑛2 − 4𝑛 − 6) , 𝑛 = 1, 2, . . . . (20)

It is evident that Corollary 4(i) improves this bound.

Now, we will determine the radius of univalence, radius
of full starlikeness/full convexity of order 𝛼 (0 ≤ 𝛼 < 1) for
the classH0sp with specific choices of the coefficient bound on
the analytic part. We will make use of the following sufficient
coefficient conditions for a harmonic function to be in the
classes FS∗

𝐻
(𝛼) and FK

𝐻
(𝛼) (0 ≤ 𝛼 < 1) that directly

follow from the corresponding results in [24, 25].

Lemma 6 (see [24, 25]). Let 𝑓 = ℎ + 𝑔, where ℎ and 𝑔 are
given by (9) and let 0 ≤ 𝛼 < 1. Then we have the following.

(i) If

∞

∑
𝑛=2

𝑛 − 𝛼

1 − 𝛼

𝑎𝑛
 +
∞

∑
𝑛=1

𝑛 + 𝛼

1 − 𝛼

𝑏𝑛
 ≤ 1, (21)

then 𝑓 ∈ FS∗
𝐻
(𝛼).

(ii) If

∞

∑
𝑛=2

𝑛 (𝑛 − 𝛼)

1 − 𝛼

𝑎𝑛
 +
∞

∑
𝑛=1

𝑛 (𝑛 + 𝛼)

1 − 𝛼

𝑏𝑛
 ≤ 1, (22)

then 𝑓 ∈ FK
𝐻
(𝛼).

Theorem 7. Let 𝑓 = ℎ + 𝑔 ∈ H0
𝑠𝑝
, where ℎ and 𝑔 are given

by (9) with 𝑏
1
= 𝑔(0) = 0 and 0 ≤ 𝛼 < 1. Then we have the

following.

(i) If |𝑎
𝑛
| ≤ 𝑛 or, in particular, ℎ is univalent, then 𝑓 is

univalent and fully starlike of order 𝛼 in the disk |𝑧| <
𝑟
1
where 𝑟

1
= 𝑟
1
(𝛼) is the real root of the equation

12 (1 − 𝛼) 𝑟4 + (49𝛼 − 48) 𝑟3 + 8 (9 − 8𝛼) 𝑟2

+ 3 (11𝛼 − 18) 𝑟 + 6 (1 − 𝛼) = 0
(23)

in the interval (0, 1).
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(ii) If |𝑎
𝑛
| ≤ 1 or, in particular, ℎ is convex univalent, then

𝑓 is univalent and fully starlike of order 𝛼 in the disk
|𝑧| < 𝑟

2
where 𝑟

2
= 𝑟
2
(𝛼) is the real root of the equation

4 (1 − 𝛼) 𝑟
3 + (9𝛼 − 12) 𝑟

2 + (12 − 7𝛼) 𝑟

− 2 (1 − 𝛼) = 0
(24)

in the interval (0, 1).
(iii) If |𝑎

𝑛
| ≤ 1/𝑛 or, in particular, Re ℎ(𝑧) > 0, then 𝑓 is

univalent and fully starlike of order 𝛼 in the disk |𝑧| <
𝑟
3
where 𝑟

3
= 𝑟
3
(𝛼) is the real root of the equation

2 (1 − 𝛼) 𝑟
3 + (5𝛼 − 4) 𝑟

2 + (1 − 3𝛼) 𝑟

− 2𝛼 (1 − 𝑟)
2 log (1 − 𝑟) = 0

(25)

in the interval (0, 1).

Proof. Since 𝑓 = ℎ + 𝑔 ∈ H0sp, we obtain

𝑏𝑛
 ≤

1

𝑛

𝑛−1

∑
𝑘=1

𝑘
𝑎𝑘

 , (𝑛 ≥ 2; 𝑎
1
= 1) , (26)

by applying Theorem 3. We will make use of (26) to obtain
the coefficient bounds for 𝑏

𝑛
in three different cases specified

in the theorem. For 𝑟 ∈ (0, 1), let 𝑓
𝑟
: D → C be defined

by

𝑓
𝑟
(𝑧) :=

𝑓 (𝑟𝑧)

𝑟
= 𝑧 +

∞

∑
𝑛=2

𝑎
𝑛
𝑟𝑛−1𝑧𝑛 +

∞

∑
𝑛=2

𝑏
𝑛
𝑟𝑛−1𝑧𝑛. (27)

We will show that 𝑓
𝑟
∈ FS∗

𝐻
(𝛼). In view of Lemma 6(i), it

suffices to show that the sum

𝑆 =
∞

∑
𝑛=2

𝑛 − 𝛼

1 − 𝛼

𝑎𝑛
 𝑟
𝑛−1 +

∞

∑
𝑛=2

𝑛 + 𝛼

1 − 𝛼

𝑏𝑛
 𝑟
𝑛−1 (28)

is bounded above by 1 for 0 ≤ 𝑟 < 𝑟
𝑖
for 𝑖 = 1, 2, 3.

(i) Since |𝑎
𝑛
| ≤ 𝑛, it is easy to deduce that |𝑏

𝑛
| ≤ (𝑛 −

1)(2𝑛 − 1)/6 by (26). Using these coefficient bounds in (28)
and simplifying, we have

𝑆 ≤
1

6 (1 − 𝛼)
[2
∞

∑
𝑛=2

𝑛3𝑟𝑛−1 + (3 + 2𝛼)
∞

∑
𝑛=2

𝑛2𝑟𝑛−1

+ (1 − 9𝛼)
∞

∑
𝑛=2

𝑛𝑟𝑛−1 +
𝛼𝑟

1 − 𝑟
] .

(29)

Thus 𝑆 ≤ 1 if 𝑟 satisfy the inequality

2
∞

∑
𝑛=2

𝑛3𝑟𝑛−1 + (2𝛼 + 3)
∞

∑
𝑛=2

𝑛2𝑟𝑛−1

+ (1 − 9𝛼)
∞

∑
𝑛=2

𝑛𝑟𝑛−1 +
𝛼𝑟

1 − 𝑟
≤ 6 (1 − 𝛼) .

(30)

By using the identities

𝑟

(1 − 𝑟)2
=
∞

∑
𝑛=1

𝑛𝑟𝑛,

𝑟 (1 + 𝑟)

(1 − 𝑟)3
=
∞

∑
𝑛=1

𝑛2𝑟𝑛,

𝑟 (𝑟2 + 4𝑟 + 1)

(1 − 𝑟)4
=
∞

∑
𝑛=1

𝑛3𝑟𝑛

(31)

the last inequality reduces to

2 (𝑟2 + 4𝑟 + 1)

(1 − 𝑟)4
+ (2𝛼 + 3)

1 + 𝑟

(1 − 𝑟)3

+
1 − 9𝛼

(1 − 𝑟)2
+

𝛼

1 − 𝑟
≤ 12 (1 − 𝛼)

(32)

or equivalently

2 (𝑟2 + 4𝑟 + 1) + (2𝛼 + 3) (1 − 𝑟2)

+ (1 − 9𝛼) (1 − 𝑟)
2 + 𝛼(1 − 𝑟)

3

≤ 12 (1 − 𝛼) (1 − 𝑟)
4.

