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We prove the existence of a pullback attractor in L2(R𝑛) for the stochastic Ginzburg-Landau equation with additive noise on the
entire n-dimensional space R𝑛. We show that the stochastic Ginzburg-Landau equation with additive noise can be recast as a
random dynamical system. We demonstrate that the system possesses a unique D-random attractor, for which the asymptotic
compactness is established by the method of uniform estimates on the tails of its solutions.

1. Introduction

In this paper, we study the following stochastic Ginzburg-
Landau equation with additive noise defined in the entire
space R𝑛:

d𝑢 = (𝜆 + 𝑖𝜇) Δ𝑢𝑑𝑡 − (𝜅 + 𝑖𝛽) |𝑢|
2
𝑢𝑑𝑡

− 𝛾𝑢𝑑𝑡 +

𝑚

∑
𝑗=1

𝜑
𝑗
d𝜔
𝑗
(𝑡) ,

(1)

with the initial condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ R

𝑛
, (2)

where 𝜆, 𝜇, 𝜅, 𝛽, 𝛾 are real coefficients, with 𝜆 > 0, 𝜅 >

0, 𝛾 > 0, and 𝜑
𝑗

∈ 𝐻2(R𝑛) ∩ 𝑊2,4(R𝑛), 𝑗 = 1, . . . , 𝑚,
being time independent defined on R𝑛 and {𝜔

𝑗
}
𝑚

𝑗=1
being

independent two-sided real-valued Wiener processes on a
complete probability space (Ω,F, 𝑃). Our aim is to study its
long time behavior defined in the entire space R𝑛.

Attractors are quite well investigated to describe the long
time behavior of the deterministic equations (see, e.g., [1–7]).
Recently, the concept of random attractors, which is in fact
compact invariant set, was introduced to stochastic dynam-
ical systems from the theory of attractors for deterministic
equations in [8–10]. The existence of such random attractors

for the Ginzburg-Landau equation perturbed by additive
white noise and multiplicative white noise on bounded
domains has been investigated, respectively, in [11, 12].

However, for unbounded domains, we cannot guarantee
the compactness of solutions by the standard method since
the Sobolev embeddings are no longer compact. Hence, to
prove the existence of an attractor, we have to first overcome
this difficulty. For deterministic equations, this difficulty has
been overcome by employing the energy equation approach,
introduced in [13, 14], and then used by others to prove
the asymptotic compactness of deterministic equations in
unbounded domains (see, e.g., [15–22]). In this paper, we
prove the existence of a random attractor for the stochastic
Ginzburg-Landau equation (1), defined on the unbounded
domainR𝑛 with the help of tail estimates method, which was
firstly established in [23] to the case of stochastic dissipative
PDEs.

For the mathematical setting, we introduce complex
Sobolev spaces. In general, we denote by X,Y , . . . the com-
plexified space of a function space 𝑋,𝑌, . . .. For example,
L2(R𝑛) is the complexified space of 𝐿2(R𝑛). Denote by (⋅, ⋅)

and ‖ ⋅ ‖
𝐿
2 the scalar product and the norm in either 𝐿

2
(R𝑛)

or L2(R𝑛). So, if 𝑢 ∈ L2(R𝑛), then 𝑢 = {𝑢
1
, 𝑢
2
}, 𝑢

𝑗
∈ 𝐿2(R𝑛),

𝑗 = 1, 2, and

‖𝑢‖𝐿2 = {
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩
2

𝐿
2 +

󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩
2

𝐿
2}
1/2

. (3)
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If 𝑢 = 𝑢
1
+ 𝑖𝑢

2
, V = V

1
+ 𝑖V

2
are in L2(R𝑛),

(𝑢, V) = {(𝑢
1
, V
1
) + (𝑢

2
, V
2
)} + 𝑖 {(𝑢

2
, V
1
) − (𝑢

1
, V
2
)} . (4)

We use letter 𝑐 > 0 to denote any positive constant which
may change its value from line to line or even in the same line
when necessary.

The whole paper is organized as follows. In Section 2,
we first recall some definitions and propositions on random
attractors for random dynamical systems (RDS). And then,
by Ornstein-Uhlenbeck process, we obtain the continuous
RDS 𝜙 associated with the stochastic Ginzburg-Landau
equation (1). In Section 3, we concentrate to get the uniform
estimate on the far-field values of the solution as 𝑡 󳨀→ ∞

and thus to further establish the asymptotic compactness of
the solution operator 𝜙. Then, we can exhibit our main result
in the following theorem.

Theorem 1. The random dynamical system 𝜙 of stochastic
Ginzburg-Landau equation with additive noise has a unique
D-random attractor in L2(R𝑛) provided that √3𝜅 ≥ |𝛽|.

2. RDS Associated with the Stochastic
Ginzburg-Landau Equation on R𝑛

2.1. Preliminaries on RDS. We first recall some definitions.
For more details, one can refer to [8, 10, 24–26].

Definition 2. Let (Ω,F, 𝑃) be a probability space and {𝜃
𝑡

:

Ω 󳨀→ Ω, 𝑡 ∈ R} a family of measures preserving
transformation such that (𝑡, 𝜔) 󳨀→ 𝜃

𝑡
𝜔 is measurable, 𝜃

0
=

id, and 𝜃
𝑠+𝑡

= 𝜃
𝑡
∘ 𝜃

𝑠
, for all 𝑠, 𝑡 ∈ R, and then the

flow 𝜃
𝑡
together with the corresponding probability space

(Ω,F, 𝑃, (𝜃
𝑡
)
𝑡∈R) is called a metric dynamical system.

For Wiener process 𝜔
𝑗
in (1), we consider the probability

space (Ω,F, 𝑃), where

Ω = {𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
) ∈ 𝐶 (R,R

𝑚
) , 𝜔 (0) = 0} , (5)

F is the Borel 𝜎-algebra induced by the compact-open
topology of Ω, and 𝑃 is the corresponding Wiener measure
on (Ω,F). The time shift is simply defined by

𝜃
𝑡
𝜔 (𝑠) = 𝜔 (𝑠 + 𝑡) − 𝜔 (𝑠) , 𝑡, 𝑠 ∈ R, 𝜔 ∈ Ω. (6)

Then (Ω,F, 𝑃, (𝜃
𝑡
)
𝑡∈𝑅

) is a metric dynamical system.

Definition 3. A continuous random dynamical system (RDS)
on 𝑋 over a metric dynamical system (Ω,F, 𝑃, (𝜃

𝑡
)
𝑡∈𝑅

) is a
mapping:

𝜙 : R
+
× Ω × 𝑋 󳨀→ 𝑋, (𝑡, 𝜔, 𝑥) 󳨀→ 𝜙 (𝑡, 𝜔, 𝑥) , (7)

which is (B(R+) ×F ×B(𝑋),B(𝑋))-measurable such that,
for 𝑃-a.e. 𝜔 ∈ Ω,

(i) 𝜙(0, 𝜔, ⋅) is the identity on𝑋;
(ii) 𝜙(𝑡 + 𝑠, 𝜔, ⋅) = 𝜙(𝑡, 𝜃

𝑠
𝜔, ⋅) ∘ 𝜙(𝑠, 𝜔, ⋅) for all 𝑡, 𝑠 ∈ R+;

(iii) 𝜙(𝑡, 𝜔, ⋅) : 𝑋 󳨀→ 𝑋 is continuous for all 𝑡 ∈ R+.

Hereafter, we always assume that 𝜙 is a continuous RDS
on𝑋 over (Ω,F, 𝑃, (𝜃

𝑡
)
𝑡∈𝑅

).

Definition 4. A random variable 𝑅 : Ω 󳨀→ (0,∞) is called
tempered with respect to the dynamical system 𝜃 if, for the
associated stationary stochastic process 𝑡 󳨀→ 𝑅(𝜃

𝑡
⋅), the

invariant set for which

lim
𝑡󳨀→±∞

1

𝑡
log𝑅 (𝜃

𝑡
𝜔) = 0 (8)

(𝑡 󳨀→ −∞ applies only to two-sided time) has full 𝑃-meas-
ure.

