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A mathematical model is proposed to consider the effects of saturated diagnosis and vaccination on HIV/AIDS infection. By
employing center manifold theory, we prove that there exists a backward bifurcation which suggests that the disease cannot be
eradicated even if the basic reproduction number is less than unity. Global stability of the disease-free equilibrium is investigated
for appropriate conditions. When the basic reproduction number is greater than unity, the system is uniformly persistent. The
proposed model is applied to describe HIV infection among injecting drug users (IDUs) in Yunnan province, China. Numerical
studies indicate that new cases and prevalence are sensitive to transmission rate, vaccination rate, and vaccine efficacy.The findings
suggest that increasing vaccination rate and vaccine efficacy and enhancing interventions like reducing share injectors can greatly
reduce the transmission of HIV among IDUs in Yunnan province, China.

1. Introduction

Acquired immunodeficiency syndrome (AIDS) is spreading
rapidly in the world ever since it was firstly detected in 1981
and continues to threaten the health of human seriously,
especially among sex workers and injecting drug users.
Furthermore, AIDS also influences the economy of many
countries which has attracted great attention of governments.
For such a severe scenario, the governments have taken
intervention measures to reduce HIV transmission.

Mathematical models play a vital role in gaining a quanti-
tative insight intoHIV transmission dynamics and suggesting
the effective control strategies. In order to study the effect of
various intervention strategies on HIV transmission, exten-
sive mathematical models have been formulated. Tradition-
ally, models of HIV/AIDS dynamics often incorporate staged
progression (see, e.g., [1–3]), but these did not include any
control measures. Hyman et al. [4] extended these models to
consider screening and contact tracing and discussed which
strategy would slow infectiousness. Compartmental mod-
els with staged progression that incorporate the imperfect
vaccine were constructed in [5] to predict HIV epidemic,
but they did not consider diagnosis. Elbasha and Gumel [6]
considered that a proportion of new recruits are vaccinated

and upon becoming infected with HIV, susceptible and vac-
cinated individuals enter the classes of infected and vaccine
infected people, separately. They showed the existence of
backward bifurcation via numerical simulations. Sharomi et
al. [7] explored the role of the choice of incidence function
in HIV models formulated in [6] and obtained that the
phenomenon of backward bifurcation can be removed by
substituting the standard incidence function with a mass
action incidence. In South Africa, testing and screening
campaignwas launched forHIV;Nyabadza andMukandavire
[8] analyzed their effects by developing HIV models. More
recently, a model of HIV/AIDS with diagnosis was presented
in [9]. The authors estimated parameter values and predicted
its transmission in China in the next few years.

The majority of mathematical models consider only one
control strategy, vaccination or diagnosis, for instance [5,
9]; however, curbing HIV/AIDS infection needs compre-
hensive strategies, since, under the serious threat of HIV,
it may be more rational to adopt various measures for
different high risk groups. These motivate us to consider two
combined intervention measures, vaccination and diagnosis.
Furthermore, due to the limited resources, we then choose a
nonlinear function which can be used to describe saturation
effect. We use a parameter ℎ, representing the half saturation
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constant, in the diagnosis function to measure the effect
of HIV individuals being late for diagnosis [10]. When the
number of infected individuals 𝐼 is low, the number of actual
per capita diagnosed individuals is proportional to 𝐼, whereas
when the number of infected individuals 𝐼 is sufficiently
large, there is a saturation effect which makes the number
of diagnosed individuals approach to be constant due to the
limitation of human and economic power. The number of
new diagnosed cases per unit time is saturated with the total
infected population.

The paper is organized as follows. The model is formu-
lated in Section 2. The existence of backward bifurcation and
the stability of the disease-free equilibrium are discussed in
Section 3. In Section 4, uniform persistence of the model is
investigated. Numerical simulation results are concluded in
Section 5. In Section 6, we give a brief summary.

2. The Model

The model describes the spread of HIV/AIDS in a high risk
population. The total high risk population size at time 𝑡,
denoted by (𝑁(𝑡)), is subdivided into susceptible individuals
(𝑆(𝑡)), vaccinated susceptible individuals (𝑉(𝑡)),HIV infected
but not yet diagnosed individuals (𝐼(𝑡)), diagnosed HIV-
positive individuals (𝐷(𝑡)), and those who have developed
AIDS (𝐴(𝑡)), so that𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(t) + 𝐷(𝑡) + 𝐴(𝑡).

The equations of the model are

𝑆
󸀠
= Π + 𝜔𝑉 − 𝜆 (𝑡) 𝑆 − 𝜉𝑆 − 𝜇𝑆,

𝑉
󸀠
= 𝜉𝑆 − (1 − 𝜖) 𝜆 (𝑡) 𝑉 − 𝜔𝑉 − 𝜇𝑉,

𝐼
󸀠
= 𝜆 (𝑡) (𝑆 + (1 − 𝜖)𝑉) − 𝜎

1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼,

𝐷
󸀠
=

𝑞𝐼

1 + ℎ𝐼
− 𝜎
2
𝐷 − 𝜇𝐷,

𝐴
󸀠
= 𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴,

(1)

where the incidence rate 𝜆(𝑡) = 𝛽((𝐼(𝑡) + 𝜂
1
𝐷(𝑡) +

𝜂
2
𝐴(𝑡))/𝑁(𝑡)), 𝛽 denotes the transmission rate, and 𝜂

1
and

𝜂
2
illustrate the modification factors in the transmission

coefficient of diagnosed HIV-positive individuals and AIDS
patients, respectively. People enter into the susceptible class
at a rate Π, become infected at a rate 𝜆(𝑡)𝑆, and become
vaccinated at a rate 𝜉. Also 𝜇 is the natural death rate; 𝜔
denotes the waning rate of vaccine; 𝜖 represents the vaccine
efficacy; 𝑞 is the diagnosis rate; 𝜎

1
and 𝜎

2
are the progression

rate to diagnose HIV-positive individuals and AIDS patients,
respectively; 𝜓 is the disease-induced death rate.

