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An SIRS model incorporating a general nonlinear contact function is formulated and analyzed. When the basic reproduction
numberR

0
< 1, the disease-free equilibrium is locally asymptotically stable. There is a unique endemic equilibrium that is locally

asymptotically stable if R
0
> 1. Under some conditions, the endemic equilibrium is globally asymptotically stable. At last, we

conduct numerical simulations to illustrate some results which shed light on themedia report that may be the very effectivemethod
for infectious disease control.

1. Introduction

Media coverage has an enormous impact on the spread and
control of infectious diseases [1–6]. The paper [7] considered
that the evidence shows that, faced with lethal or novel
pathogens, people will change their behavior to try to reduce
their risk.

In [8], the authors studied the effect of media coverage on
the spreading of disease by using the following model:

𝑑𝑆 (𝑡)

𝑑𝑡

= Λ − 𝜇𝑆 −

(𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼

(𝑆 + 𝐼)

+ 𝛾𝐼,

𝑑𝐼 (𝑡)

𝑑𝑡

=

(𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼

(𝑆 + 𝐼)

− (𝜇 + 𝛼 + 𝛾) 𝐼,

(1)

where the authors proposed an 𝑆𝐼𝑆 model with the general
nonlinear contact function 𝛽(𝐼) = 𝛽

1
− 𝛽
2
𝑓(𝐼) and 𝛽

1

and 𝛽
2
are positive constants. Here, 𝛽

1
is the usual contact

rate without considering the infective individuals and 𝛽
2

is the maximum reduced contact rate due to the presence
of the infected individuals. Everyone cannot avoid contact
with others in every case so it is assumed 𝛽

1
> 𝛽
2
. When

infective individuals appear in a region, people reduce their
contact with others to avoid being infected when they are
aware of the potential danger of being infected, and the
more infective individuals being reported, the less contact the
susceptible will make with others. Therefore, it is assumed
that 𝑓󸀠(𝐼) ≥ 0. The limited power of the infection due to

contact is reflected by the saturating function lim
𝐼→∞

𝑓(𝐼) =

1. In summary, the functional 𝑓(𝐼) satisfies 𝑓(0) = 0, 𝑓󸀠(𝐼) ≥
0, lim

𝐼→∞
𝑓(𝐼) = 1.

In this paper, using the same contact function as [8], we
study an 𝑆𝐼𝑅𝑆model with media coverage. Let 𝑆(𝑡), 𝐼(𝑡), and
𝑅(𝑡) denote the number of susceptible individuals, infected
individuals, and recovered individuals at time 𝑡, respectively.
The ordinary differential equation with nonnegative initial
conditions is as follows:

𝑑𝑆 (𝑡)

𝑑𝑡

= Λ − 𝜇𝑆 − (𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼 + 𝜎𝑅,

𝑑𝐼 (𝑡)

𝑑𝑡

= (𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼 − (𝛼 + 𝜇 + 𝜆) 𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝜆𝐼 − (𝜇 + 𝜎) 𝑅.

(2)

Here, all the variables and parameters of the model are
nonnegative. Λ is the recruitment rate, 𝜇 represents the
natural death rate, 𝜎 is the loss of constant immunity rate, 𝛼
is the diseases induced constant death rate, and 𝜆 is constant
recovery rate.

We have 𝑑𝑆/𝑑𝑡|
𝑆=0,𝑅≥0

> 0, 𝑑𝐼/𝑑𝑡|
𝐼=0
= 0, 𝑑𝑅/𝑑𝑡|

𝑅=0,𝐼≥0
≥

0, and 𝑑(𝑆 + 𝐼 + 𝑅)/𝑑𝑡|
𝑆+𝐼+𝑅=Λ/𝜇

≤ 0. So,

Ω = {(𝑆, 𝐼, 𝑅) ∈ R
3

+
: 𝑆 + 𝐼 + 𝑅 ≤

Λ

𝜇

} (3)

is a positive invariant set of (2).
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2. The Existence of the Equilibria