Definition 5. A random bounded set {𝐵(𝜔)}
𝜔∈Ω

of𝑋 is called
tempered with respect to (𝜃

𝑡
)
𝑡∈R if, for 𝑃-a.e. 𝜔 ∈ Ω,

lim
𝑡󳨀→∞

𝑒
−𝜀𝑡

𝑑 (𝐵 (𝜃
−𝑡
𝜔)) = 0 ∀𝜀 > 0, (9)

where 𝑑(𝐵) = sup
𝑥∈𝐵

‖𝑥‖
𝑋
.

Definition 6. Let D be a collection of random subsets of 𝑋
and {𝐾(𝜔)}

𝜔∈Ω
∈ D. Then {𝐾(𝜔)}

𝜔∈Ω
is called a random

absorbing set for 𝜙 inD if, for every 𝐵 ∈ D and 𝑃-a.e. 𝜔 ∈ Ω,
there exists 𝑡

𝐵
(𝜔) > 0 such that

𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝐵 (𝜃

−𝑡
𝜔)) ⊆ 𝐾 (𝜔) ∀𝑡 ≥ 𝑡

𝐵
(𝜔) . (10)

Definition 7. Let D be a collection of random subsets of 𝑋.
Then 𝜙 is said to be D-pullback asymptotically compact in
𝑋 if, for 𝑃-a.e. 𝜔 ∈ Ω, {𝜙(𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑥
𝑛
)}
∞

𝑛=1
has a convergent

subsequence in 𝑋 whenever 𝑡
𝑛

󳨀→ ∞, and 𝑥
𝑛

∈ 𝐵(𝜃
−𝑡
𝑛

𝜔)

with {𝐵(𝜔)}
𝜔∈Ω

∈ D.

Definition 8. Let D be a collection of random subsets of 𝑋.
Then a random set {A(𝜔)}

𝜔∈Ω
of 𝑋 is called a D-random

attractor (or D-pullback attractor) for 𝜙 if the following
conditions are satisfied: for 𝑃-a.e. 𝜔 ∈ Ω,

(i) A(𝜔) is compact, and𝜔 󳨀→ 𝑑(𝑥,A(𝜔)) ismeasurable
for every 𝑥 ∈ 𝑋;

(ii) A(𝜔) is invariant; that is,

𝜙 (𝑡, 𝜔,A (𝜔)) = A (𝜃
𝑡
𝜔) ∀𝑡 ≥ 0; (11)

(iii) A(𝜔) attracts every set in D; that is, for every 𝐵 =

{𝐵(𝜔)}
𝜔∈Ω

∈ D,

lim
𝑡󳨀→∞

𝑑 (𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝐵 (𝜃

−𝑡
𝜔)) ,A (𝜔)) = 0, (12)

where 𝑑 is the Hausdorff semimetric given by 𝑑(𝑌, 𝑍) =

sup
𝑦∈𝑌

inf
𝑧∈𝑍

‖𝑦 − 𝑧‖
𝑋
for any 𝑌 ⊆ 𝑋 and 𝑍 ⊆ 𝑋.

Proposition 9 (see [10, 25]). Let D be an inclusion-closed
collection of random subsets of 𝑋 and 𝜙 a continuous RDS
on 𝑋 over (Ω,F, 𝑃, (𝜃

𝑡
)
𝑡∈𝑅

). Suppose that {𝐾(𝜔)}
𝜔∈Ω

is a
closed random absorbing set for 𝜙 in D and 𝜙 is D-pullback
asymptotically compact in 𝑋. Then 𝜙 has a uniqueD-random
attractor {A(𝜔)}

𝜔∈Ω
which is given by

A (𝜔) = ⋂
𝜏≥0

⋃
𝑡≥𝜏

𝜙 (𝑡, 𝜃
−𝑡
𝜔,𝐾 (𝜃

−𝑡
𝜔)). (13)
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Remark 10. A collectionD of random subsets is called inclu-
sion closed if, whenever {𝐸(𝜔)}

𝜔∈Ω
is an arbitrary random set

and {𝐹(𝜔)}
𝜔∈Ω

is in D with 𝐸(𝜔) ⊂ 𝐹(𝜔), for all 𝜔 ∈ Ω,
{𝐸(𝜔)}

𝜔∈Ω
must belong toD.

2.2. RDS Associated with the Stochastic Ginzburg-Landau
Equation on R𝑛. Denote 𝑧(𝑡) = 𝑧(𝜃

𝑡
𝜔) = ∑

𝑚

𝑗=1
𝜑
𝑗
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
),

where

𝑧
𝑗
(𝑡) = 𝑧

𝑗
(𝜃
𝑡
𝜔
𝑗
) = ∫

𝑡

−∞

𝑒
𝛾(𝑠−𝑡)d𝜔

𝑗
(𝑠) , 𝑡 ∈ R, (14)

satisfies the one-dimensional Ornstein-Uhlenbeck equation

d𝑧
𝑗
= −𝛾𝑧

𝑗
𝑑𝑡 + d𝜔

𝑗
(𝑡) . (15)

Since the random variable |𝑧
𝑗
(𝜔
𝑗
)| is tempered and |𝑧

𝑗
(𝜃
𝑡
𝜔
𝑗
)|

is 𝑃-a.e. continuous, there exists a tempered function 𝑟(𝜔) >

0 such that

𝑚

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

) ≤ 𝑟 (𝜔) , (16)

where 𝑟(𝜔) satisfies, for 𝑃-a.e. 𝜔 ∈ Ω,

𝑟 (𝜃
𝑡
𝜔) ≤ 𝑒

(𝛾/2)|𝑡|
𝑟 (𝜔) , 𝑡 ∈ R, (17)

thanks to Proposition 4.3.3 in [24]. From (16) to (17), we get,
for 𝑃-a.e. 𝜔 ∈ Ω,

𝑚

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

) ≤ 𝑒
(𝛾/2)|𝑡|

𝑟 (𝜔) , 𝑡 ∈ R.

(18)

Introduce the transformation

V (𝑡) = 𝑢 (𝑡) − 𝑧 (𝜃
𝑡
𝜔) , (19)

where 𝑢 is the solution of (1)-(2); then V should satisfy

𝜕V
𝜕𝑡

= (𝜆 + 𝑖𝜇) ΔV − (𝜅 + 𝑖𝛽) |V + 𝑧|
2
(V + 𝑧)

− 𝛾V + (𝜆 + 𝑖𝜇) Δ𝑧.

(20)

Similar to the procedure in [23], we can obtain that (20) has
a unique solution V(𝑡, 𝜔, V

0
) with V(0, 𝜔, V

0
) = V

0
, which is

continuous with respect to V
0
in L2(R𝑛). Let 𝑢(𝑡, 𝜔, 𝑢

0
) =

V(𝑡, 𝜔, 𝑢
0
−𝑧(𝜔))+𝑧(𝜃

𝑡
𝜔), and then 𝑢 is the solution of (1)-(2).

Define 𝜙 : R+ × Ω × L2(R𝑛) 󳨀→ L2(R𝑛) by

𝜙 (𝑡, 𝜔, 𝑢
0
) = 𝑢 (𝑡, 𝜔, 𝑢

0
) = V (𝑡, 𝜔, 𝑢

0
− 𝑧 (𝜔)) + 𝑧 (𝜃

𝑡
𝜔) ,

(21)

for all (𝑡, 𝜔, 𝑢
0
) ∈ R+ × Ω × L2(R𝑛). Then, we can claim that

𝜙 is a continuous random dynamical system associated with
the stochastic Ginzburg-Landau equation on R𝑛.

3. Existence of Random Attractors

In the following paper, we always assume that D is the
collection of all tempered subsets of L2(R𝑛) with respect to
(Ω,F, 𝑃, (𝜃

𝑡
)
𝑡∈𝑅

). And then we are devoted to prove that 𝜙
has a random absorbing set in D, and it is also D-pullback
asymptotically compact.

Proposition 11. There exists {𝐾(𝜔)}
𝜔∈Ω

∈ D such that
{𝐾(𝜔)}

𝜔∈Ω
is a random absorbing set for 𝜙 inD. Precisely, for

any 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D and 𝑃-a.e. 𝜔 ∈ Ω, there is 𝑡
𝐵
(𝜔) > 0

such that

𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝐵 (𝜃

−𝑡
𝜔)) ⊆ 𝐾 (𝜔) ∀𝑡 ≥ 𝑡

𝐵
(𝜔) . (22)

Proof. By multiplying (20) by V, integrating over R𝑛, and
taking the real part, we get

1

2

𝑑

𝑑𝑡
‖V‖2 = Re (𝜆 + 𝑖𝜇) (ΔV, V)

− Re (𝜅 + 𝑖𝛽) (|V + 𝑧|
2
(V + 𝑧) , V)

− 𝛾‖V‖2 + Re (𝜆 + 𝑖𝜇) (Δ𝑧 (𝜃
𝑡
𝜔) , V) .