Since the model monitors change in the human pop-
ulation, the variables and parameters are assumed to be
nonnegative for all 𝑡 ≥ 0. The system will be analyzed in a
suitable feasible region Ω ⊆ 𝑅

5

+
, where Ω = {(𝑆, 𝑉, 𝐼, 𝐷, 𝐴) ∈

𝑅
5

+
| 𝑆 + 𝑉 + 𝐼 + 𝐷 + 𝐴 ≤ Π/𝜇}. We can easily prove that

the solutions of system (1) with nonnegative initial conditions
remain nonnegative, and the feasible region Ω is positively
invariant and attractingwith respect to system (1) for all 𝑡 > 0.

3. Model Analysis

3.1. Disease-Free Equilibrium and the Basic Reproduction
Number. Model (1) has a disease-free equilibrium (DFE),
obtained by setting the right-hand sides of system (1) to zero,
represented as

𝐸
0
: (𝑆, 𝑉, 𝐼, 𝐷, 𝐴)=(

Π (𝜇 + 𝜔)

𝜇 (𝜇 + 𝜉 + 𝜔)
,

Π𝜉

𝜇 (𝜇 + 𝜉 + 𝜔)
, 0, 0, 0) ,

𝑁 = 𝑆 + 𝑉 + 𝐼 + 𝐷 + 𝐴 =
Π

𝜇
.

(2)

Following [11], the reproduction number can be established
by using the next generation operator approach.Thematrices
for new infection and transition terms, respectively, given by
𝐹 and 𝑉, are

𝐹 = (

𝛽𝑚 𝜂
1
𝛽𝑚 𝜂

2
𝛽𝑚

0 0 0

0 0 0

) ,

𝑉 = (

𝜎
1
+ 𝑞 + 𝜇 0 0

−𝑞 𝜎
2
+ 𝜇 0

−𝜎
1

−𝜎
2

𝜇 + 𝜓

) ,

(3)

where𝑚 = (𝑆 + (1 − 𝜖)𝑉)/𝑁 = (𝜇 + 𝜔 + (1 − 𝜖)𝜉)/(𝜇 + 𝜔 + 𝜉).
Denote by 𝑅

0
the basic reproduction number as

𝑅
0
= 𝜌 (𝐹𝑉

−1
)

=
𝛽𝑚

𝜎
1
+ 𝑞 + 𝜇

(1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) ,

(4)

that is, the spectral radius of the next generation matrix
𝐹𝑉
−1. Biologically speaking, 𝑅

0
is the average number of

new secondary infections generated by a single HIV infected
individual, introduced into a susceptible population in which
some individuals have been vaccinated.

3.2. Existence of Backward Bifurcation. Employing the center
manifold theory as described in [12], we investigate the
existence of backward bifurcation. In order to apply the center
manifold theory, we make the following changes of variables:

𝑆 = 𝑥
1
, 𝑉 = 𝑥

2
, 𝐼 = 𝑥

3
, 𝐷 = 𝑥

4
, 𝐴 = 𝑥

5
,

(5)

so that 𝑁 = ∑
5

𝑛=1
𝑥
𝑛
. We now use the vector notation 𝑋 =

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
)
𝑇, where (⋅)𝑇 denotes a matrix transpose.

System (1) can then bewritten as 𝑋̇ = 𝐹 = (𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
5
)
𝑇,

so that

𝑥̇
1
(𝑡) = 𝑓

1
= Π + 𝜔𝑥

2
− 𝜆𝑥
1
− 𝜉𝑥
1
− 𝜇𝑥
1
,

𝑥̇
2
(𝑡) = 𝑓

2
= 𝜉𝑥
1
− (1 − 𝜖) 𝜆𝑥

2
− 𝜔𝑥
2
− 𝜇𝑥
2
,
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𝑥̇
3
(𝑡) = 𝑓

3
= 𝜆 (𝑥

1
+ (1 − 𝜖) 𝑥

2
) − (𝜎

1
+

𝑞

1 + ℎ𝑥
3

+ 𝜇)𝑥
3
,

𝑥̇
4
(𝑡) = 𝑓

4
=

𝑞𝑥
3

1 + ℎ𝑥
3

− (𝜎
2
+ 𝜇) 𝑥

4
,

𝑥̇
5
(𝑡) = 𝑓

5
= 𝜎
1
𝑥
3
+ 𝜎
2
𝑥
4
− (𝜓 + 𝜇) 𝑥

5
,

(6)

where 𝜆 = 𝛽((𝑥
3
+ 𝜂
1
𝑥
4
+ 𝜂
2
𝑥
5
)/𝑁).

If 𝛽 is taken as the bifurcation parameter and we consider
the case 𝑅

0
= 1, solving for 𝛽 gives 𝛽 = 𝛽∗; that is,

𝛽
∗
𝑚(1 +

𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) = 𝜎

1
+ 𝑞 + 𝜇.