It is easy to see that model (2) always has a disease-free
equilibrium 𝐸

0
= (𝑆
0
, 0, 0), where 𝑆

0
= Λ/𝜇. Let 𝑥 =

(𝐼, 𝑆, 𝑅)
⊤. Then model (2) can be written as

𝑑𝑥

𝑑𝑡

= F (𝑥) −V (𝑥) , (4)

where

F (𝑥) = (

(𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼

0

0

) ,

V (𝑥) = (

(𝛼 + 𝜇 + 𝜆) 𝐼

−Λ + 𝜇𝑆 + (𝛽
1
+ 𝛽
2
𝑓 (𝐼)) 𝑆𝐼 − 𝜎𝑅

−𝜆𝐼 + (𝜇 + 𝜎) 𝑅

) .

(5)

According to Theorem 2 in [9], the basic reproduction
number of model (2) is

R
0
=

𝛽
1
𝑆
0

𝛼 + 𝜇 + 𝜆

=

𝛽
1
Λ

𝜇 (𝛼 + 𝜇 + 𝜆)

. (6)

In the following, the existence and uniqueness of the
endemic equilibrium is established when R

0
> 1. The

components of the endemic equilibrium𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) satisfy

Λ − 𝜇𝑆
∗
− (𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)) 𝑆
∗
𝐼
∗
+ 𝜎𝑅
∗
= 0,

(𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)) 𝑆
∗
− (𝛼 + 𝜇 + 𝜆) = 0,

𝜆𝐼
∗
− (𝜇 + 𝜎) 𝑅

∗
= 0

(7)

which gives

𝑅
∗
=

𝜆𝐼
∗

𝜇 + 𝜎

, (8)

𝑆
∗
=

𝛼 + 𝜇 + 𝜆

𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)

, (9)

Λ − 𝜇𝑅
∗
− 𝜇𝑆
∗
− (𝜇 + 𝛼) 𝐼

∗
= 0. (10)

Substituting (8) and (9) into (10), we get 𝜙(𝐼∗) = 0, where

𝜙 (𝐼) = Λ −

𝜇𝜆𝐼

𝜇 + 𝜎

−

𝜇 (𝛼 + 𝜇 + 𝜆)

𝛽
1
− 𝛽
2
𝑓 (𝐼)

− (𝛼 + 𝜇) 𝐼. (11)

Hence, if an endemic equilibrium exists, its coordinate must
be a root of 𝜙(𝐼) = 0 in the interval 𝐼 ∈ (0, Λ/𝜇).

Note that

𝜙
󸀠
(𝐼) = −

𝜇𝜆

𝜇 + 𝜎

−

𝛽
2
𝜇 (𝛼 + 𝜇 + 𝜆)𝑓

󸀠
(𝐼)

(𝛽
1
− 𝛽
2
𝑓(𝐼))
2

− 𝛼 − 𝜇 < 0.

(12)

Hence, 𝜙(𝐼) is monotonically decreasing for 𝐼 > 0.
Besides,

𝜙(

Λ

𝜇

) = −

𝜆Λ

𝜇 + 𝜎

−

𝜇 (𝛼 + 𝜇 + 𝜆)

𝛽
1
− 𝛽
2
𝑓 (Λ/𝜇)

−

(𝛼 + 𝜇)Λ

𝜇

< 0,

𝜙 (0) =

𝜇 (𝛼 + 𝜇 + 𝜆) (R
0
− 1)

𝛽
1

.

(13)

Therefore, when R
0
> 1, 𝜙(0) > 0, 𝜙(𝐼) has unique positive

root 𝐼∗ in the interval 𝐼 ∈ (0, Λ/𝜇). 𝑆∗ and 𝑅∗ are uniquely
determined by 𝐼∗.Therefore, model (2) has a unique endemic
equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) if R

0
> 1. Otherwise, there is no

endemic equilibrium.

3. Stability of the Disease-Free Equilibrium

Theorem 1. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable forR
0
< 1 and unstable forR

0
> 1.