(23)

Here

Re (𝜆 + 𝑖𝜇) (ΔV, V) = −𝜆‖∇V‖2,

− Re (𝜅 + 𝑖𝛽) (|V + 𝑧|
2
(V + 𝑧) , V)

= −Re (𝜅 + 𝑖𝛽) (|V + 𝑧|
2
(V + 𝑧) , V + 𝑧)

+ Re (𝜅 + 𝑖𝛽) (|V + 𝑧|
2
(V + 𝑧) , 𝑧)

= −𝜅‖𝑢‖
4

4
+ ∫

R𝑛

󵄨󵄨󵄨󵄨𝜅 + 𝑖𝛽
󵄨󵄨󵄨󵄨 ⋅ |𝑢|

3
|𝑧| d𝑥

≤ −𝜅‖𝑢‖
4

4
+

1

2
𝜅‖𝑢‖

4

4
+

27(𝜅2 + 𝛽2)
2

32𝜅3
‖𝑧‖

4

4

≤ −
1

2
𝜅‖𝑢‖

4

4
+

27(𝜅2 + 𝛽2)
2

32𝜅3
‖𝑧‖

4

4
,

Re (𝜆 + 𝑖𝜇) (Δ𝑧 (𝜃
𝑡
𝜔) , V)

≤ ∫
R𝑛

󵄨󵄨󵄨󵄨𝜆 + 𝑖𝜇
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨∇𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨 |∇V| d𝑥

≤
𝜆

2
‖∇V‖2 +

𝜆
2
+ 𝜇

2

2𝜆
‖∇𝑧‖

2
.

(24)

From (23) to (24),

𝑑

𝑑𝑡
‖V‖2+ 𝜆‖∇V‖2 + 2𝛾‖V‖2 + 𝜅‖𝑢‖

4

4

≤
27(𝜅2 + 𝛽2)

2

16𝜅3
‖𝑧‖

4

4
+

𝜆2 + 𝜇2

𝜆
‖∇𝑧‖

2
.

(25)
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We can see that the right-hand side of (25) can be bounded
by

𝑐 ⋅

𝑚

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

) ≜ ℎ (𝜃
𝑡
𝜔) , (26)

since 𝑧(𝜃
𝑡
𝜔) = ∑

𝑚

𝑗=1
𝜑
𝑗
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
), where 𝜑

𝑗
∈ 𝐻2(R𝑛) ∩

𝑊2,4(R𝑛).
So, for ∀𝑡 ≥ 0,

𝑑

𝑑𝑡
‖V‖2 + 𝛾‖V‖2 ≤

𝑑

𝑑𝑡
‖V‖2 + 2𝛾‖V‖2 ≤ ℎ (𝜃

𝑡
𝜔) , (27)

which leads to
󵄩󵄩󵄩󵄩V (𝑡, 𝜔, V

0
(𝜔))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑡

0

𝑒
𝛾(𝑠−𝑡)

ℎ (𝜃
𝑠
𝜔) d𝑠, ∀𝑡 ≥ 0,

(28)

by multiplying (27) by 𝑒𝛾𝑡 and integrating from 0 to 𝑡.
By replacing 𝜔 by 𝜃

−𝑡
𝜔, we derive from (18) and (28) that,

for all 𝑡 ≥ 0,
󵄩󵄩󵄩󵄩V (𝑡, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑡

0

𝑒
𝛾(𝑠−𝑡)

ℎ (𝜃
𝑠−𝑡

𝜔) d𝑠

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
0

−𝑡

𝑒
𝛾𝜏
ℎ (𝜃

𝜏
𝜔) d𝜏,

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ 𝑐 ⋅ ∫
0

−𝑡

𝑒
𝛾𝜏
𝑒
−(𝛾/2)𝜏

𝑟 (𝜔) d𝜏,

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ 𝑐 ⋅
1

𝛾
𝑟 (𝜔) .

(29)

By replacing 𝜔 by 𝜃
−𝑡
𝜔 in (21), one has 𝜙(𝑡, 𝜃

−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔)) =

V(𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔) − 𝑧(𝜃

−𝑡
𝜔)) + 𝑧(𝜔). Thereafter,

󵄩󵄩󵄩󵄩𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩V (𝑡, 𝜃−𝑡𝜔, 𝑢

0
(𝜃
−𝑡
𝜔) − 𝑧 (𝜃

−𝑡
𝜔)) + 𝑧(𝜔)

󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩V (𝑡, 𝜃−𝑡𝜔, 𝑢

0
(𝜃
−𝑡
𝜔) − 𝑧 (𝜃

−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

+ 2‖𝑧(𝜔)‖
2

≤ 2𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩𝑢0(𝜃−𝑡𝜔) − 𝑧(𝜃

−𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

+
2𝑐

𝛾
𝑟 (𝜔) + 2‖𝑧(𝜔)‖

2

≤ 4𝑒
−𝛾𝑡

(
󵄩󵄩󵄩󵄩𝑢0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

)

+
2𝑐

𝛾
𝑟 (𝜔) + 2‖𝑧(𝜔)‖

2
.

(30)

Recall that both the random variable ‖𝑧(𝜔)‖
2 and the random

bounded set {𝐵(𝜔)}
𝜔∈Ω

∈ D are tempered. Then, for any

𝑢
0
(𝜃
−𝑡
𝜔) ∈ 𝐵(𝜃

−𝑡
𝜔), there exists 𝑡

𝐵
(𝜔) > 0 such that, for all

𝑡 > 𝑡
𝐵
(𝜔),

4𝑒
−𝛾𝑡

(
󵄩󵄩󵄩󵄩𝑢0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

)

= 4 [(𝑒
−(𝛾/2)𝑡 󵄩󵄩󵄩󵄩𝑢0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩)
2

+ (𝑒
−(𝛾/2)𝑡 󵄩󵄩󵄩󵄩𝑧 (𝜃

−𝑡
𝜔)

󵄩󵄩󵄩󵄩)
2

]

≤
2𝑐

𝛾
𝑟 (𝜔) .

(31)

So far, for all 𝑡 > 𝑡
𝐵
(𝜔),

󵄩󵄩󵄩󵄩𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

≤
4𝑐

𝛾
𝑟 (𝜔) + 2‖𝑧(𝜔)‖

2
. (32)

Select

𝐾 (𝜔) = {𝑢 ∈ L
2
(R
𝑛
) : ‖𝑢‖

2
≤

4𝑐

𝛾
𝑟 (𝜔) + 2‖𝑧 (𝜔)‖

2
} ; (33)

then {𝐾(𝜔)}
𝜔∈Ω

∈ D is a random absorbing set for 𝜙 inD.
The proof is completed.

Lemma 12. Let 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D and 𝑢
0
(𝜔) ∈ 𝐵(𝜔),

and then, for any 𝑇
1

≥ 0 and 𝑃-a.e. 𝜔 ∈ Ω, that is, the two
inequalities of (34) hold true for the solution 𝑢(𝑡, 𝜔, 𝑢

0
(𝜔)) of

(1)-(2) and V(𝑡, 𝜔, V
0
(𝜔)) of (20) with V

0
(𝜔) = 𝑢

0
(𝜔) − 𝑧(𝜔),

𝑡 ≥ 𝑇
1
, such that

∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃

−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
4

4
d𝑠

≤
1

𝜅
𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
2𝑐

𝛾𝜅
⋅ 𝑟 (𝜔) ,

∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

≤
1

𝜆
𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
2𝑐

𝛾𝜆
⋅ 𝑟 (𝜔) .

(34)

Proof. Fix 𝑇
1
≥ 0, and then replace 𝑡 by 𝑇

1
and 𝜔 by 𝜃

−𝑡
𝜔 in

(28); we then obtain
󵄩󵄩󵄩󵄩V (𝑇1, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
−𝛾𝑇
1
󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑇
1

0

𝑒
𝛾(𝑠−𝑇

1
)
ℎ (𝜃

𝑠−𝑡
𝜔) d𝑠.