(7)

First of all, observe that the eigenvalues of the Jacobianmatrix
𝐽(𝐸
0
) at 𝛽 = 𝛽∗ [13], that is, 𝐽(𝐸

0
)|
𝛽=𝛽
∗ ,

𝐽 (𝐸
0
)
󵄨󵄨󵄨󵄨𝛽=𝛽∗ =

(
(
(

(

−𝜇 − 𝜉 𝜔 −𝛽
∗
𝑆

𝑁
−𝜂
1
𝛽
∗
𝑆

𝑁
−𝜂
2
𝛽
∗
𝑆

𝑁

𝜉 −𝜇 − 𝜔 −𝛽
∗
(1 − 𝜖)

𝑉

𝑁
−𝜂
1
𝛽
∗
(1 − 𝜖)

𝑉

𝑁
−𝜂
2
𝛽
∗
(1 − 𝜖)

𝑉

𝑁
0 0 𝛽

∗
𝑚 − 𝜎

1
− 𝑞 − 𝜇 𝜂

1
𝛽
∗
𝑚 𝜂

2
𝛽
∗
𝑚

0 0 𝑞 −𝜎
2
− 𝜇 0

0 0 𝜎
1

𝜎
2

−𝜇 − 𝜓

)
)
)

)

, (8)

are given by

𝜆
1
= −𝜇, 𝜆

2
= − (𝜇 + 𝜔 + 𝜉) , 𝜆

3
= 0. (9)

The other two eigenvalues satisfy the following equation:

𝜆
2
+ 𝑏𝜆 + 𝑐 = 0, (10)

where

𝑏 = (𝜎
2
+ 𝜇) + (𝜇 + 𝜓) + (𝜎

1
+ 𝑞 + 𝜇) − 𝛽

∗
𝑚,

𝑐 = (𝜎
2
+ 𝜇) (𝜇 + 𝜓) + (𝜎

2
+ 𝜇) (𝜎

1
+ 𝑞 + 𝜇 − 𝛽

∗
𝑚)

+ (𝜇 + 𝜓) (𝜎
1
+ 𝑞 + 𝜇 − 𝛽

∗
𝑚) − 𝜂

1
𝑞𝛽
∗
𝑚 − 𝜎

1
𝜂
2
𝛽
∗
𝑚.

(11)

Substituting (7) into 𝑏 and 𝑐, we find

𝑏 = (𝜎
2
+ 𝜇) + (𝜇 + 𝜓)

+ 𝛽
∗
𝑚[

𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)] ,

𝑐 = (𝜎
2
+ 𝜇) (𝜇 + 𝜓)

× {1 +
𝛽
∗
𝑚

𝜇 + 𝜓
[
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)]

+
𝛽
∗
𝑚

𝜎
2
+ 𝜇

[
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)]

−𝛽
∗
𝑚

𝜂
1
𝑞 + 𝜎
1
𝜂
2

(𝜎
2
+ 𝜇) (𝜇 + 𝜓)

}

= (𝜎
2
+ 𝜇) (𝜇 + 𝜓)

× {1 + 𝛽
∗
𝑚[

𝜂
2

(𝜇 + 𝜓)
2
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)

+
𝜂
1
𝑞

(𝜎
2
+ 𝜇)
2
+

𝜂
2
𝜎
2
𝑞

(𝜇 + 𝜓) (𝜎
2
+ 𝜇)
2
]} .

(12)

Clearly, 𝑏 and 𝑐 are positive. Equation (10) has two roots
with negative real parts. Hence, 𝜆

3
= 0 is a simple zero

eigenvalue and all other eigenvalues have negative real parts.
The assumptions in [12] are satisfied. Therefore, the center
manifold theory can be used to analyze the dynamics of
system (1) near 𝛽 = 𝛽∗(or, equivalently,𝑅

0
= 1).The Jacobian

matrix of system (1) at 𝛽 = 𝛽∗ has a right eigenvector𝑤, given
by 𝑤 = (𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, 𝑤
5
)
𝑇. And it can be computed from

the system (𝐽(𝐸
0
)|
𝛽=𝛽
∗) ⋅ 𝑤 = 0; that is,

0 = − (𝜇 + 𝜉)𝑤
1
+ 𝜔𝑤
2
− 𝛽
∗ 𝑥1

𝑁
𝑤
3
− 𝜂
1
𝛽
∗ 𝑥1

𝑁
𝑤
4

− 𝜂
2
𝛽
∗ 𝑥1

𝑁
𝑤
5
,

0 = 𝜉𝑤
1
− (𝜇 + 𝜔)𝑤

2
− (1 − 𝜖) 𝛽

∗ 𝑥2

𝑁
𝑤
3

− (1 − 𝜖) 𝜂
1
𝛽
∗ 𝑥2

𝑁
𝑤
4
− (1 − 𝜖) 𝜂

2
𝛽
∗ 𝑥2

𝑁
𝑤
5
,

0 = (𝛽
∗
𝑚 − 𝜎

1
− 𝑞 − 𝜇)𝑤

3
+ 𝜂
1
𝛽
∗
𝑚𝑤
4
+ 𝜂
2
𝛽
∗
𝑚𝑤
5
,

0 = 𝑞𝑤
3
− (𝜎
2
+ 𝜇)𝑤

4
,

0 = 𝜎
1
𝑤
3
+ 𝜎
2
𝑤
4
− (𝜇 + 𝜓)𝑤

5
;

(13)
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from (13), we derive the following solutions:

𝑤
1
= −

(𝜇 + 𝑤)
2

+ (1 − 𝜖)𝑤𝜉

𝜇(𝜇 + 𝑤 + 𝜉)
2

𝛽
∗
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
) < 0,

𝑤
2
= −

𝜉 (𝜇 + 𝑤 + (1 − 𝜖) (𝜇 + 𝜉))

𝜇(𝜇 + 𝑤 + 𝜉)
2

𝛽
∗
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)

< 0,

𝑤
3
= 𝑤
3
> 0, 𝑤

4
=

𝑞

𝜎
2
+ 𝜇

𝑤
3
> 0,

𝑤
5
=
𝜎
1
𝑤
3
+ 𝜎
2
𝑤
4

𝜇 + 𝜓
> 0.