(33)

This gives

12 (1 − 𝛼) 𝑟
4 + (49𝛼 − 48) 𝑟

3 + 8 (9 − 8𝛼) 𝑟
2

+ 3 (11𝛼 − 18) 𝑟 + 6 (1 − 𝛼) ≥ 0.
(34)

Thus by Lemma 6(i), 𝑓
𝑟
∈ FS∗

𝐻
(𝛼) for 𝑟 ≤ 𝑟

1
where 𝑟

1
is the

real root of (23) in (0, 1). In particular,𝑓 is univalent and fully
starlike of order 𝛼 in |𝑧| < 𝑟

1
.

(ii) If |𝑎
𝑛
| ≤ 1 then (26) gives |𝑏

𝑛
| ≤ (𝑛 − 1)/2. These

coefficient bounds lead to the following inequality for the sum
(28):

𝑆 ≤
1

2 (1 − 𝛼)

× [
∞

∑
𝑛=2

𝑛2𝑟𝑛−1 + (1 + 𝛼)
∞

∑
𝑛=2

𝑛𝑟𝑛−1 −
3𝛼𝑟

1 − 𝑟
] .

(35)

Therefore it follows that 𝑆 ≤ 1 if 𝑟 satisfy the inequality

∞

∑
𝑛=2

𝑛2𝑟𝑛−1 + (1 + 𝛼)
∞

∑
𝑛=2

𝑛𝑟𝑛−1 −
3𝛼𝑟

1 − 𝑟
≤ 2 (1 − 𝛼) . (36)

Making use of identities (31) in the last inequality, we obtain

1 + 𝑟

(1 − 𝑟)3
+

1 + 𝛼

(1 − 𝑟)2
−

3𝛼

1 − 𝑟
≤ 4 (1 − 𝛼) , (37)

which simplifies to

2 (1 − 𝛼) + (7𝛼 − 12) 𝑟 + (12 − 9𝛼) 𝑟
2 − 4 (1 − 𝛼) 𝑟

3 ≥ 0.

(38)
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Lemma 6(i) shows that 𝑓
𝑟
∈ FS∗

𝐻
(𝛼) for 𝑟 ≤ 𝑟

2
where 𝑟

2
is

the real root of (24) in (0, 1). In particular, 𝑓 is univalent and
fully starlike of order 𝛼 in |𝑧| < 𝑟

2
.

(iii) Using (26), it is easily seen that |𝑏
𝑛
| ≤ (𝑛−1)/𝑛. Using

the coefficient bounds for |𝑎
𝑛
| and |𝑏

𝑛
| in (28), it follows that

𝑆 ≤
1

1 − 𝛼
[
∞

∑
𝑛=2

𝑛𝑟𝑛−1 − 2𝛼
∞

∑
𝑛=2

1

𝑛
𝑟𝑛−1 +

𝛼𝑟

1 − 𝑟
] . (39)

The sum 𝑆 ≤ 1 if 𝑟 satisfy the inequality
∞

∑
𝑛=2

𝑛𝑟𝑛−1 − 2𝛼
∞

∑
𝑛=2

1

𝑛
𝑟𝑛−1 +

𝛼𝑟

1 − 𝑟
≤ 1 − 𝛼. (40)

Using (31) and the identity − log(1− 𝑟) = 𝑟+ 𝑟2/2+ 𝑟3/3+ ⋅ ⋅ ⋅ ,
the last inequality reduces to

1

(1 − 𝑟)2
+

2𝛼

𝑟
log (1 − 𝑟) +

𝛼

1 − 𝑟
≤ 2 (1 − 𝛼) , (41)

which is equivalent to

2 (1 − 𝛼) 𝑟
3 + (5𝛼 − 4) 𝑟

2 + (1 − 3𝛼) 𝑟

− 2𝛼(1 − 𝑟)
2 log (1 − 𝑟) ≥ 0.

(42)

By applying Lemma 6(i), 𝑓
𝑟
∈ FS∗

𝐻
(𝛼) for 𝑟 ≤ 𝑟

3
where 𝑟

3
is

the real root of (25) in (0, 1). In particular, 𝑓 is univalent and
fully starlike of order 𝛼 in |𝑧| < 𝑟

3
. This completes the proof

of the theorem.

Remark 8. By (26), it follows that |𝑏
2
| ≤ 1/2 for all functions

𝑓 ∈ H0sp. The bound 1/2 is sharp for the function 𝑓
0
(𝑧) =

𝑧 + 𝑧2/2 ∈ H0sp. Since 𝑓
0
is univalent in D, the coefficient

inequality |𝑏
2
| ≤ 1/2 remains sharp in the subclass S0

𝐻
.

Clunie and Sheil-Small [14] were the first to observe the sharp
inequality |𝑏

2
| ≤ 1/2 for functions in the class S0

𝐻
.

Remark 9. Let 𝑓 = ℎ + 𝑔 ∈ H0sp, where ℎ and 𝑔 are given
by (9). In the proof of part (i) of Theorem 7, we noticed that
if |𝑎
𝑛
| ≤ 𝑛 then |𝑏

𝑛
| ≤ (𝑛 − 1)(2𝑛 − 1)/6. The bound for

|𝑏
𝑛
| coincides with conjectured bound for |𝑏

𝑛
| when 𝑓 ∈ S0

𝐻

proposed by Clunie and Sheil-Small [14].

The next theorem calculates the radius of full convexity of
order 𝛼 (0 ≤ 𝛼 < 1) for the class H0sp under certain choices
of the coefficient bound on the analytic part.

Theorem 10. Let 𝑓 = ℎ + 𝑔 ∈ H0sp, where ℎ and 𝑔 are given
by (9) with 𝑏

1
= 𝑔(0) = 0 and 0 ≤ 𝛼 < 1. Then we have the

following.

(a) If |𝑎
𝑛
| ≤ 𝑛 or, in particular, ℎ is univalent, then𝑓 is fully

convex of order 𝛼 in the disk |𝑧| < 𝑠
1
where 𝑠

1
= 𝑠
1
(𝛼)

is the real root of the equation

2 (1 − 𝛼) 𝑟
5 − 10 (1 − 𝛼) 𝑟

4 + 2 (10 − 11𝛼) 𝑟
3

+ 3 (7𝛼 − 6) 𝑟
2 + (15 − 8𝛼) 𝑟 − (1 − 𝛼) = 0

(43)

in the interval (0, 1).

(b) If |𝑎
𝑛
| ≤ 1 or, in particular, ℎ is convex univalent, then

𝑓 is fully convex of order 𝛼 in the disk |𝑧| < 𝑠
2
where

𝑠
2
= 𝑠
2
(𝛼) is the real root of the equation

2 (1 − 𝛼) 𝑟
4 − 8 (1 − 𝛼) 𝑟

3 + 2 (6 − 5𝛼) 𝑟
2

− 5 (1 − 𝛼) 𝑟 + (1 − 𝛼) = 0
(44)

in the interval (0, 1).
(c) If |𝑎

𝑛
| ≤ 1/𝑛 or, in particular, Re ℎ(𝑧) > 0, then 𝑓

is fully convex of order 𝛼 in the disk |𝑧| < 𝑠
3
where

𝑠
3
= 𝑠
3
(𝛼) is the real root of the equation

2 (1 − 𝛼) 𝑟
3 − 2 (3 − 2𝛼) 𝑟

2 + (7 − 3𝛼) 𝑟

− (1 − 𝛼) = 0
(45)

in the interval (0, 1).