(35)

With (18) and (26) in mind, by multiplying 𝑒𝛾(𝑇1−𝑡) at both
sides of the above equation, one can easily get

𝑒
𝛾(𝑇
1
−𝑡)󵄩󵄩󵄩󵄩V (𝑇1, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑇
1

0

𝑒
𝛾(𝑠−𝑡)

ℎ (𝜃
𝑠−𝑡

𝜔) d𝑠

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑇
1
−𝑡

−𝑡

𝑒
𝛾𝜏
ℎ (𝜃

𝜏
𝜔) d𝜏

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ 𝑐 ⋅ 𝑟 (𝜔) ∫
𝑇
1
−𝑡

−𝑡

𝑒
(𝛾/2)𝜏d𝜏

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
𝑐

𝛾
⋅ 𝑟 (𝜔) 𝑒

(𝛾/2)(𝑇
1
−𝑡)

.

(36)
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From (25) to (26),

𝑑

𝑑𝑡
‖V‖2 + 𝜆‖∇V‖2 + 𝛾‖V‖2 + 𝜅‖𝑢‖

4

4

≤
𝑑

𝑑𝑡
‖V‖2 + 𝜆‖∇V‖2 + 2𝛾‖V‖2

+ 𝜅‖𝑢‖
4

4
≤ ℎ (𝜃

𝑡
𝜔) .

(37)

Multiply (37) by 𝑒𝛾(𝑠−𝑡) and then integrate from 𝑇
1
to 𝑡; we

then obtain

󵄩󵄩󵄩󵄩V (𝑡, 𝜔, V
0
(𝜔))

󵄩󵄩󵄩󵄩
2

+ 𝜆 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜔, V

0
(𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

+ 𝜅 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜔, 𝑢

0
(𝜔))

󵄩󵄩󵄩󵄩
4

4
d𝑠

≤ 𝑒
𝛾(𝑇
1
−𝑡)󵄩󵄩󵄩󵄩V (𝑇1, 𝜔, V

0
(𝜔))

󵄩󵄩󵄩󵄩
2

+ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

ℎ (𝜃
𝑠
𝜔) d𝑠.

(38)

Keep the last two terms on the left-hand side of (38), and
replace 𝜔 by 𝜃

−𝑡
𝜔; we then have

𝜆 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

+ 𝜅 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃

−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
4

4
d𝑠

≤ 𝑒
𝛾(𝑇
1
−𝑡)󵄩󵄩󵄩󵄩V (𝑇1, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

+ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

ℎ (𝜃
𝑠−𝑡

𝜔) d𝑠

≤ 𝑒
𝛾(𝑇
1
−𝑡)󵄩󵄩󵄩󵄩V (𝑇1, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

+ ∫
0

𝑇
1
−𝑡

𝑒
𝛾𝜏
ℎ (𝜃

𝜏
𝜔) d𝜏.

(39)

However the second term on the right-hand side can be
bounded by

𝑐 ⋅ 𝑟 (𝜔) ∫
0

𝑇
1
−𝑡

𝑒
(𝛾/2)𝜏d𝜏 ≤

𝑐

𝛾
⋅ 𝑟 (𝜔) , (40)

due to (18) and (26). Together with (36), there is

𝜆 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

+ 𝜅 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃

−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
4

4
d𝑠

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
𝑐

𝛾
⋅ 𝑟 (𝜔) 𝑒

(𝛾/2)(𝑇
1
−𝑡)

+
𝑐

𝛾
⋅ 𝑟 (𝜔)

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
2𝑐

𝛾
⋅ 𝑟 (𝜔) ∀𝑡 ≥ 𝑇

1
.

(41)

The proof is completed.

Corollary 13. Let 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D and 𝑢
0
(𝜔) ∈ 𝐵(𝜔),

and then, for 𝑃-a.e. 𝜔 ∈ Ω, there exists 𝑡
𝐵
(𝜔) > 0 such

that the solutions 𝑢(𝑡, 𝜔, 𝑢
0
(𝜔)) of (1)-(2) and V(𝑡, 𝜔, V

0
(𝜔)) of

(20), with V
0
(𝜔) = 𝑢

0
(𝜔) − 𝑧(𝜔), satisfy the following uniform

estimates, for all 𝑡 ≥ 𝑡
𝐵
(𝜔):

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
4

4
d𝑠 ≤

4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) ,

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡−1𝜔, V
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2d𝑠 ≤

4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) .

(42)

Proof. Replace 𝑡 by (𝑡 + 1) and then replace 𝑇
1
by 𝑡 in (34); we

then deduce

𝑒
−𝛾

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
4

4
d𝑠

≤ ∫
𝑡+1

𝑡

𝑒
𝛾(𝑠−𝑡−1)󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃

−𝑡−1
𝜔, 𝑢

0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
4

4
d𝑠

≤
1

𝜅
𝑒
−𝛾(𝑡+1)󵄩󵄩󵄩󵄩V0 (𝜃−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

+
2𝑐

𝛾𝜅
⋅ 𝑟 (𝜔)

≤
2

𝜅
𝑒
−𝛾(𝑡+1)

(
󵄩󵄩󵄩󵄩𝑢0 (𝜃−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧 (𝜃

−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩
2

)

+
2𝑐

𝛾
⋅ 𝑟 (𝜔) .

(43)

As both random variables 𝑢
0
(𝜔) ∈ 𝐵(𝜔) and 𝑧(𝜔) are

tempered, there exists 𝑡
𝐵
(𝜔) > 0, such that, for all 𝑡 ≥ 𝑡

𝐵
(𝜔),

2

𝜅
𝑒
−𝛾(𝑡+1)

(
󵄩󵄩󵄩󵄩𝑢0(𝜃−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧(𝜃−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

) ≤
2𝑐

𝛾
⋅ 𝑟 (𝜔) ,

(44)

which, together with (43), claims that, for all 𝑡 ≥ 𝑡
𝐵
(𝜔),

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
4

4
d𝑠 ≤

4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) . (45)

With the same procedure as the above, we can also verify
that, for all 𝑡 ≥ 𝑡

𝐵
(𝜔),

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡−1𝜔, V
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2d𝑠 ≤

4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) . (46)

The proof is completed.

Corollary 14. Let 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D and 𝑢
0
(𝜔) ∈ 𝐵(𝜔),

and then, for 𝑃-a.e. 𝜔 ∈ Ω, there exists 𝑡
𝐵
(𝜔) > 0 such that the

solution 𝑢(𝑡, 𝜔, 𝑢
0
(𝜔)) of (1)-(2) satisfies

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇𝑢 (𝑠, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2d𝑠

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) , ∀𝑡 ≥ 𝑡

𝐵
(𝜔) .

(47)
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Proof. Let 𝑡
𝐵
(𝜔) > 0 just be the one in Corollary 13, and take

𝑡 ≥ 𝑡
𝐵
(𝜔) and 𝑠 ∈ (𝑡, 𝑡 + 1). Note that by (21) one has

󵄩󵄩󵄩󵄩∇𝑢 (𝑠, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡−1𝜔, V

0
(𝜃
−𝑡−1

𝜔)) + ∇𝑧(𝜃
𝑠−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡−1𝜔, V

0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩∇𝑧(𝜃

𝑠−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩
2

.

(48)

Owing to (18), one has

2
󵄩󵄩󵄩󵄩∇𝑧 (𝜃

𝑠−𝑡−1
𝜔)

󵄩󵄩󵄩󵄩
2

≤ 𝑐 ⋅

𝑚

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑠−𝑡−1

𝜔)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑐𝑒
(𝛾/2)(𝑡+1−𝑠)

𝑟 (𝜔) ≤ 𝑐𝑒
𝛾/2

𝑟 (𝜔) .

(49)

Together with Corollary 13, we derive

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇𝑢 (𝑠, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2d𝑠

≤ 2∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡−1𝜔, V
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2d𝑠

+ 2∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇𝑧 (𝜃
𝑠−𝑡−1

𝜔)
󵄩󵄩󵄩󵄩
2d𝑠

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) + 𝑐𝑒

𝛾/2
𝑟 (𝜔)

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) ,

(50)

by integrating (48) with respect to 𝑠 over (𝑡, 𝑡 + 1).
The proof is completed.