(14)

The left eigenvector of 𝐽(𝐸
0
)|
𝛽=𝛽
∗ is V, denoted by V =

(V
1
, V
2
, V
3
, V
4
, V
5
). And it can be computed from the system

(𝐽(𝐸
0
)|
𝛽=𝛽
∗)
𝑇
⋅ V = 0; that is,

0 = − (𝜇 + 𝜉) V
1
+ 𝜉V
2
,

0 = 𝜔V
1
− (𝜇 + 𝜔) V

2
,

0 = − 𝛽
∗ 𝑥1

𝑁
V
1
− (1 − 𝜖) 𝛽

∗ 𝑥2

𝑁
V
2
+ (𝛽
∗
𝑚 − 𝜎

1
− 𝑞 − 𝜇) V

3

+ 𝑞V
4
+ 𝜎
1
V
5
,

0 = − 𝜂
1
𝛽
∗ 𝑥1

𝑁
V
1
− (1 − 𝜖) 𝜂

1
𝛽
∗ 𝑥2

𝑁
V
2
+ 𝜂
1
𝛽
∗
𝑚V
3

− (𝜎
2
+ 𝜇) V

4
+ 𝜎
2
V
5
,

0 = − 𝜂
2
𝛽
∗ 𝑥1

𝑁
V
1
− (1 − 𝜖) 𝜂

2
𝛽
∗ 𝑥2

𝑁
V
2
+ 𝜂
2
𝛽
∗
𝑚V
3

− (𝜇 + 𝜓) V
5
,

(15)

with the following solutions:

V
1
= 0, V

2
= 0, V

3
= V
3
> 0,

V
4
=
𝛽
∗
𝑚

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) V
3
> 0, V

5
=
𝜂
2
𝛽
∗
𝑚

𝜇 + 𝜓
V
3
> 0.

(16)

The local bifurcation analysis near 𝛽 = 𝛽∗(𝑅
0
= 1) is then

determined by the signs of two associated constants, denoted
by 𝑎 and 𝑏, respectively, as

𝑎 =

5

∑

𝑘,𝑖,𝑗=1

V
𝑘
𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(0, 0) ,

𝑏 =

5

∑

𝑘,𝑖=1

V
𝑘
𝑤
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝛽∗

(0, 0) .

(17)

The computations of 𝑎 and 𝑏 are done as follows: for system
(6) the associated nonzero partial derivatives of 𝐹 at the
disease-free equilibrium are

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
3

=
𝛽
∗

𝑁
(1 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
4

=
𝜂
1
𝛽
∗

𝑁
(1 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
5

=
𝜂
2
𝛽
∗

𝑁
(1 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
2
𝜕𝑥
3

=
𝛽
∗

𝑁
(1 − 𝜖 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
2
𝜕𝑥
4

=
𝜂
1
𝛽
∗

𝑁
(1 − 𝜖 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
2
𝜕𝑥
5

=
𝜂
2
𝛽
∗

𝑁
(1 − 𝜖 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝑥
3

= −
2𝛽
∗

𝑁
𝑚 + 2𝑞ℎ,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝑥
4

= −
𝛽
∗
(1 + 𝜂

1
)

𝑁
𝑚,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝑥
5

= −
𝛽
∗
(1 + 𝜂

2
)

𝑁
𝑚,

𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝑥
4

= −
2𝜂
1
𝛽
∗

𝑁
𝑚,

𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝑥
5

= −
(𝜂
1
+ 𝜂
2
) 𝛽
∗

𝑁
𝑚,

𝜕
2
𝑓
3

𝜕𝑥
5
𝜕𝑥
5

= −
2𝜂
2
𝛽
∗

𝑁
𝑚,

𝜕
2
𝑓
4

𝜕𝑥
3
𝜕𝑥
3

= −2𝑞ℎ,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝛽∗

= 𝑚,
𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝛽∗

= 𝜂
1
𝑚,

𝜕
2
𝑓
3

𝜕𝑥
5
𝜕𝛽∗

= 𝜂
2
𝑚.

(18)

Substituting (18) into (17), we get

𝑎 =
2𝛽
∗

𝑁
V
3
{ (𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)

× (𝛽
∗
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)
(1 − 𝜖) 𝜖𝜉

(𝜇 + 𝑤 + 𝜉)
2

−𝑚 (𝑤
3
+ 𝑤
4
+ 𝑤
5
))}

+ 2𝑞ℎ𝑤
2

3
V
3
(1 −

𝛽
∗
𝑚

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
)) ,

𝑏 = V
3
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)𝑚.

(19)

From [14, 15], we know that if 𝑎 > 0, 𝑏 > 0, there exists
a backward bifurcation. Since the bifurcation coefficient, 𝑏, is
always positive, then we establish the following result.

Theorem 1. If 𝑎 > 0, system (1) exhibits a backward bifurca-
tion when 𝑅

0
= 1.