Proof. Following the method of the proof of Theorem 7, it
suffices to show that the function 𝑓

𝑟
defined by (27) belongs

toFK
𝐻
(𝛼). Using the coefficient bounds |𝑎

𝑛
| ≤ 𝑛 and |𝑏

𝑛
| ≤

(𝑛 − 1)(2𝑛 − 1)/6, we deduce that

𝑆 =
∞

∑
𝑛=2

𝑛 (𝑛 − 𝛼)

1 − 𝛼

𝑎𝑛
 𝑟
𝑛−1 +

∞

∑
𝑛=2

𝑛 (𝑛 + 𝛼)

1 − 𝛼

𝑏𝑛
 𝑟
𝑛−1

≤
1

6 (1 − 𝛼)
[2
∞

∑
𝑛=2

𝑛4𝑟𝑛−1 + (2𝛼 + 3)
∞

∑
𝑛=2

𝑛3𝑟𝑛−1

+ (1 − 9𝛼)
∞

∑
𝑛=2

𝑛2𝑟𝑛−1 + 𝛼
∞

∑
𝑛=2

𝑛𝑟𝑛−1] .

(46)

According to Lemma 6(ii), we need to show that 𝑆 ≤ 1, or
equivalently

2
∞

∑
𝑛=2

𝑛4𝑟𝑛−1 + (2𝛼 + 3)
∞

∑
𝑛=2

𝑛3𝑟𝑛−1

+ (1 − 9𝛼)
∞

∑
𝑛=2

𝑛2𝑟𝑛−1 + 𝛼
∞

∑
𝑛=2

𝑛𝑟𝑛−1 ≤ 6 (1 − 𝛼) .

(47)

Using (31) and the identity ∑
∞

𝑛=1
𝑛4𝑟𝑛 = 𝑟(1 + 𝑟)(1 + 10𝑟 +

𝑟2)/(1 − 𝑟)5, the last inequality reduces to

(1 − 𝛼) + (8𝛼 − 15) 𝑟 + (18 − 21𝛼) 𝑟
2

+ (22𝛼 − 20) 𝑟
3 + 10 (1 − 𝛼) 𝑟

4 − 2 (1 − 𝛼) 𝑟
5 ≥ 0.

(48)

Lemma 6(ii) shows that 𝑓
𝑟
∈ FK

𝐻
(𝛼) for 𝑟 ≤ 𝑠

1
where 𝑠

1
is

the real root of (43) in (0, 1). In particular, 𝑓 is fully convex
of order 𝛼 in |𝑧| < 𝑠

1
. This proves (a).The proof of (b) and (c)

follows on similar lines.

The sharpness of the radii constants for the class H0sp
obtained in Theorems 7 and 10 is still unresolved. However,
these constants can be shown to be sharp for certain sub-
classes ofH0 as seen by the following theorem.
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Theorem 11. Let 𝐴
𝑛
, 𝐵
𝑛
≥ 0 (𝑛 = 2, 3, . . .) and let F be a

family of harmonic functions 𝑓 = ℎ + 𝑔 ∈ H0 where ℎ and 𝑔,
given by (9) with 𝑏

1
= 𝑔(0) = 0, satisfy |𝑎

𝑛
| ≤ 𝐴

𝑛
and |𝑏

𝑛
| ≤

𝐵
𝑛
for 𝑛 = 2, 3, . . .. Furthermore, if 𝑟S𝐻(F), 𝑟FS∗

𝐻
(𝛼)

(F), and
𝑟FK𝐻(𝛼)

(F) denote, respectively, the radii of univalence, full
starlikeness of order 𝛼 (0 ≤ 𝛼 < 1), and full convexity of order
𝛼 (0 ≤ 𝛼 < 1) inF, then we have the following.

(1) If 𝐴
𝑛

= 𝑛 and 𝐵
𝑛

= (𝑛 − 1)(2𝑛 − 1)/6, then
𝑟S𝐻(F) = 𝑟

1
(0) ≃ 0.132529, 𝑟FS∗

𝐻
(𝛼)

(F) = 𝑟
1
(𝛼), and

𝑟FK𝐻(𝛼)
(F) = 𝑠

1
(𝛼) where 𝑟

1
= 𝑟
1
(𝛼) and 𝑠

1
= 𝑠
1
(𝛼)

are the real roots of (23) and (43), respectively, in (0, 1).
(2) If 𝐴

𝑛
= 1 and 𝐵

𝑛
= (𝑛 − 1)/2, then 𝑟S𝐻(F) = 𝑟

2
(0) =

1 − 1/21/3 ≃ 0.206299, 𝑟FS∗
𝐻
(𝛼)

(F) = 𝑟
2
(𝛼), and

𝑟FK𝐻(𝛼)
(F) = 𝑠

2
(𝛼) where 𝑟

2
= 𝑟
2
(𝛼) and 𝑠

2
= 𝑠
2
(𝛼)

are the real roots of (24) and (44), respectively, in (0, 1).
(3) If 𝐴

𝑛
= 1/𝑛 and 𝐵

𝑛
= (𝑛 − 1)/𝑛, then 𝑟S𝐻(F) =

𝑟
3
(0) = 1−1/√2 ≃ 0.292893, 𝑟FS∗

𝐻
(𝛼)

(F) = 𝑟
3
(𝛼), and

𝑟FK𝐻(𝛼)
(F) = 𝑠

3
(𝛼) where 𝑟

3
= 𝑟
3
(𝛼) and 𝑠

3
= 𝑠
3
(𝛼)

are the real roots of (25) and (45), respectively, in (0, 1).

Proof. Note that the roots of (23) in (0, 1) are decreasing
as functions of 𝛼 ∈ [0, 1). Consequently, 𝑟

1
(𝛼) ≤ 𝑟

1
(0).

A similar remark holds for (24), (25), and (43)–(45). This
observation together withTheorems 7 and 10 gives 𝑟S𝐻(F) ≥

𝑟
𝑖
(0), 𝑟FS∗

𝐻
(𝛼)

(F) ≥ 𝑟
𝑖
(𝛼), and 𝑟FK𝐻(𝛼)

(F) ≥ 𝑠
𝑖
(𝛼) for 𝑖 =

1, 2, 3 in the respective three cases specified in the theorem.
Therefore it is enough to show that these radii constants are
best possible.

(1) For sharpness of the numbers 𝑟
1
(𝛼), let 𝑓

𝑆
: D → C

be defined by

𝑓
𝑆
(𝑧) = 2𝑧 −

𝑧

(1 − 𝑧)2
+

3𝑧2 + 𝑧3

6 (1 − 𝑧)3

= 𝑧 −
∞

∑
𝑛=2

𝑛𝑧𝑛 +
1

6

∞

∑
𝑛=2

(𝑛 − 1) (2𝑛 − 1) 𝑧𝑛.

(49)

As 𝑓
𝑆
has real coefficients, for 𝑟 ∈ (0, 1), the Jacobian of 𝑓

𝑆

takes the form
𝐽
𝑓𝑆
(𝑟)

=
(1 − 7𝑟 + 14𝑟2 − 8𝑟3 + 2𝑟4) (1 − 9𝑟 + 12𝑟2 − 8𝑟3 + 2𝑟4)

(1 − 𝑟)8
.