Proof . The Jacobian matrix of system (2) at𝑋 = 𝐸
0
is

𝐽 (𝐸
0
) = (

−𝜇

𝛽
1
Λ

𝜇

𝜎

0

𝛽
1
Λ

𝜇

− (𝛼 + 𝜇 + 𝜆) 0

0 𝜆 − (𝜇 + 𝜎)

) . (14)

The eigenvalues of the matrix 𝐽(𝐸
0
) are given by

𝜉
1
= −𝜇, 𝜉

2
=− (𝜇 + 𝜎) , 𝜉

3
= (𝛼 + 𝜇 + 𝜆) (R

0
− 1) .

(15)

If R
0
< 1, then 𝜉

3
< 0. Thus, using the Routh-Hurwitz

criterion, all eigenvalues of 𝐽(𝐸
0
) have negative real parts, and

𝐸
0
is locally asymptotically stable for system (2).

4. Stability of the Endemic Equilibrium

Theorem 2. IfR
0
> 1, 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is locally asymptotically

stable.

Proof. Let

𝐴 = (𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)) 𝐼
∗
> 0,

𝐵 = 𝛽
2
𝑓
󸀠
(𝐼
∗
) 𝑆
∗
𝐼
∗
> 0.

(16)

The Jacobian matrix at 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is

𝐽 (𝐸
∗
) = (

−𝜇 − 𝐴 𝐵 − (𝛼 + 𝜇 + 𝜆) 𝜎

𝐴 −𝐵 0

0 𝜆 − (𝜇 + 𝜎)

) . (17)

The characteristic polynomial of the matrix 𝐽(𝐸∗) is given by

det (𝛿𝐼 − 𝐽 (𝐸∗)) = 𝑎
0
𝛿
3
+ 𝑎
1
𝛿
2
+ 𝑎
2
𝛿 + 𝑎
3
, (18)

where

𝑎
0
= 1,

𝑎
1
= 𝐴 + 𝐵 + 𝜎 + 2𝜇 > 0,

𝑎
2
= 2𝐵𝜇 + 𝜇𝜎 + 𝜇

2
+ 𝐵𝜎 + 𝐴𝜎 + 𝐴𝛼 + 𝐴𝜆

+ 2𝐴𝜇 > 0,
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𝑎
3
= 𝐴𝛼𝜎 + 𝐵𝜇

2
+ 𝐵𝜇𝜎 + 𝐴𝜇 (𝜇 + 𝜎 + 𝛼 + 𝜆) > 0,

𝑎
1
𝑎
2
− 𝑎
3
= 𝜎(𝐴 + 𝐵)

2
+ 𝐴𝜆𝜎 + 5𝐴𝜇𝜎 + 𝐴𝜇𝜆

+ 4𝐵𝜇𝜎 + 5𝐴𝐵𝜇 + 𝐴𝜇𝛼 + 4𝐵𝜇
2
+ 6𝐴𝜇

2
+ 2

⋅ 𝐵
2
𝜇 + 3𝐴

2
𝜇 + 𝜇𝜎

2
+ 3𝜎𝜇

2
+ 𝐵𝜎
2
+ 𝐴𝜎
2

+ 2𝜇
3
+ 𝐴𝐵𝛼 + 𝐴𝐵𝜆 + Φ

2
𝛼 + 𝐴

2
𝜆 > 0.

(19)

Thus, using Routh-Hurwitz criterion, all eigenvalues of 𝐽(𝐸∗)
have negative real parts which means 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is locally
asymptotically stable.

Theorem 3. If R
0
> 1, 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is globally asymptoti-

cally stable, provided that inequalities 𝜇 > 𝜎 and 𝜇 > 𝜆 hold
true.

In order to study the global stability of 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗),
we use the geometrical approach which is developed in the
papers of Smith [10] and Li and Muldowney [11]. We obtain
simple sufficient conditions that 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is globally
asymptotically stable when R

0
> 1. At first, we give a brief

outline of this geometrical approach.
Let 𝑥 󳨃→ 𝑓(𝑥) ∈ 𝑅

𝑛 be a 𝐶1 function for 𝑥 in an open set
𝐷 ∈ 𝑅

𝑛. Consider the differential equation

𝑥
󸀠
= 𝑓 (𝑥) . (20)

Denote by 𝑥(𝑡, 𝑥
0
) the solution to (20) such that 𝑥(0, 𝑥

0
). We

make the following two assumptions.