Due to existence of backward bifurcation we know that,
for positive 𝑎, there exists another critical value 𝑅

𝑐
, which is

less than unity, for model (1). Moreover, there is no endemic
equilibrium for 𝑅

0
< 𝑅
𝑐
; there are two distinct endemic
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Figure 1: (a) Plot of the function 𝐹(𝐼)with different values of the transmission coefficient 𝛽. (b) Backward bifurcation when the transmission
coefficient 𝛽 varies. Other parameters: Π = 100, 𝜇 = 1/45, 𝑤 = 1/20, 𝜖 = 0.4, 𝜉 = 0.6, 𝜎

1
= 0.7, 𝜎

2
= 0.4, 𝜓 = 0.5, 𝑞 = 1, ℎ = 1, 𝜂

1
= 0.4, and

𝜂
2
= 0.7.

equilibria for𝑅
𝑐
< 𝑅
0
< 1, and a unique endemic equilibrium

exists for 𝑅
0
= 𝑅
𝑐
< 1 or 𝑅

0
> 1. Numerical studies will

confirm this in the end of this subsection.
We now analyze the endemic equilibrium of model (1).

The equilibrium of model (1) can be obtained as follows:

𝑆
∗
=

Π ((1 − 𝜖) 𝜆
∗
+ 𝜇 + 𝜔)

((1 − 𝜖) 𝜆∗ + 𝜇 + 𝜔) (𝜆∗ + 𝜇 + 𝜉) − 𝜔𝜉
,

𝑉
∗
=

Π𝜉

((1 − 𝜖) 𝜆∗ + 𝜇 + 𝜔) (𝜆∗ + 𝜇 + 𝜉) − 𝜔𝜉
,

𝐷
∗
=

1

𝜎
2
+ 𝜇

𝑞𝐼
∗

1 + ℎ𝐼∗
,

𝐴
∗
=

𝜎
1

𝜇 + 𝜓
𝐼
∗
+

𝜎
2

𝜇 + 𝜓

1

𝜎
2
+ 𝜇

𝑞𝐼
∗

1 + ℎ𝐼∗
,

𝑁
∗
=
Π − 𝜓𝐴

∗

𝜇
,

(20)

where

𝜆
∗
= 𝜆 (𝐼

∗
) = 𝛽

𝐼
∗
+ 𝜂
1
𝐷
∗
+ 𝜂
2
𝐴
∗

𝑁∗

= 𝛽
𝐼
∗

𝑁∗
{1 +

𝜂
1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼∗

+𝜂
2
(

𝜎
1

𝜇 + 𝜓
+

𝜎
2

𝜇 + 𝜓

1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼∗
)} .

(21)

Substituting (20) into the third equation of system (1), it is
easy to derive the following equation:

𝑓 (𝐼) = 𝑔 (𝐼) , (22)

where

𝑓 (𝐼) = (𝑆 + (1 − 𝜖)𝑉)
𝛽

𝑁

× {1 +
𝜂
1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼

+𝜂
2
(

𝜎
1

𝜇 + 𝜓
+

𝜎
2

𝜇 + 𝜓

1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼
)} ,

(23)

𝑔 (𝐼) = 𝜎
1
+ 𝜇 +

𝑞

1 + ℎ𝐼
. (24)

Clearly, 𝐼∗ = 0 is a fixed point, which corresponds to the
disease-free equilibrium 𝐸

0
. For 𝐼 = 0, we can obtain

𝑔 (0) = 𝜎
1
+ 𝑞 + 𝜇,

𝑓 (0) = 𝛽𝑚{1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜎
2

𝜇 + 𝜓
(𝜎
1
+

𝜎
2
𝑞

𝜎
2
+ 𝜇

)} ,

𝑅
0
=
𝑓 (0)

𝑔 (0)
.

(25)

Define

𝐹 (𝐼) =
𝑓 (𝐼)

𝑔 (𝐼)
. (26)

Frommodel (1), it can be shown that if 𝐼∗ is a positive solution
of 𝐹(𝐼) = 1, then 𝑆∗, 𝑉∗, 𝐷∗, and 𝐴∗ are positive. Thus, the
equilibrium is biologically relevant. Unfortunately, it is hard
to solve the equation 𝐹(𝐼) = 1 analytically; in the following
we numerically show that this equation can have two positive
roots, which confirms the existence of backward bifurcation.
In Figure 1(a), 𝐹(𝐼) is plotted versus 𝐼 for different values of
𝛽 and all other parameters are fixed. Figure 1(a) shows that
an increase in 𝛽 would lead to curve 𝐹(𝐼) becoming tangent
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to line 1 and defining a critical value 𝐹(𝐼∗)|
𝛽=𝛽
𝑐

= 1 and
𝐹
󸀠
(𝐼
∗
)|
𝛽=𝛽
𝑐

= 0 hold true. Figure 1(b) shows the occurrence
of the backward bifurcation as parameter 𝛽 varies. We write
𝑅
0
(𝛽) as the threshold value to indicate 𝛽 as the bifurcation

parameter while all other parameters are fixed. Define [16]

𝑅
𝑐
= 𝑅
0
(𝛽
𝑐
) , (27)

below which the disease-free equilibrium is unique equilib-
rium.

3.3. Stability Analysis of Equilibria. First, we have the follow-
ing result on the local stability of 𝐸

0
.

Theorem 2. The disease-free equilibrium 𝐸
0
of system (1) is

locally asymptotically stable if 𝑅
0
< 1 and unstable otherwise.