(50)

Since 𝐽
𝑓𝑆
(𝑟
1
(0)) = 0 the function 𝑓

𝑆
is not univalent in |𝑧| < 𝑟

if 𝑟 > 𝑟
1
(0). Also, since

𝜕

𝜕𝜃
arg𝑓
𝑆
(𝑟𝑒𝑖𝜃)

𝜃=0,𝑟=𝑟1

=
6 (1 − 9𝑟

1
+ 12𝑟2
1
− 8𝑟3
1
+ 2𝑟4
1
)

6 − 33𝑟
1
+ 64𝑟2
1
− 49𝑟3
1
+ 12𝑟4
1

= 𝛼

(51)

it follows that 𝑓
𝑆
is not fully starlike of order 𝛼 in |𝑧| < 𝑟 if

𝑟 > 𝑟
1
, where 𝑟

1
= 𝑟
1
(𝛼) is the real root of (23) in (0, 1).

For sharpness of the numbers 𝑠
1
(𝛼), consider the function

𝑓
𝐶
(𝑧) = 2𝑧 −

𝑧

(1 − 𝑧)2
−

3𝑧2 + 𝑧3

6 (1 − 𝑧)3

= 𝑧 −
∞

∑
𝑛=2

𝑛𝑧𝑛 −
1

6

∞

∑
𝑛=2

(𝑛 − 1) (2𝑛 − 1) 𝑧𝑛,

(52)

and observe that
𝜕

𝜕𝜃
(arg{ 𝜕

𝜕𝜃
𝑓
𝐶
(𝑟𝑒𝑖𝜃)})

𝜃=0,𝑟=𝑠1

=
1 − 15𝑠

1
+ 18𝑠2
1
− 20𝑠3
1
+ 10𝑠4
1
− 2𝑠5
1

(1 − 𝑠
1
) (1 − 7𝑠

1
+ 14𝑠2
1
− 8𝑠3
1
+ 2𝑠4
1
)
= 𝛼.

(53)

This shows that 𝑓
𝐶
is not fully convex of order 𝛼 in |𝑧| < 𝑟 if

𝑟 > 𝑠
1
, where 𝑠

1
= 𝑠
1
(𝛼) is the real root of (43) in (0, 1).

(2) The Jacobian of the function 𝑓
𝑆
: D → C defined by

𝑓
𝑆
(𝑧) = 2𝑧 −

𝑧

1 − 𝑧
+

𝑧2

2 (1 − 𝑧)2

= 𝑧 −
∞

∑
𝑛=2

𝑧𝑛 +
1

2

∞

∑
𝑛=2

(𝑛 − 1) 𝑧𝑛

(54)

vanishes at 𝑧 = 𝑟
2
(0) and

𝜕

𝜕𝜃
arg𝑓
𝑆
(𝑟𝑒𝑖𝜃)

𝜃=0,𝑟=𝑟2
=

2 (1 − 6𝑟
2
+ 6𝑟2
2
− 2𝑟3
2
)

2 − 7𝑟
2
+ 9𝑟2
2
− 4𝑟3
2

= 𝛼.

(55)

These two observations imply that the numbers 𝑟
2
(𝛼) are

sharp, where 𝑟
2
= 𝑟
2
(𝛼) is the real root of (24) in (0, 1). For

sharpness of the constants 𝑠
2
(𝛼), observe that the function

𝑓
𝐶
(𝑧) = 2𝑧 −

𝑧

1 − 𝑧
−

𝑧2

2 (1 − 𝑧)2

= 𝑧 −
∞

∑
𝑛=2

𝑧𝑛 −
1

2

∞

∑
𝑛=2

(𝑛 − 1) 𝑧𝑛

(56)

satisfies
𝜕

𝜕𝜃
(arg{ 𝜕

𝜕𝜃
𝑓
𝐶
(𝑟𝑒𝑖𝜃)})

𝜃=0,𝑟=𝑠2

=
1 − 10𝑠

2
+ 12𝑠2
2
− 8𝑠3
2
+ 2𝑠4
2

1 − 5𝑠
2
+ 10𝑠2
2
− 8𝑠3
2
+ 2𝑠4
2

= 𝛼,

(57)

where 𝑠
2
= 𝑠
2
(𝛼) is the real root of (44) in (0, 1).

(3) The function 𝑓
𝑆
: D → C defined by

𝑓
𝑆
(𝑧) = 2𝑧 + log (1 − 𝑧) +

𝑧

1 − 𝑧
+ log (1 − 𝑧)

= 𝑧 −
∞

∑
𝑛=2

1

𝑛
𝑧𝑛 +
∞

∑
𝑛=2

𝑛 − 1

𝑛
𝑧𝑛

(58)
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satisfies 𝐽
𝑓𝑆
(𝑟
3
(0)) = 0 and

𝜕

𝜕𝜃
arg𝑓
𝑆
(𝑟𝑒𝑖𝜃)

𝜃=0,𝑟=𝑟3

=
𝑟
3
(1 − 4𝑟

3
+ 2𝑟2
3
)

(1 − 𝑟
3
) [𝑟
3
(3 − 2𝑟

3
) + 2 (1 − 𝑟

3
) log (1 − 𝑟

3
)]

= 𝛼,

(59)

where 𝑟
3
= 𝑟
3
(𝛼) is the real root of (25) in (0, 1). If 𝑠

3
= 𝑠
3
(𝛼)

is the real root of (45) in (0, 1), then

𝜕

𝜕𝜃
(arg{ 𝜕

𝜕𝜃
𝑓
𝐶
(𝑟𝑒𝑖𝜃)})

𝜃=0,𝑟=𝑠3
=

1 − 7𝑠
3
+ 6𝑠2
3
− 2𝑠3
3

1 − 3𝑠
3
+ 4𝑠2
3
− 2𝑠3
3

= 𝛼,

(60)

where 𝑓
𝐶
: D → C is defined by

𝑓
𝐶
(𝑧) = 2𝑧 + log (1 − 𝑧) − (

𝑧

1 − 𝑧
+ log (1 − 𝑧))

= 𝑧 −
∞

∑
𝑛=2

1

𝑛
𝑧𝑛 −
∞

∑
𝑛=2

𝑛 − 1

𝑛
𝑧𝑛.

(61)

Now, we will discuss a particular case under which the
results of Theorems 7 and 10 can be further improved.

Theorem 12. Let 𝑓 = ℎ+𝑔 ∈ H0
𝑠𝑝
, where ℎ and 𝑔 are given by

(9) with 𝑏
1
= 𝑔(0) = 0. Further, suppose that the dilatation

𝑤(𝑧) = 𝑔(𝑧)/ℎ(𝑧) = 𝑧 for all 𝑧 ∈ D. Then we have the
following.

(i) If |𝑎
𝑛
| ≤ 𝑛 or, in particular, ℎ is univalent, then 𝑓 is

univalent and fully starlike in the disk |𝑧| < 𝑅
1
where

𝑅
1
≃ 0.135918 is the real root of the equation 2𝑟3 −

5𝑟2 + 8𝑟 − 1 = 0 in the interval (0, 1). Moreover, 𝑓 is
fully convex in |𝑧| < 𝑆

1
where 𝑆

1
≃ 0.0739351 in the

real root of the equation 2𝑟4 − 8𝑟3 + 7𝑟2 − 14𝑟 + 1 = 0
in the interval (0, 1).

(ii) If |𝑎
𝑛
| ≤ 1 or, in particular, ℎ is convex univalent, then

𝑓 is univalent and fully starlike in the disk |𝑧| < 𝑅
2

where 𝑅
2
= (5 − √17)/4 ≃ 0.219224. Also, 𝑓 is fully

convex in |𝑧| < 𝑆
2
where 𝑆

2
≃ 0.120385 in the real root

of the equation 2𝑟3 − 6𝑟2 + 9𝑟 − 1 = 0 in the interval
(0, 1).