Lemma 15. Suppose √3𝜅 ≥ |𝛽|, and let 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D
and 𝑢

0
(𝜔) ∈ 𝐵(𝜔); then, for 𝑃-a.e. 𝜔 ∈ Ω, there exists 𝑡

𝐵
(𝜔) >

0 such that, for all 𝑡 ≥ 𝑡
𝐵
(𝜔),

󵄩󵄩󵄩󵄩∇𝑢 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) . (51)

Proof. By multiplying (20) by ΔV, integrating over R𝑛, and
then taking the real part, we get

1

2
⋅
𝑑

𝑑𝑡
‖∇V‖2 + 𝜆‖ΔV‖2 + 𝛾‖∇V‖2

= Re ((𝜅 + 𝑖𝛽) (|V + 𝑧|
2
(V + 𝑧) , ΔV))

− Re ((𝜆 + 𝑖𝜇) (Δ𝑧 (𝜃
𝑡
𝜔) , ΔV)) .

(52)

Since

(|V + 𝑧|
2
(V + 𝑧) , ΔV) = (|𝑢|

2
𝑢, Δ𝑢) − (|𝑢|

2
𝑢, Δ𝑧 (𝜃

𝑡
𝜔)) ,

(53)

while

(|𝑢|
2
𝑢, Δ𝑢) = −∫

R𝑛
(|𝑢|

2
|∇𝑢|

2
+ 𝑢∇𝑢∇|𝑢|

2
) d𝑥, (54)

we have

Re ((𝜅 + 𝑖𝛽) (|𝑢|
2
𝑢, Δ𝑢))

= −𝜅∫
R𝑛

|𝑢|
2
|∇𝑢|

2d𝑥 − 𝜅∫
R𝑛

Re (𝑢∇𝑢∇|𝑢|
2
) d𝑥

+ 𝛽∫
R𝑛

Im (𝑢∇𝑢∇|𝑢|
2
) d𝑥

= −𝜅∫
R𝑛

|𝑢|
2
|∇𝑢|

2d𝑥 −
𝜅

2
∫
R𝑛

(∇|𝑢|
2
)
2

d𝑥

−
𝛽

2
∫
R𝑛

𝑖 (𝑢∇𝑢 − 𝑢∇𝑢) ∇|𝑢|
2d𝑥

= −
1

4
∫
R𝑛

(3𝜅(∇|𝑢|
2
)
2

+ 2𝛽𝑖 (𝑢∇𝑢 − 𝑢∇𝑢) ∇|𝑢|
2

+ 𝜅|𝑢∇𝑢 − 𝑢∇𝑢|
2
) d𝑥

≤ 0,

(55)

provided that √3𝜅 ≥ |𝛽|.
Therefore, for the first term at the right-hand side of (52),

we have

Re ((𝜅 + 𝑖𝛽) (|V + 𝑧|
2
(V + 𝑧) , ΔV))

= Re ((𝜅 + 𝑖𝛽) (|𝑢|
2
𝑢, Δ𝑢))

− Re ((𝜅 + 𝑖𝛽) (|𝑢|
2
𝑢, Δ𝑧 (𝜃

𝑡
𝜔)))

≤ −Re ((𝜅 + 𝑖𝛽) (|𝑢|
2
𝑢, Δ𝑧 (𝜃

𝑡
𝜔)))

≤
󵄨󵄨󵄨󵄨𝜅 + 𝑖𝛽

󵄨󵄨󵄨󵄨 ⋅ ∫
R𝑛

|𝑢|
3
⋅
󵄨󵄨󵄨󵄨Δ𝑧 (𝜃

𝑡
𝜔)

󵄨󵄨󵄨󵄨 d𝑥

≤
3

4
‖𝑢‖

4

4
+

1

4
(𝜅
2
+ 𝛽

2
)
2

⋅
󵄩󵄩󵄩󵄩Δ𝑧 (𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
4

4
.

(56)

On the other hand, the second term at the right-hand side
of (52) can be bounded by

󵄨󵄨󵄨󵄨𝜆 + 𝑖𝜇
󵄨󵄨󵄨󵄨 ⋅ ∫

R𝑛

󵄨󵄨󵄨󵄨Δ𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨 ⋅ |ΔV| d𝑥

≤ 𝜆‖ΔV‖2 +
𝜆2 + 𝜇2

4𝜆

󵄩󵄩󵄩󵄩Δ𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

.

(57)

By (52), (56)-(57), we can see that

𝑑

𝑑𝑡
‖∇V‖2 + 2𝛾‖∇V‖2

≤
3

2
‖𝑢‖

4

4
+

1

2
(𝜅
2
+ 𝛽

2
)
2

⋅
󵄩󵄩󵄩󵄩Δ𝑧(𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
4

4
+

𝜆2 + 𝜇2

2𝜆

󵄩󵄩󵄩󵄩Δ𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

.

(58)

That is,

𝑑

𝑑𝑡
‖∇V‖2 ≤

3

2
‖𝑢‖

4

4
+ 𝑔 (𝜃

𝑡
𝜔) , (59)
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where

𝑔 (𝜃
𝑡
𝜔) ≜

1

2
(𝜅
2
+ 𝛽

2
)
2

⋅
󵄩󵄩󵄩󵄩Δ𝑧(𝜃

𝑡
𝜔)

󵄩󵄩󵄩󵄩
4

4
+

𝜆2 + 𝜇2

2𝜆

󵄩󵄩󵄩󵄩Δ𝑧(𝜃
𝑡
𝜔)

󵄩󵄩󵄩󵄩
2

.

(60)

Since 𝑧(𝜃
𝑡
𝜔) = ∑

𝑚

𝑗=1
𝜑
𝑗
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
), where 𝜑

𝑗
∈ 𝐻2(R𝑛) ∩

𝑊2,4(R𝑛), there exists a constant 𝑐 > 0 such that

𝑔 (𝜃
𝑡
𝜔) ≤ 𝑐 ⋅

𝑚

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

)

≤ 𝑐 ⋅ 𝑒
(𝛾/2)|𝑡|

𝑟 (𝜔) , ∀𝑡 ∈ R.

(61)

Let 𝑡 > 𝑡
𝐵
(𝜔), 𝑠 ∈ (𝑡, 𝑡 + 1), where 𝑡

𝐵
(𝜔) is the positive time

taken in Corollary 13. By integrating (59) from 𝑠 to 𝑡 + 1, we
obtain

󵄩󵄩󵄩󵄩∇V (𝑡 + 1, 𝜔, V
0
(𝜔))

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜔, V

0
(𝜔))

󵄩󵄩󵄩󵄩
2

+
3

2
∫
𝑡+1

𝑠

󵄩󵄩󵄩󵄩𝑢 (𝜏, 𝜔, 𝑢
0
(𝜔))

󵄩󵄩󵄩󵄩
4

4
d𝜏

+ ∫
𝑡+1

𝑠

𝑔 (𝜃
𝜏
𝜔) d𝜏.

(62)

Integrate the above equation with respect to 𝑠 over (𝑡, 𝑡+1) to
have

󵄩󵄩󵄩󵄩∇V (𝑡 + 1, 𝜔, V
0
(𝜔))

󵄩󵄩󵄩󵄩
2

≤ ∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜔, V
0
(𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

+
3

2
∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑢 (𝜏, 𝜔, 𝑢
0
(𝜔))

󵄩󵄩󵄩󵄩
4

4
d𝜏

+ ∫
𝑡+1

𝑡

𝑔 (𝜃
𝜏
𝜔) d𝜏.

(63)

By replacing 𝜔 by 𝜃
−𝑡−1

𝜔, we derive

󵄩󵄩󵄩󵄩∇V (𝑡 + 1, 𝜃
−𝑡−1

𝜔, V
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2

≤ ∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡−1𝜔, V
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2d𝑠

+
3

2
∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑢 (𝜏, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
4

4
d𝜏

+ ∫
𝑡+1

𝑡

𝑔 (𝜃
𝜏−𝑡−1

𝜔) d𝜏.

(64)

Thanks to Corollary 13, it follows from (61) and (64) that, for
all 𝑡 > 𝑡

𝐵
(𝜔),

󵄩󵄩󵄩󵄩∇V (𝑡 + 1, 𝜃
−𝑡−1

𝜔, V
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) +

3

2
⋅
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) + ∫

0

−1

𝑔 (𝜃
𝜏
𝜔) d𝜏

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) + 𝑐 ⋅ 𝑟 (𝜔) ∫

0

−1

𝑒
−(𝛾/2)𝜏d𝜏

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) .