Proof. By checking the Jacobian matrix of system (1) evalu-
ated at 𝐸

0
, we know that the characteristic equation for 𝐽(𝐸

0
)

has two eigenvalues as

𝜆
1
= −𝜇, 𝜆

2
= − (𝜇 + 𝜔 + 𝜉) , (28)

and the others satisfy the following equation:

ℎ (𝜆) =
𝛽𝑚

𝜆 + 𝜎
1
+ 𝑞 + 𝜇

+
𝜂
1
𝛽𝑚𝑞

(𝜆 + 𝜎
1
+ 𝑞 + 𝜇) (𝜆 + 𝜎

2
+ 𝜇)

+
𝜂
2
𝛽𝑚𝑞𝜎

2

(𝜆 + 𝜎
1
+ 𝑞 + 𝜇) (𝜆 + 𝜎

2
+ 𝜇) (𝜆 + 𝜇 + 𝜓)

+
𝜂
2
𝛽𝑚𝜎
1

(𝜆 + 𝜎
1
+ 𝑞 + 𝜇) (𝜆 + 𝜇 + 𝜓)

= 1.

(29)

If the real parts of the roots of the equation ℎ(𝜆) = 1 are
nonnegative, that is,R(𝜆) ≥ 0, then [17]

|ℎ (𝜆)| ≤ ℎ (0) = 𝑅
0
. (30)

Hence, if𝑅
0
< 1,∀𝜆 such thatR(𝜆) ≥ 0, then |ℎ(𝜆)| ≤ 𝑅

0
< 1,

showing that there are no solutions to ℎ(𝜆) = 1 with positive
real part. Hence, 𝐸

0
is locally asymptotically stable if 𝑅

0
< 1.

This proof is completed.

Then, using Lyapunov function we can get global stability
of 𝐸
0
.

Theorem 3. The disease-free equilibrium 𝐸
0
of system (1) is

globally asymptotically stable if 𝑅
0
< min{𝑅

𝑐
, (𝜎
1
+ 𝜇)𝑚/(𝜎

1
+

𝑞 + 𝜇)}.

Proof. We note that no endemic equilibrium exists for 𝑅
0
<

𝑅
𝑐
. Then, 𝐸

0
is a unique equilibrium of system (1). We now

consider a Lyapunov function:

𝑉 = 𝐼 +
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
)𝐷 +

𝜂
2
𝛽

𝜇 + 𝜓
𝐴. (31)

The time derivative of 𝑉 is given by

𝑉̇ = ̇𝐼 +
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) 𝐷̇ +

𝜂
2
𝛽

𝜇 + 𝜓
𝐴̇

= {𝛽 (𝐼 + 𝜂
1
𝐷 + 𝜂

2
𝐴)

𝑆 + (1 − 𝜖)𝑉

𝑁
− 𝜎
1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼}

+
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
)(

𝑞𝐼

1 + ℎ𝐼
− 𝜎
2
𝐷 − 𝜇𝐷)

+
𝜂
2
𝛽

𝜇 + 𝜓
(𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴)

≤ {𝛽 (𝐼 + 𝜂
1
𝐷 + 𝜂

2
𝐴) − 𝜎

1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼}

+
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) (𝑞𝐼 − 𝜎

2
𝐷 − 𝜇𝐷)

+
𝜂
2
𝛽

𝜇 + 𝜓
(𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴)

= 𝐼 {𝛽 − 𝜎
1
−

𝑞

1 + ℎ𝐼
− 𝜇 +

𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) 𝑞

+
𝜂
2
𝛽

𝜇 + 𝜓
𝜎
1
}

≤ 𝐼 {𝑅
0

𝜎
1
+ 𝑞 + 𝜇

𝑚
− (𝜎
1
+ 𝜇)}

=
(𝜎
1
+ 𝑞 + 𝜇) 𝐼

𝑚
{𝑅
0
−
(𝜎
1
+ 𝜇)𝑚

𝜎
1
+ 𝑞 + 𝜇

} .

(32)

Note that 𝑉̇ ≤ 0 if 𝑅
0
< (𝜎
1
+ 𝜇)𝑚/(𝜎

1
+ 𝑞 + 𝜇).

Furthermore, 𝑉̇ = 0 if and only if 𝐼 = 0. Therefore, the largest
compact invariant set in Ω: 𝑉̇ = 0, when 𝑅

0
< min{𝑅

𝑐
, (𝜎
1
+

𝜇)𝑚/(𝜎
1
+ 𝑞 + 𝜇)}, is the singleton 𝐸

0
. Thus, 𝐸

0
is globally

asymptotically stable if 𝑅
0
< min{𝑅

𝑐
, (𝜎
1
+𝜇)𝑚/(𝜎

1
+ 𝑞+𝜇)}.

This completes the proof.

4. Persistence of the Model

In this section, we will prove that system (1) is uniformly
persistent. First, we present the following definition that is
similar to that in [18, 19].

Definition 4. Model (1) is said to be uniformly persistent
if there exists a positive constant 𝜀 > 0 (independent of
initial data) such that every solution with positive initial
conditions satisfies lim inf

𝑡→∞
𝑆(𝑡) ≥ 𝜀, lim inf

𝑡→∞
𝑉(𝑡) ≥

𝜀, lim inf
𝑡→∞

𝐼(𝑡) ≥ 𝜀, lim inf
𝑡→∞

𝐷(𝑡) ≥ 𝜀, and
lim inf

𝑡→∞
𝐴(𝑡) ≥ 𝜀.