(iii) If |𝑎
𝑛
| ≤ 1/𝑛 or, in particular, Re ℎ(𝑧) > 0, then 𝑓 is

univalent and fully starlike in the disk |𝑧| < 𝑅
3
where

𝑅
3
= 1/3 ≃ 0.333333. And 𝑓 is fully convex in |𝑧| < 𝑆

3

where 𝑆
3
= (3 − √6)/3 ≃ 0.183503.

Proof. Setting 𝑤
1
= 1 and 𝑤

𝑛
= 0 for 𝑛 ̸= 1 in (18), we obtain

𝑛𝑏
𝑛
= (𝑛 − 1)𝑎

𝑛−1
so that

𝑏𝑛
 ≤

𝑛 − 1

𝑛

𝑎𝑛−1
 (𝑛 ≥ 2; 𝑎

1
= 1) . (62)

Let 𝑓
𝑟
be defined by (27). For the proof of (i), note that since

|𝑎
𝑛
| ≤ 𝑛, it is easily seen that |𝑏

𝑛
| ≤ (𝑛−1)2/𝑛 using (62). Using

these coefficient bounds, we have

𝑆 =
∞

∑
𝑛=2

𝑛
𝑎𝑛

 𝑟
𝑛−1 +

∞

∑
𝑛=2

𝑛
𝑏𝑛

 𝑟
𝑛−1

≤
∞

∑
𝑛=2

𝑛2𝑟𝑛−1 +
∞

∑
𝑛=2

(𝑛 − 1)
2𝑟𝑛−1

=
(1 + 𝑟)2

(1 − 𝑟)3
− 1,

(63)

using the identities (31). Thus 𝑆 ≤ 1 if 𝑟 satisfy the inequality
2(1 − 𝑟)3 ≥ (1 + 𝑟)2 or 1 − 8𝑟 + 5𝑟2 − 2𝑟3 ≥ 0. By Lemma 6(i),
it follows that 𝑓

𝑟
∈ FS∗

𝐻
for 𝑟 ≤ 𝑅

1
where 𝑅

1
is the real root

of 2𝑟3 − 5𝑟2 + 8𝑟 − 1 = 0 in (0, 1). In particular, 𝑓 is univalent
and fully starlike in |𝑧| < 𝑅

1
. For full convexity, observe

that

𝑆 =
∞

∑
𝑛=2

𝑛2
𝑎𝑛

 𝑟
𝑛−1 +

∞

∑
𝑛=2

𝑛2
𝑏𝑛

 𝑟
𝑛−1

≤
∞

∑
𝑛=2

𝑛3𝑟𝑛−1 +
∞

∑
𝑛=2

𝑛(𝑛 − 1)
2𝑟𝑛−1

=
5𝑟2 + 6𝑟 + 1

(1 − 𝑟)4
− 1.

(64)

The sum 𝑆 ≤ 1 if 𝑟 satisfy the inequality 2𝑟4−8𝑟3+7𝑟2−14𝑟+
1 ≥ 0. Thus Lemma 6(ii) shows that 𝑓

𝑟
∈ FK

𝐻
for 𝑟 ≤ 𝑆

1

where 𝑆
1
is the real root of 2𝑟4 − 8𝑟3 + 7𝑟2 − 14𝑟 + 1 = 0 in

(0, 1). In particular, 𝑓 is fully convex in |𝑧| < 𝑆
1
. This proves

(i). The other two parts of the theorem are similar and hence
their proofs are omitted.

Remark 13. Observe that 𝑟
𝑖
(0) < 𝑅

𝑖
(𝑖 = 1, 2, 3) and 𝑠

𝑖
(0) <

𝑆
𝑖
(𝑖 = 1, 2, 3). Here 𝑟

𝑖
(0), 𝑠
𝑖
(0), 𝑅

𝑖
, and 𝑆

𝑖
are as defined in

Theorems 7, 10, and 12.

Remark 14. If 𝑓 = ℎ + 𝑔 ∈ H0sp, where ℎ and 𝑔 are given by
(9) with 𝑏

1
= 𝑔(0) = 0 and the dilatation 𝑤(𝑧) = 𝑔(𝑧)/ℎ(𝑧)

is given by 𝑤(𝑧) = 𝑧𝑚 (𝑚 ≥ 1), then

𝑏𝑛
 ≤

𝑛 − 𝑚

𝑛

𝑎𝑛−𝑚
 (𝑛 ≥ 𝑚 + 1; 𝑎

1
= 1) , (65)

by setting 𝑤
𝑚

= 1 and 𝑤
𝑛

= 0 for 𝑛 ̸= 𝑚 in (18). Radius
constants may be obtained in this case by carrying out a
similar calculation as in the proof of Theorem 12.

3. Sufficient Coefficient Estimates for
Full Starlikeness and Convexity

In this section, we determine sufficient coefficient inequalities
for functions to be in the classes FS∗

𝐻
(𝛼) and FK

𝐻
(𝛼). As

an application, these results are applied to hypergeometric
functions in Section 4.
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Theorem 15. Let 𝑓 = ℎ + 𝑔 ∈ H, where ℎ and 𝑔 are given by
(9). Suppose that 𝜆 ∈ (0, 1]. Then one has the following.

(a) If
∞

∑
𝑛=2

𝑛
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛
𝑏𝑛

 ≤ 𝜆, (66)

then 𝑓 is fully starlike of order 2(1 − 𝜆)/(2 + |𝑏
1
| + 𝜆).

(b) If
∞

∑
𝑛=2

𝑛2
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛2
𝑏𝑛

 ≤ 𝜆, (67)

then𝑓 is fully starlike of order 2(2−𝜆−|𝑏
1
|)/(4+3|𝑏

1
|+

𝜆). Moreover, 𝑓 is fully convex of order 2(1 − 𝜆)/(2 +
|𝑏
1
| + 𝜆).

The results are sharp.

Proof. If we set 𝛼
0
= 2(1 − 𝜆)/(2 + |𝑏

1
| + 𝜆) then 𝛼

0
∈ [0, 1)

and
∞

∑
𝑛=2

𝑛 − 𝛼
0

1 − 𝛼
0

𝑎𝑛
 +
∞

∑
𝑛=1

𝑛 + 𝛼
0

1 − 𝛼
0

𝑏𝑛


≤
∞

∑
𝑛=2

𝑛 + 𝛼
0

1 − 𝛼
0

𝑎𝑛
 +
∞

∑
𝑛=1

𝑛 + 𝛼
0

1 − 𝛼
0

𝑏𝑛


=
1

1 − 𝛼
0

(
∞

∑
𝑛=2

𝑛
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛
𝑏𝑛

)

+
𝛼
0

1 − 𝛼
0

(
∞

∑
𝑛=2

𝑎𝑛
 +
∞

∑
𝑛=1

𝑏𝑛
)

≤
𝜆

1 − 𝛼
0

+
𝛼
0

1 − 𝛼
0

(
1

2

∞

∑
𝑛=2

𝑛 (
𝑎𝑛

 +
𝑏𝑛

) +
𝑏1

)

≤
𝜆

1 − 𝛼
0

+
𝛼
0

1 − 𝛼
0

(
𝜆 −

𝑏1


2
+
𝑏1

)

=
2𝜆 + 𝛼

0
(𝜆 +

𝑏1
)

2 (1 − 𝛼
0
)

= 1.