(i) There exists a compact absorbing set 𝐾 ⊂ 𝐷.
(ii) Equation (20) has a unique equilibrium 𝑥 in𝐷.

The equilibrium 𝑥 is said to be globally stable in 𝐷 if it is
locally stable and all trajectories in𝐷 converge to 𝑥.

The following general global stability principle is estab-
lished in [11].

Let 𝑥 󳨃→ 𝑃(𝑥) be an ( 𝑛2 )×( 𝑛2 )matrix-valued function that
is 𝐶1 for 𝑥 ∈ 𝐷. Assume that 𝑃−1(𝑥) exists and is continuous
for 𝑥 ∈ 𝐾, the compact absorbing set. A quantity 𝑞 is defined
as

𝑞 = lim sup
𝑡→∞

sup
𝑥∈𝐾

1

𝑡

∫

𝑡

0

𝜇 (𝑄 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠, (21)

where

𝑄 = 𝑃
𝑓
𝑃
−1
+ 𝑃𝐽
[2]
𝑃
−1 (22)

and 𝐽[2] is the second additive compound matrix of the
Jacobianmatrix 𝐽.Thematrix𝑃

𝑓
is obtained by replacing each

entry 𝑝
𝑖𝑗
of 𝑃 by its derivative in the direction of 𝑓, 𝑝

𝑖𝑗
𝑓, and

𝜇(𝑄) is the Lozinskĭı measure of 𝑄 with respect to a vector
norm | ⋅ | in 𝑅𝑁 (where𝑁 = ( 𝑛2 )) defined by [12]

𝜇 (𝑄) = lim
ℎ→0

+

|𝐼 + ℎ𝑄| − 1

ℎ

. (23)

It is shown in [11] that, if𝐷 is simply connected, the condition
𝑞 < 0 rules out the presence of any orbit that gives rise to
a simple closed rectifiable curve that is invariant for (20),
such as periodic orbits, homoclinic orbits, and heteroclinic
cycles. As a consequence, the following global stability result
is proved inTheorem 3.5 of [11].

Lemma 4. Assume that 𝐷 is simply connected and that the
assumptions (i) and (ii) hold. Then, the unique equilibrium 𝑥
of (20) is globally asymptotically stable in 𝐷 if 𝑞 < 0.

We now apply Lemma 4 to proveTheorem 3.

Proof. The paper [13] showed that the existence of a compact
set which is absorbing in the interior of Ω is equivalent to
proving that (2) is uniformly persistent, which means that
there exits 𝑐 > 0 such that every solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of
(2) with (𝑆(0), 𝐼(0), 𝑅(0)) in the interiorΩ satisfies

lim inf
𝑡→∞

|(𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡))| ≥ 𝑐. (24)

In fact, when R
0
> 1, then 𝐸

0
is unstable. The instability of

𝐸
0
, together with 𝐸

0
∈ 𝜕Ω, implies the uniform persistence

[14].Thus, (i) is verified.Moreover, as previously shown,𝐸∗ is
the only equilibrium in the interior ofΩ, so that (ii) is verified,
too. Let 𝑥 = (𝑆, 𝐼, 𝑅) and 𝑓(𝑥) denote the vector field of (2).
The Jacobian matrix 𝐽 = 𝜕𝑓/𝜕𝑥 associated with a general
solution 𝑥(𝑡) of (2) is

𝐽 = (

−𝜇 − Φ Ψ − (𝛼 + 𝜇 + 𝜆) 𝜎

Φ −Ψ 0

0 𝜆 − (𝜇 + 𝜎)

) , (25)

where

Φ = (𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝐼 > 0,

Ψ = 𝛽
2
𝑓
󸀠
(𝐼) 𝑆𝐼 > 0,

(26)

and its second additive compound matrix 𝐽[2] is

𝐽
[2]
= (

−𝜇 − Φ − Ψ 0 −𝜎

𝜆 −Φ − 2𝜇 − 𝜎 Ψ − (𝛼 + 𝜇 + 𝜆)

0 Φ −Ψ − 𝜇 − 𝜎

) .