(65)

Then, together with (16), we obtain that, for all 𝑡 > 𝑡
𝐵
(𝜔),

󵄩󵄩󵄩󵄩∇𝑢 (𝑡 + 1, 𝜃
−𝑡−1

𝜔, 𝑢
0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩∇V (𝑡 + 1, 𝜃

−𝑡−1
𝜔, V

0
(𝜃
−𝑡−1

𝜔)) + ∇𝑧(𝜔)
󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩∇V (𝑡 + 1, 𝜃

−𝑡−1
𝜔, V

0
(𝜃
−𝑡−1

𝜔))
󵄩󵄩󵄩󵄩
2

+ 2‖∇𝑧(𝜔)‖
2

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) .

(66)

The proof is completed.

Lemma 16. Suppose √3𝜅 ≥ |𝛽|, and let 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D
and 𝑢

0
(𝜔) ∈ 𝐵(𝜔); then, for every 𝜖 > 0 and 𝑃-a.e. 𝜔 ∈ Ω,

there exist 𝑇∗ = 𝑇(𝐵, 𝜔, 𝜖) > 0 and 𝑅∗ = 𝑅∗(𝜔, 𝜖) such that
the solution V(𝑡, 𝜔, V

0
(𝜔)) of (20) with V

0
(𝜔) = 𝑢

0
(𝜔) − 𝑧(𝜔)

satisfies, for all 𝑡 ≥ 𝑇∗,

∫
|𝑥|≥𝑅

∗

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔)) (𝑥)

󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝜖. (67)

Proof. Let 𝜌 be a smooth function defined on R+ such that
0 ≤ 𝜌(𝑠) ≤ 1 for all 𝑠 ∈ R+, and

𝜌 (𝑠) = {
0 for 0 ≤ 𝑠 ≤ 1,

1 for 𝑠 ≥ 2.
(68)

Then there exists a constant 𝑐 > 0 such that |𝜌󸀠(𝑠)| ≤ 𝑐, for all
𝑠 ∈ R+. Multiply (20) by 𝜌(|𝑥|2/𝑙2)V, integrate over R𝑛, and
then take the real part to get

1

2

𝑑

𝑑𝑡
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥

= Re((𝜆 + 𝑖𝜇) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)ΔVVd𝑥)

− Re((𝜅 + 𝑖𝛽) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V + 𝑧|

2
(V + 𝑧) Vd𝑥)

− 𝛾∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥

+ Re((𝜆 + 𝑖𝜇) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)Δ𝑧Vd𝑥) .

(69)
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We now concentrate to estimate the terms in (69). Firstly,

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)ΔVVd𝑥

= −∫
R𝑛

|∇V|2𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) d𝑥 − ∫

R𝑛
V𝜌󸀠(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

2𝑥

𝑙2
∇Vd𝑥

= −∫
R𝑛

|∇V|2𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) d𝑥

− ∫
𝑙≤|𝑥|≤√2𝑙

V𝜌󸀠(
󵄨󵄨󵄨󵄨󵄨
𝑥
2󵄨󵄨󵄨󵄨󵄨

𝑙2
)

2𝑥

𝑙2
∇Vd𝑥.

(70)
Since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑙≤|𝑥|≤√2𝑙

V𝜌󸀠(
󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

2𝑥

𝑙2
∇Vd𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2√2

𝑙
∫
𝑙≤|𝑥|≤√2𝑙

|V| ⋅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜌
󸀠
(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ |∇V| d𝑥

≤
𝑐

𝑙
∫
R𝑛

|V| ⋅ |∇V| d𝑥

≤
𝑐

𝑙
(‖V‖2 + ‖∇V‖2) ,

(71)

then we find that

Re((𝜆 + 𝑖𝜇) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)ΔVVd𝑥)

≤ −𝜆 ⋅ ∫
R𝑛

|∇V|2𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) d𝑥

+
𝑐 ⋅

󵄨󵄨󵄨󵄨𝜆 + 𝑖𝜇
󵄨󵄨󵄨󵄨

𝑙
(‖V‖2 + ‖∇V‖2)

≤ −𝜆 ⋅ ∫
R𝑛

|∇V|2𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) d𝑥

+
𝑐

𝑙
(‖V‖2 + ‖∇V‖2) .

(72)

Secondly,

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V + 𝑧|

2
(V + 𝑧) Vd𝑥

= ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥

− ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

2
⋅ 𝑢 ⋅ 𝑧 (𝜃

𝑡
𝜔) d𝑥.

(73)

Due to
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

2
⋅ 𝑢 ⋅ 𝑧 (𝜃

𝑡
𝜔) d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

3
⋅
󵄨󵄨󵄨󵄨𝑧 (𝜃

𝑡
𝜔)

󵄨󵄨󵄨󵄨 d𝑥

≤
𝜅

2
󵄨󵄨󵄨󵄨𝜅 + 𝑖𝛽

󵄨󵄨󵄨󵄨
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥

+
𝑐

󵄨󵄨󵄨󵄨𝜅 + 𝑖𝛽
󵄨󵄨󵄨󵄨
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨
4d𝑥,

(74)
we have

− Re((𝜅 + 𝑖𝛽) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V + 𝑧|

2
(V + 𝑧) Vd𝑥)

= −𝜅 ⋅ ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥

+ Re((𝜅 + 𝑖𝛽) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

2
⋅ 𝑢 ⋅ 𝑧 (𝜃

𝑡
𝜔) d𝑥)

≤ −𝜅 ⋅ ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥 +
𝜅

2
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥

+ 𝑐 ⋅ ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨
4d𝑥

≤ −
𝜅

2
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥

+ 𝑐 ⋅ ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨
4d𝑥.

(75)
Thirdly,

Re((𝜆 + 𝑖𝜇) ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)Δ𝑧Vd𝑥)

≤
𝛾

2
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥

+
𝜆2 + 𝜇2

2𝛾
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |Δ𝑧|

2d𝑥.

(76)

Finally, from (69) to (76),

1

2

𝑑

𝑑𝑡
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥 +

𝛾

2
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥

+
𝜅

2
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |𝑢|

4d𝑥 + 𝜆 ⋅ ∫
R𝑛

|∇V|2𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) d𝑥

≤
𝑐

𝑙
(‖V‖2 + ‖∇V‖2) + 𝑐 ⋅ ∫

R𝑛
𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨
4d𝑥

+
𝜆2 + 𝜇2

2𝛾
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |Δ𝑧|

2d𝑥,

(77)
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which implies

𝑑

𝑑𝑡
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥 + 𝛾∫

R𝑛
𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |V|2d𝑥

≤
𝑐

𝑙
(‖V‖2 + ‖∇V‖2) + 𝑐 ⋅ ∫

R𝑛
𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑡
𝜔)

󵄨󵄨󵄨󵄨
4d𝑥

+
𝜆2 + 𝜇2

𝛾
∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
) |Δ𝑧|

2d𝑥.

(78)

Proposition 11 together with Lemma 15 shows that there is
𝑇
1
= 𝑡
𝐵
(𝜔) such that, for all 𝑡 ≥ 𝑇

1
,

󵄩󵄩󵄩󵄩V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

𝐻
1
(R𝑛)

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) . (79)

Now, multiply (78) with 𝑒𝛾(𝑠−𝑡), and then integrate over (𝑇
1
, 𝑡)

with respect to 𝑠 so that, for all 𝑡 ≥ 𝑇
1
,

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥
2󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑡, 𝜔, V
0
(𝜔))

󵄨󵄨󵄨󵄨
2d𝑥

≤ 𝑒
𝛾(𝑇
1
−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑇1, 𝜔, V
0
(𝜔))

󵄨󵄨󵄨󵄨
2d𝑥

+
𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

(
󵄩󵄩󵄩󵄩V (𝑠, 𝜔, V

0
(𝜔))

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜔, V

0
(𝜔))

󵄩󵄩󵄩󵄩
2

) d𝑠

+ 𝑐 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑠
𝜔)

󵄨󵄨󵄨󵄨
4d𝑥 d𝑠

+
𝜆2 + 𝜇2

𝛾
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨Δ𝑧 (𝜃
𝑠
𝜔)

󵄨󵄨󵄨󵄨
2d𝑥 d𝑠.