(68)

By Lemma 6(i), it follows that 𝑓 is fully starlike of order 2(1−
𝜆)/(2 + |𝑏

1
| + 𝜆). The harmonic function

𝑓
1
(𝑧) = 𝑧 +

𝑏1
 𝑧 +

𝜆 −
𝑏1


2

𝑧2,
𝑏1

 < 𝜆, (69)

satisfies the coefficient inequality (66). Further, for 𝑧 = 𝑟𝑒𝑖𝜃,
we have

𝜕

𝜕𝜃
arg𝑓
1
(𝑟𝑒𝑖𝜃) = Re(

2 (𝑧 −
𝑏1

 𝑧 − (𝜆 −
𝑏1

) 𝑧
2)

2 (𝑧 +
𝑏1

 𝑧) + (𝜆 −
𝑏1

) 𝑧
2
)

≥
2 (1 −

𝑏1
 − (𝜆 −

𝑏1
) |𝑧|)

2 (1 +
𝑏1

) + (𝜆 −
𝑏1

) |𝑧|

>
2 (1 − 𝜆)

2 +
𝑏1

 + 𝜆
(70)

which shows that the bound for the order of full starlikeness
is sharp. This proves (a).

For the proof of (b), observe that
∞

∑
𝑛=2

𝑛
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛
𝑏𝑛

 ≤
1

2

∞

∑
𝑛=2

𝑛2 (
𝑎𝑛

 +
𝑏𝑛

) +
𝑏1



≤
1

2
(𝜆 −

𝑏1
) +

𝑏1


=
𝜆 +

𝑏1


2
:= 𝜇
0
(say) ,

(71)

using (67). Since 𝜇
0
∈ (0, 1), 𝑓 is fully starlike of order 2(1 −

𝜇
0
)/(2 + |𝑏

1
| + 𝜇
0
) = 2(2 − 𝜆 − |𝑏

1
|)/(4 + 3 |𝑏

1
| + 𝜆) by part (a)

of the theorem. For the order of full convexity of 𝑓, note that
∞

∑
𝑛=2

𝑛 (𝑛 − 𝛼
0
)

1 − 𝛼
0

𝑎𝑛
 +
∞

∑
𝑛=1

𝑛 (𝑛 + 𝛼
0
)

1 − 𝛼
0

𝑏𝑛


≤
∞

∑
𝑛=2

𝑛 (𝑛 + 𝛼
0
)

1 − 𝛼
0

𝑎𝑛
 +
∞

∑
𝑛=1

𝑛 (𝑛 + 𝛼
0
)

1 − 𝛼
0

𝑏𝑛


=
1

1 − 𝛼
0

(
∞

∑
𝑛=2

𝑛2
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛2
𝑏𝑛

)

+
𝛼
0

1 − 𝛼
0

(
∞

∑
𝑛=2

𝑛
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛
𝑏𝑛

)

≤
𝜆

1 − 𝛼
0

+
𝛼
0

1 − 𝛼
0

(
𝜆 +

𝑏1


2
)

=
2𝜆 + 𝛼

0
(𝜆 +

𝑏1
)

2 (1 − 𝛼
0
)

= 1,

(72)

where 𝛼
0
is as defined in the proof of part (a) of the theorem.

By Lemma 6(ii),𝑓 is fully convex of order 2(1−𝜆)/(2+|𝑏
1
|+𝜆).

In this case, the harmonic function

𝑓
2
(𝑧) = 𝑧 +

𝑏1
 𝑧 +

𝜆 −
𝑏1


4

𝑧2,
𝑏1

 < 𝜆, (73)

shows that the result is best possible.

If 𝑏
1
= 0, then Theorem 15 reduces to [26, Theorem 3.6

and Corollary 3.7]. Also, Theorem 15 gives the following two
corollaries.

Corollary 16. Let 𝑓 = ℎ + 𝑔 ∈ H, where ℎ and 𝑔 are given by
(9) and 0 ≤ 𝛼 < 2/(2 + |𝑏

1
|). Then we have the following.

(i) If
∞

∑
𝑛=2

𝑛
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛
𝑏𝑛

 ≤
2 − (2 +

𝑏1
) 𝛼

2 + 𝛼
, (74)

then 𝑓 ∈ FS∗
𝐻
(𝛼).

(ii) If
∞

∑
𝑛=2

𝑛2
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛2
𝑏𝑛

 ≤
2 − (2 +

𝑏1
) 𝛼

2 + 𝛼
, (75)

then 𝑓 ∈ FK
𝐻
(𝛼).

All these results are sharp.
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Proof. First, wewill prove (i). Setting𝜆
0
= (2−(2+|𝑏

1
|)𝛼)/(2+

𝛼) we see that 𝜆
0
∈ (0, 1] and the coefficient inequality (66)

is satisfied for 𝜆 = 𝜆
0
. Hence by Theorem 15(a), 𝑓 is fully

starlike of order 2(1−𝜆
0
)/(2+|𝑏

1
|+𝜆
0
) = 𝛼.This proves (i). For

part (ii), since inequality (67) is satisfied for 𝜆 = 𝜆
0
it follows

that 𝑓 is fully convex of order 2(1 − 𝜆
0
)/(2 + |𝑏

1
| + 𝜆
0
) = 𝛼 by

Theorem 15(b). The functions

𝑓
1
(𝑧) = 𝑧 +

𝑏1
 𝑧 +

(1 −
𝑏1

) − (1 +
𝑏1

) 𝛼

2 + 𝛼
𝑧2,

𝑓
2
(𝑧) = 𝑧 +

𝑏1
 𝑧 +

(1 −
𝑏1

) − (1 +
𝑏1

) 𝛼

2 (2 + 𝛼)
𝑧2

(76)

show that the upper bound (2 − (2 + |𝑏
1
|)𝛼)/(2 + 𝛼) is best

possible in (i) and (ii), respectively.

Corollary 17. Let 𝑓 = ℎ + 𝑔 ∈ H, where ℎ and 𝑔 are given by
(9) and 𝛼 ∈ R satisfies

2 (1 −
𝑏1

)

5 + 3
𝑏1


≤ 𝛼 <

2 (2 −
𝑏1

)

4 + 3
𝑏1


. (77)

If
∞

∑
𝑛=2

𝑛2
𝑎𝑛

 +
∞

∑
𝑛=1

𝑛2
𝑏𝑛

 ≤
2 (2 −

𝑏1
) − 𝛼 (4 + 3

𝑏1
)

2 + 𝛼
, (78)

then 𝑓 ∈ FS∗
𝐻
(𝛼). The function

𝑓
0
(𝑧) = 𝑧 +

𝑏1
 𝑧 +

(1 −
𝑏1

) − (1 +
𝑏1

) 𝛼

2 + 𝛼
𝑧2 (79)

shows that the bound (2(2 − |𝑏
1
|) − 𝛼(4 + 3 |𝑏

1
|))/(2 + 𝛼) is best

possible.

Proof. If we set ]
0
= (2(2−|𝑏

1
|)−𝛼(4+3 |𝑏

1
|))/(2+𝛼), then ]

0
∈

(0, 1] and the coefficient inequality (67) is satisfied for 𝜆 = ]
0

using the hypothesis. By Theorem 15(b), 𝑓 is fully starlike of
order 2(2 − ]

0
− |𝑏
1
|)/(4 + 3 |𝑏

1
| + ]
0
) = 𝛼 as desired.

If 𝑏
1

= 0, then Corollaries 16 and 17 reduce to the
following theorem.