Theorem 5. If 𝑅
0
> 1, system (1) is uniformly persistent; that

is, there exists a positive constant 𝜀, such that, for all initial
values

(𝑆 (0) , 𝑉 (0) , 𝐼 (0) , 𝐷 (0) , 𝐴 (0)) ∈ 𝑅
2

+
× 𝐼𝑛𝑡 (𝑅

3

+
) , (33)
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the solutions of system (1) satisfy. lim inf
𝑡→∞

𝑆(𝑡) ≥ 𝜀,
lim inf

𝑡→∞
𝑉(𝑡) ≥ 𝜀, lim inf

𝑡→∞
𝐼(𝑡) ≥ 𝜀, lim inf

𝑡→∞
𝐷(𝑡) ≥

𝜀, and lim inf
𝑡→∞

𝐴(𝑡) ≥ 𝜀.

Proof. Define

𝑋 = {(𝑆, 𝑉, 𝐼, 𝐷, 𝐴) | 𝑆 ≥ 0, 𝑉 ≥ 0, 𝐼 ≥ 0,𝐷 ≥ 0, 𝐴 ≥ 0} ,

𝑋
0
= {(𝑆, 𝑉, 𝐼, 𝐷, 𝐴) | 𝑆 ≥ 0, 𝑉 ≥ 0, 𝐼 > 0,𝐷 > 0, 𝐴 > 0} ,

𝜕𝑋
0
= 𝑋 \ 𝑋

0
.

(34)

It then suffices to show that system (1) is uniformly persistent
with respect to (𝑋

0
, 𝜕𝑋
0
). First, by the form of (1), it is easy

to see that both 𝑋 and 𝑋
0
are positively invariant. Clearly,

𝜕𝑋
0
is relatively closed in𝑋. Furthermore, system (1) is point

dissipative. Set

𝑀
𝜕
= {(𝑆 (0) , 𝑉 (0) , 𝐼 (0) , 𝐷 (0) , 𝐴 (0)) :

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) satisfies (1) ,

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) ∈ 𝜕𝑋
0
, ∀𝑡 ≥ 0} .

(35)

We now prove that

𝑀
𝜕
= {(𝑆, 𝑉, 0, 0, 0) : 𝑆 ≥ 0, 𝑉 ≥ 0} . (36)

Assume that (𝑆(0), 𝑉(0), 𝐼(0), 𝐷(0), 𝐴(0)) ∈ 𝑀
𝜕
. It suffices to

show that

𝐼 (𝑡) = 0, 𝐷 (𝑡) = 0, 𝐴 (𝑡) = 0, ∀𝑡 ≥ 0. (37)

If this is not true, then there exists a 𝑡
0
≥ 0 such that

𝐼 (𝑡
0
) > 0, 𝐷 (𝑡

0
) = 0, 𝐴 (𝑡

0
) = 0, (38)

or

𝐼 (𝑡
0
) > 0, 𝐷 (𝑡

0
) > 0, 𝐴 (𝑡

0
) = 0, (39)

or

𝐼 (𝑡
0
) > 0, 𝐷 (𝑡

0
) = 0, 𝐴 (𝑡

0
) > 0, (40)

or

𝐼 (𝑡
0
) = 0, 𝐷 (𝑡

0
) > 0, 𝐴 (𝑡

0
) = 0, (41)

or

𝐼 (𝑡
0
) = 0, 𝐷 (𝑡

0
) = 0, 𝐴 (𝑡

0
) > 0, (42)

or

𝐼 (𝑡
0
) = 0, 𝐷 (𝑡

0
) > 0, 𝐴 (𝑡

0
) > 0. (43)

For 𝐼(𝑡
0
) > 0,𝐷(𝑡

0
) = 0, and 𝐴(𝑡

0
) = 0, we get

𝐷
󸀠
(𝑡
0
) =

𝑞𝐼 (𝑡
0
)

1 + ℎ𝐼 (𝑡
0
)
> 0, 𝐴

󸀠
(𝑡
0
) = 𝜎
1
𝐼 (𝑡
0
) > 0.

(44)

It follows that there is an 𝜀
0
> 0 such that 𝐷(𝑡) > 0, 𝐴(𝑡) > 0,

for 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜀
0
. This proves that

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) ∉ 𝜕𝑋
0

for 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜀
0
,

(45)

which contradicts the assumption that (𝑆(0), 𝑉(0), 𝐼(0),
𝐷(0), 𝐴(0)) ∈ 𝑀

𝜕
. Similarly, we can obtain contradictions for

other cases. This proves that

𝑀
𝜕
= {(𝑆, 𝑉, 0, 0, 0) : 𝑆 ≥ 0, 𝑉 ≥ 0} . (46)

Note that 𝐸
0
is globally asymptotically stable in 𝐼𝑛𝑡𝑀

𝜕
,

and𝐸
0
is an isolated invariant set in𝑋.That is to say,𝑊𝑠(𝐸

0
)∩

𝑋
0
= 0. Every orbit in𝑀

𝜕
converges to 𝐸

0
, and 𝐸

0
is acyclic

in𝑀
𝜕
. We claim that𝑊𝑠(𝐸

0
) ∩ 𝑋
0
= 0 for 𝑅

0
> 1. If this is

false, then we have𝑊𝑠(𝐸
0
)∩𝑋
0
̸= 0.The system has a positive

solution

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) , (47)

where (𝑆(0), 𝑉(0), 𝐼(0), 𝐷(0), 𝐴(0)) ∈ 𝑋
0
. Then

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) 󳨀→ 𝐸
0

as 𝑡 󳨀→ ∞ for 𝑅
0
> 1.