(27)

Set the function 𝑃(𝑥) = 𝑃(𝑆, 𝐼, 𝑅) = diag{𝐼/𝑅, 𝐼/𝑅, 𝐼/𝑅}; then

𝑃
𝑓
𝑃
−1
= diag{𝐼

󸀠

𝐼

−

𝑅
󸀠

𝑅

,

𝐼
󸀠

𝐼

−

𝑅
󸀠

𝑅

,

𝐼
󸀠

𝐼

−

𝑅
󸀠

𝑅

} , (28)

and the matrix 𝑄 = 𝑃
𝑓
𝑃
−1
+ 𝑃𝐽
[2]
𝑃
−1 can be written in block

form

𝑄 = (
𝑄
11
𝑄
12

𝑄
21
𝑄
22

) , (29)
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Figure 1: The tendency of the infected population varies. The solid line represents the case when 𝛽
2
= 0.0018, and the dashed line represents

the case when 𝛽
2
= 0.
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Figure 2: Variation of the number of infected under different Λ.
The solid line represents the case when Λ = 5, and the dashed line
represents the case when Λ = 2.

where

𝑄
11
= −

𝑅
󸀠

𝑅

− 𝜇 − Φ − Ψ,

𝑄
12
= (0, −𝜎) ,

𝑄
21
= (
𝜆

0
) ,

𝑄
22
= (

𝐼
󸀠

𝐼

−

𝑅
󸀠

𝑅

− Φ − 2𝜇 − 𝜎 Ψ − 𝛼 − 𝜇 − 𝜆

Φ

𝐼
󸀠

𝐼

−

𝑅
󸀠

𝑅

− Ψ − 𝜇 − 𝜎

) .

(30)

The vector norm | ⋅ | in𝑅3 ≅ 𝑅(
3

2
) is chosen as |(𝑢, V, 𝑤)| =

sup{|𝑢|, |V| + |𝑤|} and let 𝜇(⋅) be the Lozinskĭı measure with
respect to this norm. Following the method in [15], we have

𝜇 (𝑄) ≤ sup {𝑔
1
, 𝑔
2
} , (31)

where

𝑔
1
= 𝜇
1
(𝑄
11
) +
󵄨
󵄨
󵄨
󵄨
𝑄
12

󵄨
󵄨
󵄨
󵄨
,

𝑔
2
= 𝜇
1
(𝑄
22
) +
󵄨
󵄨
󵄨
󵄨
𝑄
21

󵄨
󵄨
󵄨
󵄨
.

(32)

|𝑄
12
| and |𝑄

21
| being the matrix norm with respect to the 𝑙

1

vector norm. More specifically,

𝜇
1
(𝑄
11
) = −

𝑅
󸀠

𝑅

− 𝜇 − Φ − Ψ,

󵄨
󵄨
󵄨
󵄨
𝑄
12

󵄨
󵄨
󵄨
󵄨
= 𝜎,

󵄨
󵄨
󵄨
󵄨
𝑄
21

󵄨
󵄨
󵄨
󵄨
= 𝜆.

(33)

To calculate 𝜇
1
(𝑄
22
), add the absolute value of the off-

diagonal elements to the diagonal one in each column of 𝑄
22

and then take the maximum of two sums. We thus obtain

𝜇
1
(𝑄
22
) =

𝐼
󸀠

𝐼

−

𝑅
󸀠

𝑅

− 2𝜇 − 𝜎. (34)

Therefore, we have

𝑔
1
= 𝜇
1
(𝑄
11
) +
󵄨
󵄨
󵄨
󵄨
𝑄
12

󵄨
󵄨
󵄨
󵄨
= 𝜎 −

𝑅
󸀠

𝑅

− 𝜇 − Φ − Ψ,

𝑔
2
= 𝜇
1
(𝑄
22
) +
󵄨
󵄨
󵄨
󵄨
𝑄
21

󵄨
󵄨
󵄨
󵄨
= 𝜆 +

𝐼
󸀠

𝐼

−

𝑅
󸀠

𝑅

− 2𝜇 − 𝜎.