Theorem 18. Let 𝑓 = ℎ + 𝑔 ∈ H, where ℎ and 𝑔 are given by
(9) with 𝑏

1
= 𝑔(0) = 0 and let 𝛼 ∈ R.

(1) If 𝛼 ∈ [0, 1), then the sharp implications hold:
∞

∑
𝑛=2

𝑛 (
𝑎𝑛

 +
𝑏𝑛

) ≤
2 (1 − 𝛼)

2 + 𝛼
⇒ 𝑓 ∈ FS

∗

𝐻
(𝛼) ,

∞

∑
𝑛=2

𝑛2 (
𝑎𝑛

 +
𝑏𝑛

) ≤
2 (1 − 𝛼)

2 + 𝛼
⇒ 𝑓 ∈ FK

𝐻
(𝛼) .

(80)

(2) If 𝛼 ∈ [2/5, 1), then
∞

∑
𝑛=2

𝑛2 (
𝑎𝑛

 +
𝑏𝑛

) ≤
4 (1 − 𝛼)

2 + 𝛼
⇒ 𝑓 ∈ FS

∗

𝐻
(𝛼) . (81)

In particular, we have
∞

∑
𝑛=2

𝑛2 (
𝑎𝑛

 +
𝑏𝑛

) ≤ 1 ⇒ 𝑓 ∈ FS
∗

𝐻
(
2

5
) . (82)

4. Interplay between
Hypergeometric Functions and
Full Starlikeness and Convexity

In recent years, there has been a growth of interest in the
interplay between hypergeometric functions and harmonic
mappings in D; see [27–31]. Let 𝐹(𝛽, 𝛾, 𝛿; 𝑧) be the Gaussian
hypergeometric function defined by

𝐹 (𝛽, 𝛾, 𝛿; 𝑧) :=
∞

∑
𝑛=0

(𝛽)
𝑛
(𝛾)
𝑛

(𝛿)
𝑛
(1)
𝑛

𝑧𝑛, 𝑧 ∈ D, (83)

where 𝛽, 𝛾, 𝛿 are complex numbers with 𝛿 ̸= 0, −1, −2, . . .,
and (𝜃)

𝑛
is the Pochhammer symbol: (𝜃)

0
= 1 and (𝜃)

𝑛
=

𝜃(𝜃+1) ⋅ ⋅ ⋅ (𝜃+𝑛−1) for 𝑛 = 1, 2, . . .. Since the hypergeometric
series in (83) converges absolutely in D, it follows that
𝐹(𝛽, 𝛾, 𝛿; 𝑧) defines an analytic function in D and plays an
important role in the theory of univalent functions.

The first author and Silverman [27] initiated the study of
harmonic functions 𝜙

1
+ 𝜙
2
where 𝜙

1
(𝑧) ≡ 𝜙

1
(𝛽
1
, 𝛾
1
, 𝛿
1
; 𝑧)

and𝜙
2
(𝑧) ≡ 𝜙

2
(𝛽
2
, 𝛾
2
, 𝛿
2
; 𝑧) are the hypergeometric functions

defined by
𝜙
1
(𝑧) := 𝑧𝐹 (𝛽

1
, 𝛾
1
, 𝛿
1
; 𝑧) , 𝜙

2
(𝑧) := 𝐹 (𝛽

2
, 𝛾
2
, 𝛿
2
; 𝑧) − 1.

(84)
Making use of Corollaries 16 and 17, we determine the suffi-
cient conditions in terms of hypergeometric inequalities for
the function Φ = 𝜙

1
+ 𝜙
2
to be in the classes FS∗

𝐻
(𝛼) and

FK
𝐻
(𝛼). However, we first need thewell-knownGauss sum-

mation formula

𝐹 (𝛽, 𝛾, 𝛿; 𝑧) =
Γ (𝛿) Γ (𝛿 − 𝛽 − 𝛾)

Γ (𝛿 − 𝛽) Γ (𝛿 − 𝛾)
, Re (𝛿 − 𝛽 − 𝛾) > 0

(85)
and the following result by the first author [29].

Lemma 19. If 𝛽, 𝛾, 𝛿 > 0, then
(i) 𝐹(𝛽 + 𝑘, 𝛾 + 𝑘, 𝛿 + 𝑘; 1) = ((𝛿)

𝑘
/(𝛿 − 𝛽 − 𝛾 − 𝑘)

𝑘
)𝐹(𝛽,

𝛾, 𝛿; 1) for 𝑘 = 0, 1, 2, . . ., if 𝛿 > 𝛽 + 𝛾 + 𝑘;
(ii) ∑∞

𝑛=2
(𝑛−1)((𝛽)

𝑛−1
(𝛾)
𝑛−1

/(𝛿)
𝑛−1

(1)
𝑛−1

) = (𝛽𝛾/(𝛾−𝛽−

𝛾 − 1))𝐹(𝛽, 𝛾, 𝛿; 1) if 𝛿 > 𝛽 + 𝛾 + 1;
(iii) ∑∞

𝑛=2
(𝑛 − 1)2((𝛽)

𝑛−1
(𝛾)
𝑛−1

/(𝛿)
𝑛−1

(1)
𝑛−1

) = ((𝛽)
2
(𝛾)
2
/

(𝛾 − 𝛽 − 𝛾 − 1)
2
+ 𝛽𝛾/(𝛾 − 𝛽 − 𝛾 − 1))𝐹(𝛽, 𝛾, 𝛿; 1) if

𝛿 > 𝛽 + 𝛾 + 2.

Theorem 20. Let 𝛽
𝑗
, 𝛾
𝑗
∈ C, and 𝛿

𝑗
∈ R satisfy 𝛿

𝑗
> |𝛽
𝑗
| +

|𝛾
𝑗
| +1 for 𝑗 = 1, 2. Set 𝜂 = 𝛽

2
𝛾
2
/𝛿
2
and let 0 ≤ 𝛼 < 2/(2+ |𝜂|).

If

(

𝛽1

𝛾1


𝛿
1
−
𝛽1

 −
𝛾1

 − 1
+ 1)𝐹 (

𝛽1
 ,
𝛾1

 , 𝛿1; 1)

+

𝛽2

𝛾2


𝛿
2
−
𝛽2

 −
𝛾2

 − 1
𝐹 (

𝛽2
 ,
𝛾2

 , 𝛿2; 1)

≤
4 − (1 +

𝜂
) 𝛼

2 + 𝛼

(86)

then Φ = 𝜙
1
+ 𝜙
2
∈ FS∗

𝐻
(𝛼), where 𝜙

1
and 𝜙

2
are given by

(84).
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Proof. Observe that

Φ (𝑧) = 𝑧 +
∞

∑
𝑛=2

(𝛽
1
)
𝑛−1

(𝛾
1
)
𝑛−1

(𝛿
1
)
𝑛−1

(1)
𝑛−1

𝑧𝑛 +
∞

∑
𝑛=1

(𝛽
2
)
𝑛
(𝛾
2
)
𝑛

(𝛿
2
)
𝑛
(1)
𝑛

𝑧𝑛. (87)

Using the fact |(𝜃)
𝑛
| ≤ (|𝜃|)