(80)

By replacing 𝜔 by 𝜃
−𝑡
𝜔 in (80), we obtain that, for all 𝑡 ≥ 𝑇

1
,

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥

≤ 𝑒
𝛾(𝑇
1
−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥
2󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑇1, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥

+
𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

+
𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

+ 𝑐 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑠−𝑡

𝜔)
󵄨󵄨󵄨󵄨
4d𝑥 d𝑠

+
𝜆2 + 𝜇2

𝛾
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨Δ𝑧 (𝜃
𝑠−𝑡

𝜔)
󵄨󵄨󵄨󵄨
2d𝑥 d𝑠.

(81)
We now estimate the terms in (81) as follows.

Firstly, from (28), one deduces

󵄩󵄩󵄩󵄩V (𝑇1, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

≤ 𝑒
−𝛾𝑇
1
󵄩󵄩󵄩󵄩V0(𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑇
1

0

𝑒
𝛾(𝜏−𝑇

1
)
ℎ (𝜃

𝜏−𝑡
𝜔) d𝜏.

(82)

Thus,

𝑒
𝛾(𝑇
1
−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑇1, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥

≤ 𝑒
𝛾(𝑇
1
−𝑡)

(𝑒
−𝛾𝑇
1
󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+∫
𝑇
1

0

𝑒
𝛾(𝜏−𝑇

1
)
ℎ (𝜃

𝜏−𝑡
𝜔) d𝜏)

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫
𝑇
1
−𝑡

−𝑡

𝑒
𝛾𝑠
ℎ (𝜃

𝑠
𝜔) d𝑠

≤ 𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
𝑐

2𝛾
⋅ 𝑟 (𝜔) 𝑒

(𝛾/2)(𝑇
1
−𝑡)

,

(83)

due to (18) and (26). Thus, for any given 𝜖 > 0, there is
𝑇
2
(𝐵, 𝜔, 𝜖) > 𝑇

1
such that, for all 𝑡 ≥ 𝑇

2
,

𝑒
𝛾(𝑇
1
−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑇1, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝜖. (84)

For the second, replace 𝑇
1
by 𝑠 in (82); then we can find

that the second term at the right-hand side of (81) satisfies

𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠

≤
𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
−𝛾𝑡󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2d𝑠

+
𝑐

𝑙
∫
𝑡

𝑇
1

∫
𝑠

0

𝑒
𝛾(𝜏−𝑡)

ℎ (𝜃
𝜏−𝑡

𝜔) d𝜏 d𝑠

≤
𝑐

𝑙
𝑒
−𝛾𝑡

(𝑡 − 𝑇
1
)
󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
𝑐

𝑙
∫
𝑡

𝑇
1

∫
𝑠−𝑡

−𝑡

𝑒
𝛾𝜏
ℎ (𝜃

𝜏
𝜔) d𝜏 d𝑠

≤
𝑐

𝑙
𝑒
−𝛾𝑡

(𝑡 − 𝑇
1
)
󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
𝑐𝑟 (𝜔)

𝑙
∫
𝑡

𝑇
1

∫
𝑠−𝑡

−𝑡

𝑒
(𝛾/2)𝜏d𝜏 d𝑠

≤
𝑐

𝑙
𝑒
−𝛾𝑡

(𝑡 − 𝑇
1
)
󵄩󵄩󵄩󵄩V0 (𝜃−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
𝑐𝑟 (𝜔)

𝛾2𝑙
,

(85)

which implies that there exist 𝑇
3
(𝐵, 𝜔, 𝜖) > 𝑇

1
and 𝑅

1
(𝜔, 𝜖) >

0 such that, for all 𝑡 ≥ 𝑇
3
and 𝑙 ≥ 𝑅

1
,

𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠 ≤ 𝜖. (86)
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For the third, from Lemma 12, we know that there is
𝑇
4
(𝐵, 𝜔) > 𝑇

1
such that, for all 𝑡 ≥ 𝑇

4
, the third term at the

right-hand side of (81) satisfies
𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠 ≤

2𝑐

𝑙𝛾
𝑟 (𝜔) . (87)

Therefore, there is 𝑅
2
(𝜔, 𝜖) > 0 such that, for all 𝑡 ≥ 𝑇

4
and

𝑙 ≥ 𝑅
2
,

𝑐

𝑙
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)󵄩󵄩󵄩󵄩∇V (𝑠, 𝜃−𝑡𝜔, V

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2d𝑠 ≤ 𝜖. (88)

Finally, note that the last two terms in (81) can be bounded
by

𝑐 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

× ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)(

󵄨󵄨󵄨󵄨Δ𝑧 (𝜃
𝑠−𝑡

𝜔)
󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑧 (𝜃

𝑠−𝑡
𝜔)

󵄨󵄨󵄨󵄨
4

) d𝑥 d𝑠

(89)

and 𝑧(𝜃
𝑡
𝜔) = ∑

𝑚

𝑗=1
𝜑
𝑗
𝑧
𝑗
(𝜃
𝑡
𝜔
𝑗
), where 𝜑

𝑗
∈ 𝐻2(R𝑛) ∩

𝑊2,4(R𝑛), andwe can find𝑅
3
(𝜔, 𝜖) > 0 such that, for all 𝑙 ≥ 𝑅

3

and 𝑗 = 1, 2, . . . , 𝑚,

∫
|𝑥|≥𝑙

(
󵄨󵄨󵄨󵄨󵄨
𝜑
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜑
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

4

+
󵄨󵄨󵄨󵄨󵄨
Δ𝜑
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

) d𝑥

≤ min{
𝛾𝜖

𝑚4𝑐𝑟 (𝜔)
,

𝜖

2𝑚𝑟 (𝜔)
} .

(90)

Accordingly, we have the following estimates for the last two
terms in (81):

𝑐 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨𝑧 (𝜃
𝑠−𝑡

𝜔)
󵄨󵄨󵄨󵄨
4d𝑥 d𝑠

+
𝜆2 + 𝜇2

𝛾
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

× ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨Δ𝑧 (𝜃
𝑠−𝑡

𝜔)
󵄨󵄨󵄨󵄨
2d𝑥 d𝑠

≤ 𝑐 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

× ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

× (
󵄨󵄨󵄨󵄨Δ𝑧 (𝜃

𝑠−𝑡
𝜔)

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑧 (𝜃

𝑠−𝑡
𝜔)

󵄨󵄨󵄨󵄨
4

) d𝑥 d𝑠

≤ 𝑐 ⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

× ∫
|𝑥|≥𝑙

(
󵄨󵄨󵄨󵄨Δ𝑧 (𝜃

𝑠−𝑡
𝜔)

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑧 (𝜃

𝑠−𝑡
𝜔)

󵄨󵄨󵄨󵄨
4

) d𝑥 d𝑠

≤ 𝑐𝑚
4
⋅ ∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

×

𝑚

∑
𝑗=1

∫
|𝑥|≥𝑙

(
󵄨󵄨󵄨󵄨󵄨
Δ𝜑
𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑠−𝑡

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝜑
𝑗

󵄨󵄨󵄨󵄨󵄨

4󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑠−𝑡

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

) d𝑥 d𝑠

≤
𝛾𝜖

𝑟 (𝜔)
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

×

𝑚

∑
𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑠−𝑡

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜃
𝑠−𝑡

𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

4

) d𝑠

≤
𝛾𝜖

𝑟 (𝜔)
∫
𝑡

𝑇
1

𝑒
𝛾(𝑠−𝑡)

ℎ (𝜃
𝑠−𝑡

𝜔) d𝑠

≤
𝛾𝜖

𝑟 (𝜔)
∫
0

𝑇
1
−𝑡

𝑒
𝛾𝜏
ℎ (𝜃

𝜏
𝜔) d𝜏

≤
𝛾𝜖

𝑟 (𝜔)
∫
0

𝑇
1
−𝑡

𝑒
(𝛾/2)𝜏d𝜏 ≤ 𝜖.

(91)

Let 𝑇∗ = 𝑇(𝐵, 𝜔, 𝜖) = max{𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
} and 𝑅∗ = 𝑅(𝜔, 𝜖) =

max{𝑅
1
, 𝑅
2
, 𝑅
3
}. Then from (81), (84), (86), (88), and (91), we

know that, for all 𝑡 ≥ 𝑇∗ and 𝑙 ≥ 𝑅∗,

∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥 ≤ 4𝜖. (92)

That is, for any 𝑡 ≥ 𝑇
∗ and 𝑙 ≥ 𝑅

∗,

∫
|𝑥|≥𝑙

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥

≤ ∫
R𝑛

𝜌(

󵄨󵄨󵄨󵄨󵄨
𝑥2

󵄨󵄨󵄨󵄨󵄨

𝑙2
)

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥 ≤ 4𝜖.