(35)

This leads to

𝜇 (𝑄) ≤

𝐼
󸀠

𝐼

− 𝜇 +max {𝜎, 𝜆} . (36)
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Table 1: Parameters for the simulation.

Figure Parameter values
Λ 𝜇 𝛽

1
𝛽
2

𝛼 𝜆 𝜎

Figure 1(a) 5 0.02 0.002 0.0018, 0 0.1 0.05 0.01
Figure 1(b) 5 0.2 0.002 0.0018, 0 0.1 0.05 0.01
Figure 2 5, 2 0.02 0.002 0.0018 0.1 0.05 0.01
Figure 3 5 0.02 0.002 0.0018 0.1 0.05, 0.5 0.01

We can deduce that if

𝜇 > 𝜎,

𝜇 > 𝜆

(37)

hold, then

𝜇 (𝑄) ≤

𝐼
󸀠

𝐼

− 𝑑, (38)

where

𝑑 = min {𝜇 − 𝜎, 𝜇 − 𝜆} > 0. (39)

Along each solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of system (2) for which
(𝑆(0), 𝐼(0), 𝑅(0)) ∈ Ω, we have

𝑞 = lim sup
𝑡→∞

sup
𝑥
0
∈Ω

1

𝑡

∫

𝑡

0

𝜇 (𝑄 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠

≤ −

𝑑

2

< 0.

(40)

According to Lemma 4, ifR
0
> 1, then the endemic equilib-

rium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (2) is globally asymptotically

stable inΩ.

5. Simulation Study and Discussion

To complement the mathematical analysis carried out in the
previous section, using the Runge-Kutta method, we now
investigate some numerical properties of (2). Choose 𝑓(𝐼) =
𝐼/(𝑏 + 𝐼), 𝑏 > 0, and 𝑏 reflects the reactive velocity of people
and media coverage to the disease. Related parameter values
are listed in Table 1.

Figure 1(a) shows that, whenR
0
= 2.941 > 1, the number

of infected individuals is asymptotically stable, and themedia
coverage is beneficial to decrease the number of infected
individuals. Figure 1(b) shows that, when R

0
= 0.029 < 1,

the number of infected individuals tends to zero point, and
the media coverage can quicken the extinction of infectious
disease.

Furthermore, the analysis of the impact of related param-
eters on the infectious disease progression is fairly important.
From the definition ofR

0
, it can be seen that

𝜕R
0

𝜕Λ

=

𝛽
1

𝜇 (𝛼 + 𝜇 + 𝜆)

> 0,

𝜕R
0

𝜕𝜆

= −

𝛽
1
Λ

𝜇(𝛼 + 𝜇 + 𝜆)
2
< 0.

(41)
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Figure 3: Variation of the number of infected under different 𝜆.The
solid line represents the case when 𝜆 = 0.05, and the dashed line
represents the case when 𝜆 = 0.5.

Hence,R
0
is an increasing function of Λ and is a decreasing

function of 𝜆. The mathematical results show that the basic
reproduction number R

0
satisfies a threshold property.

When R
0
< 1, it has been proved that the disease-

free equilibrium 𝐸
0
is locally asymptotically stable, and the

diseases will be eliminated from the community. And, when
R
0
> 1, the unique endemic equilibrium 𝐸

∗ is globally
asymptotically stable, and the diseases persist. This shows
that R

0
reduces to a value less than unity by reducing Λ or

increasing 𝜆, so as to control the spread of infectious diseases.
From Figure 2, we can find that the number of infected

individuals decreases as the recruitment rate (Λ) decreases.
Organized measures such as limitation of travel, closure
of public places, or isolation are beneficial to lessen the
recruitment rate to control the spreading of infectious dis-
eases. Figure 3 reveals that the number of infected individuals
decreases as the recovery rate (𝜆) increases. So timely and
effective treatment is regarded as one good method in
managing infectious diseases.

Based on the obtained results, we can get that media
coverage has an effective impact on the control and spread of
infectious diseases. It is hoped that these control strategies we
considered may offer some useful suggestions for authorities.
In addition, we can generalize the current model by incorpo-
rating some control methods, such as isolation and treatment
strategies. A more realistic model deserves to be considered.
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