𝑛
, Gauss summation formula given

by (85), and Lemma 19, we have

∞

∑
𝑛=2

𝑛


(𝛽
1
)
𝑛−1

(𝛾
1
)
𝑛−1

(𝛿
1
)
𝑛−1

(1)
𝑛−1


+
∞

∑
𝑛=1

𝑛


(𝛽
2
)
𝑛
(𝛾
2
)
𝑛

(𝛿
2
)
𝑛
(1)
𝑛



≤
∞

∑
𝑛=2

𝑛
(
𝛽1

)𝑛−1(
𝛾1

)𝑛−1
(𝛿
1
)
𝑛−1

(1)
𝑛−1

+
∞

∑
𝑛=1

𝑛
(
𝛽2

)𝑛(
𝛾2

)𝑛
(𝛿
2
)
𝑛
(1)
𝑛

=
∞

∑
𝑛=1

(𝑛 + 1)
(
𝛽1

)𝑛(
𝛾1

)𝑛
(𝛿
1
)
𝑛
(1)
𝑛

+
∞

∑
𝑛=1

𝑛
(
𝛽2

)𝑛(
𝛾2

)𝑛
(𝛿
2
)
𝑛
(1)
𝑛

= (

𝛽1

𝛾1


𝛿
1
−
𝛽1

 −
𝛾1

 − 1
+ 1)𝐹 (

𝛽1
 ,
𝛾1

 , 𝛿1; 1)

+

𝛽2

𝛾2


𝛿
2
−
𝛽2

 −
𝛾2

 − 1
𝐹 (

𝛽2
 ,
𝛾2

 , 𝛿2; 1) − 1

≤
4 − (1 +

𝜂
) 𝛼

2 + 𝛼
− 1 =

2 − (2 +
𝜂
) 𝛼

2 + 𝛼
.

(88)

By Corollary 16(i), Φ ∈ FS∗
𝐻
(𝛼).

Theorem 21. Let 𝛽
𝑗
, 𝛾
𝑗
∈ C, and 𝛿

𝑗
∈ R satisfy 𝛿

𝑗
> |𝛽
𝑗
| +

|𝛾
𝑗
| + 2 for 𝑗 = 1, 2. Set 𝜂 = 𝛽

2
𝛾
2
/𝛿
2
. Then one has the

following.

(i) If 0 ≤ 𝛼 < 2/(2 + |𝜂|) and

(
(
𝛽1

)2(
𝛾1

)2
(𝛿
1
−
𝛽1

 −
𝛾1

 − 2)
2

+
3
𝛽1


𝛾1


𝛿
1
−
𝛽1

 −
𝛾1

 − 1
+ 1)

× 𝐹 (
𝛽1

 ,
𝛾1

 , 𝛿1; 1)

+ (
(
𝛽2

)2(
𝛾2

)2
(𝛿
2
−
𝛽2

 −
𝛾2

 − 2)
2

+

𝛽2

𝛾2


𝛿
2
−
𝛽2

 −
𝛾2

 − 1
)

× 𝐹 (
𝛽2

 ,
𝛾2

 , 𝛿2; 1)

≤
4 − (1 +

𝜂
) 𝛼

2 + 𝛼
(89)

then Φ = 𝜙
1
+ 𝜙
2
∈ FK

𝐻
(𝛼).

(ii) If 2(1 − |𝜂|)/(5 + 3 |𝜂|) ≤ 𝛼 < 2(2 − |𝜂|)/(4 + 3 |𝜂|) and

(
(
𝛽1

)2(
𝛾1

)2
(𝛿
1
−
𝛽1

 −
𝛾1

 − 2)
2

+
3
𝛽1


𝛾1


𝛿
1
−
𝛽1

 −
𝛾1

 − 1
+ 1)

× 𝐹 (
𝛽1

 ,
𝛾1

 , 𝛿1; 1)

+ (
(
𝛽2

)2(
𝛾2

)2
(𝛿
2
−
𝛽2

 −
𝛾2

 − 2)
2

+

𝛽2

𝛾2


𝛿
2
−
𝛽2

 −
𝛾2

 − 1
)

× 𝐹 (
𝛽2

 ,
𝛾2

 , 𝛿2; 1)

≤
3 (2 − 𝛼) −

𝜂
 (2 + 3𝛼)

2 + 𝛼

(90)

then Φ = 𝜙
1
+ 𝜙
2
∈ FS∗

𝐻
(𝛼), where 𝜙

1
and 𝜙

2
are

given by (84).

Proof. Note that
∞

∑
𝑛=2

𝑛2


(𝛽
1
)
𝑛−1

(𝛾
1
)
𝑛−1

(𝛿
1
)
𝑛−1

(1)
𝑛−1


+
∞

∑
𝑛=1

𝑛2


(𝛽
2
)
𝑛
(𝛾
2
)
𝑛

(𝛿
2
)
𝑛
(1)
𝑛



≤
∞

∑
𝑛=2

𝑛2
(
𝛽1

)𝑛−1(
𝛾1

)𝑛−1
(𝛿
1
)
𝑛−1

(1)
𝑛−1

+
∞

∑
𝑛=1

𝑛2
(
𝛽2

)𝑛(
𝛾2

)𝑛
(𝛿
2
)
𝑛
(1)
𝑛

=
∞

∑
𝑛=1

(𝑛 + 1)
2
(𝛽
1
)
𝑛
(𝛾
1
)
𝑛

(𝛿
1
)
𝑛
(1)
𝑛

+
∞

∑
𝑛=1

𝑛2
(
𝛽2

)𝑛(
𝛾2

)𝑛
(𝛿
2
)
𝑛
(1)
𝑛

= (
(
𝛽1

)2(
𝛾1

)2
(𝛿
1
−
𝛽1

 −
𝛾1

 − 2)
2

+
3
𝛽1


𝛾1


𝛿
1
−
𝛽1

 −
𝛾1

 − 1
+ 1)

× 𝐹 (
𝛽1

 ,
𝛾1

 , 𝛿1; 1)

+ (
(
𝛽2

)2(
𝛾2

)2
(𝛿
2
−
𝛽2

 −
𝛾2

 − 2)
2

+

𝛽2

𝛾2


𝛿
2
−
𝛽2

 −
𝛾2

 − 1
)

× 𝐹 (
𝛽2

 ,
𝛾2

 , 𝛿2; 1) − 1.

(91)

Under the hypothesis of part (i), it is easy to see that
∞

∑
𝑛=2

𝑛2


(𝛽
1
)
𝑛−1

(𝛾
1
)
𝑛−1

(𝛿
1
)
𝑛−1

(1)
𝑛−1


+
∞

∑
𝑛=1

𝑛2


(𝛽
2
)
𝑛
(𝛾
2
)
𝑛

(𝛿
2
)
𝑛
(1)
𝑛



≤
4 − (1 +

𝜂
) 𝛼

2 + 𝛼
− 1

=
2 − (2 +

𝜂
) 𝛼

2 + 𝛼
.

(92)

By Corollary 16(ii), it follows that Φ = 𝜙
1
+ 𝜙
2
∈ FK

𝐻
(𝛼).

Hypothesis of part (ii) shows
∞

∑
𝑛=2

𝑛2


(𝛽
1
)
𝑛−1

(𝛾
1
)
𝑛−1

(𝛿
1
)
𝑛−1

(1)
𝑛−1


+
∞

∑
𝑛=1

𝑛2


(𝛽
2
)
𝑛
(𝛾
2
)
𝑛

(𝛿
2
)
𝑛
(1)
𝑛



≤
3 (2 − 𝛼) −

𝜂
 (2 + 3𝛼)

2 + 𝛼
− 1

=
2 (2 −

𝜂
) − 𝛼 (4 + 3

𝜂
)

2 + 𝛼
.

(93)

Hence Φ ∈ FS∗
𝐻
(𝛼) by Corollary 17.
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