(93)

The proof is completed.

Lemma 17. Suppose √3𝜅 ≥ |𝛽|, and let 𝐵 = {𝐵(𝜔)}
𝜔∈Ω

∈ D
and 𝑢

0
(𝜔) ∈ 𝐵(𝜔); then, for every 𝜖 > 0 and 𝑃-a.e. 𝜔 ∈ Ω,

there exist 𝑇∗ = 𝑇(𝐵, 𝜔, 𝜖) > 0 and 𝑅∗ = 𝑅∗(𝜔, 𝜖) such that
the solution 𝑢(𝑡, 𝜔, 𝑢

0
(𝜔)) of (1)-(2) satisfies, for all 𝑡 ≥ 𝑇∗,

∫
|𝑥|≥𝑅

∗

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔)) (𝑥)

󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝜖. (94)

Proof. Let𝑇∗ and𝑅∗ be the constants in Lemma 16.Then due
to (16) and (90) we know that, for all 𝑡 ≥ 𝑇∗ and 𝑙 ≥ 𝑅∗,

∫
|𝑥|≥𝑅

∗

|𝑧 (𝜔)|
2d𝑥 = ∫

|𝑥|≥𝑅
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑
𝑗=1

𝜑
𝑗
𝑧
𝑗
(𝜔
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑥

≤ 𝑚∫
|𝑥|≥𝑅

∗

𝑚

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

d𝑥

≤
𝜖

2𝑟 (𝜔)

𝑚

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗
(𝜔
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

≤
𝜖

2
.

(95)
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Thus, together with Lemma 16, we derive, for all 𝑡 ≥ 𝑇∗ and
𝑙 ≥ 𝑅∗,

∫
|𝑥|≥𝑅

∗

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔)) (𝑥)

󵄨󵄨󵄨󵄨
2d𝑥

= ∫
|𝑥|≥𝑅

∗

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔)) (𝑥) + 𝑧 (𝜔)

󵄨󵄨󵄨󵄨
2d𝑥

≤ 2∫
|𝑥|≥𝑅

∗

󵄨󵄨󵄨󵄨V (𝑡, 𝜃−𝑡𝜔, V
0
(𝜃
−𝑡
𝜔)) (𝑥)

󵄨󵄨󵄨󵄨
2

+ 2∫
|𝑥|≥𝑅

∗

|𝑧 (𝜔)|
2d𝑥

≤ 3𝜖.

(96)

The proof is completed.

Up to now, we are ready to give the D-pullback asymp-
totic compactness of 𝜙, based on the former uniform esti-
mates referring to the tails of solutions.

Proposition 18. Suppose that √3𝜅 ≥ |𝛽|, and then the ran-
domdynamical system𝜙 isD-pullback asymptotically compact
in L2(R𝑛). That is to say, for 𝑃-a.e. 𝜔 ∈ Ω, the sequence
{𝜙(𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔))}
∞

𝑛=1
has a convergent subsequence in

L2(R𝑛) for 𝑡
𝑛
󳨀→ ∞,𝐵 = {𝐵(𝜔)}

𝜔∈Ω
∈ D, and 𝑢

0,𝑛
(𝜃
−𝑡
𝑛

𝜔) ∈

𝐵(𝜃
−𝑡
𝑛

𝜔).

Proof. Let 𝑡
𝑛
󳨀→ ∞, 𝐵 = {𝐵(𝜔)}

𝜔∈Ω
∈ D, and 𝑢

0,𝑛
(𝜃
−𝑡
𝑛

𝜔) ∈

𝐵(𝜃
−𝑡
𝑛

𝜔). By Proposition 11, we know that, for 𝑃-a.e. 𝜔 ∈ Ω,

{𝜙 (𝑡
𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔))}
∞

𝑛=1
is bounded in L

2
(R
𝑛
) .

(97)

So, there is 𝜉 ∈ L2(R𝑛) such that, up to a subsequence,

𝜙 (𝑡
𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) 󳨀→ 𝜉 weakly in L
2
(R
𝑛
) . (98)

It only remains to prove that the weak convergence of (98) is
indeed strong convergence. Let 𝜖 > 0 be small enough. Since
𝜉 ∈ L2(R𝑛), there exists 𝑅

1
= 𝑅(𝜖) > 0, such that

∫
|𝑥|≥𝑅

1

󵄨󵄨󵄨󵄨𝜉 (𝑥)
󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝜖. (99)

From Lemma 17, there are 𝑇
1
(𝐵, 𝜔, 𝜖) and 𝑅

2
(𝜔, 𝜖) > 𝑅

1
(𝜖) >

0, for 𝑃-a.e. 𝜔 ∈ Ω, such that, for all 𝑡 ≥ 𝑇
1
,

∫
|𝑥|≥𝑅

2

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝜖. (100)

Since 𝑡
𝑛

󳨀→ ∞, let 𝑁
1

= 𝑁
1
(𝐵, 𝜔, 𝜖) be large enough such

that 𝑡
𝑛

≥ 𝑇
1
for every 𝑛 ≥ 𝑁

1
. Hence, it follows from (100)

that, for all 𝑛 ≥ 𝑁
1
,

∫
|𝑥|≥𝑅

2

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔))
󵄨󵄨󵄨󵄨󵄨

2

d𝑥 ≤ 𝜖. (101)

On the other hand, from Proposition 11 and Lemma 15, there
is 𝑇

2
= 𝑇

2
(𝐵, 𝜔) such that, for all 𝑡 ≥ 𝑇

2
,

󵄩󵄩󵄩󵄩𝜙 (𝑡, 𝜃
−𝑡
𝜔, 𝑢

0
(𝜃
−𝑡
𝜔))

󵄩󵄩󵄩󵄩
2

𝐻
1
(R𝑛)

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) . (102)

Let 𝑁
2
= 𝑁

2
(𝐵, 𝜔) > 𝑁

1
such that 𝑡

𝑛
≥ 𝑇

2
for 𝑛 ≥ 𝑁

2
. Thus,

from (102), we know that, for all 𝑛 ≥ 𝑁
2
,

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔))
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
(R𝑛)

≤
4𝑐

𝛾
⋅ 𝑒
𝛾
⋅ 𝑟 (𝜔) . (103)

Denote 𝑄
𝑅
2

for the set {𝑥 ∈ R𝑛 : |𝑥| ≤ 𝑅
2
}. Due to the

compactness of embedding 𝐻1(𝑄
𝑅
2

) 󳨅→ L2(𝑄
𝑅
2

), we deduce
from (103) that, up to a subsequence,

𝜙 (𝑡
𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) 󳨀→ 𝜉 strongly in L
2
(𝑄
𝑅
2

) ,

(104)

which tells us that, for the given 𝜖 > 0, there exists 𝑁
3

=

𝑁
3
(𝐵, 𝜔, 𝜖) > 𝑁

2
such that, for all 𝑛 ≥ 𝑁

3
,

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) − 𝜉
󵄩󵄩󵄩󵄩󵄩

2

L2(𝑄
𝑅2
)
≤ 𝜖. (105)

By (99), (101), and (105), we conclude that, for all 𝑛 ≥ 𝑁
3
,

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) − 𝜉
󵄩󵄩󵄩󵄩󵄩

2

L2(R𝑛)

≤ ∫
|𝑥|≥𝑅

2

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) − 𝜉
󵄨󵄨󵄨󵄨󵄨

2

d𝑥

+ ∫
|𝑥|≤𝑅

2

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑡

𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) − 𝜉
󵄨󵄨󵄨󵄨󵄨

2

d𝑥 ≤ 5𝜖.

(106)

Therefore, up to a subsequence,

𝜙 (𝑡
𝑛
, 𝜃
−𝑡
𝑛

𝜔, 𝑢
0,𝑛

(𝜃
−𝑡
𝑛

𝜔)) 󳨀→ 𝜉 strongly in L
2
(R
𝑛
)

(107)

is verified.

Up to now, we have proved that 𝜙 has a closed random
absorbing set {𝐾(𝜔)}

𝜔∈Ω
in D by Proposition 11 and is D-

pullback asymptotically compact in L2(R𝑛), which is present
in Proposition 18. So, the existence of unique D-random
attractor for 𝜙 stated inTheorem 1 immediately follows from
Proposition 9.
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