(48)

For 𝑅
0
> 1, we can choose an 𝜂 > 0 small enough such that

𝑅
0
(1 − 𝜂) > 1. Then, when 𝑡 is sufficiently large, we have

𝑚 − 𝜂𝑚 ≤
𝑆 (𝑡) + (1 − 𝜖)𝑉 (𝑡)

𝑁 (𝑡)
≤ 𝑚 + 𝜂𝑚, (49)

𝐼
󸀠
≥ 𝛽𝑚 (1 − 𝜂) (𝐼 + 𝜂

1
𝐷 + 𝜂

2
𝐴) − 𝜎

1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼,

𝐷
󸀠
≥

𝑞𝐼

1 + ℎ𝐼
− 𝜎
2
𝐷 − 𝜇𝐷,

𝐴
󸀠
≥ 𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴.

(50)

Define

𝑀

= (

𝛽𝑚(1 − 𝜂) − 𝜎
1
− 𝑞 − 𝜇 𝜂

1
𝛽𝑚 (1 − 𝜂) 𝜂

2
𝛽𝑚 (1 − 𝜂)

𝑞 −𝜎
2
− 𝜇 0

𝜎
1

𝜎
2

−𝜇 − 𝜓

) .

(51)

Recall that the stabilitymodulus of an 𝑛×𝑛matrix𝑀, denoted
by 𝑠(𝑀), is defined as

𝑠 (𝑀) = max {Re 𝜆 : 𝜆 is an eigenvalue of 𝑀} . (52)

Note that 𝑀 is irreducible and has nonnegative off-
diagonal elements. It then follows that 𝑠(𝑀) is a simple eigen-
value of 𝑀 with a (componentwise) positive eigenvector.
Thus,

|𝜆𝐼 −𝑀| = 𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
, (53)
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Table 1: Parameter description and values.

Parameters Description Estimated values Source
Π Recruitment rate 4348 [21]
𝛽 Transmission coefficient 0.304 [26]
𝑤 Per capita waning rate of vaccine 1/20 [5]
𝜉 Per capita vaccination rate 0.4 Variable
𝜀 Vaccine efficacy 0.4 Variable
𝜇 Natural death rate 0.0246 [27]
𝜓 Disease-induced death rate 0.7114 [21]
𝜎
1

Progression rate to AIDS stage for the infection stage 0.0413 [9]
𝜎
2

Progression rate to AIDS stage for the diagnosed stage 0.116 [9]
𝑞 Diagnosis rate 0.304 [9]
𝜂
1

Modification factor in transmission coefficient of diagnosed HIV-positive individuals 0.491 [9]
𝜂
2

Modification factor in transmission coefficient of AIDS patients 0.1 Variable

where

𝑎
1
= (𝜎
1
+ 𝑞 + 𝜇) + (𝜎

2
+ 𝜇) + (𝜇 + 𝜓) − 𝛽𝑚,

𝑎
2
= (𝜎
1
+ 𝑞 + 𝜇 − 𝛽𝑚) (𝜎

2
+ 𝜇) + (𝜎

2
+ 𝜇) (𝜇 + 𝜓)

+ (𝜎
1
+ 𝑞 + 𝜇 − 𝛽𝑚) (𝜇 + 𝜓) − 𝜂

1
𝛽𝑚𝑞 − 𝜂

2
𝛽𝑚𝜎
1
,

𝑎
3
= (𝜎
1
+ 𝑞 + 𝜇) (𝜎

2
+ 𝜇) (𝜇 + 𝜓) (1 − 𝑅

0
(1 − 𝜂)) .

(54)

For 𝑅
0
(1 − 𝜂) > 1, we obtain 𝑎

3
< 0. Thus, 𝑠(𝑀) is a simple

positive eigenvalue of 𝑀 with a (componentwise) positive
eigenvector. By comparison theorem, we get

𝐼 (𝑡) 󳨀→ ∞, 𝐷 (𝑡) 󳨀→ ∞, 𝐴 (𝑡) 󳨀→ ∞,

as 𝑡 󳨀→ ∞,

(55)

which contradicts the assumption that

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) 󳨀→ 𝐸
0

as 𝑡 󳨀→ ∞.

(56)

This proves that𝑊𝑠(𝐸
0
) ∩ 𝑋
0
= 0 for 𝑅

0
> 1. By [20], system

(1) is uniformly persistent. Thus, the proof of the theorem is
completed.

5. Numerical Simulations

5.1. Numerical Results. We initially investigate variation in
𝑅
0
with different vaccine efficacy, vaccination rate, and

diagnosis rate to compare the impact of these intervention
measures on HIV transmission. The parameter values in
Table 1 are chosen based on HIV/AIDS transmission among
IDUs in Yunnan province, China. For simplicity, we choose

ℎ = 1. Differentiating partially 𝑅
0
with respect to 𝜉 and 𝜖,

respectively, we obtain

𝜕𝑅
0

𝜕𝜉
= −

𝛽

𝜎
1
+ 𝑞 + 𝜇

𝜖 (𝜇 + 𝜔)

(𝜇 + 𝜔 + 𝜉)
2

× (1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) < 0,

𝜕𝑅
0

𝜕𝜖
= −

𝛽

𝜎
1
+ 𝑞 + 𝜇

𝜉

𝜇 + 𝜔 + 𝜉

× (1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) < 0,

(57)

which implies that an increase of vaccination rate and vaccine
efficacy leads to the basic reproduction number decline, as
shown in Figure 2(a), in which the contour plots of 𝑅

0
versus

vaccine efficacy 𝜖 and vaccination rate 𝜉 were plotted. It also
shows that the basic reproduction number is more sensitive
to vaccine efficacy than vaccination rate. Figure 2(b) shows
the contour plot of 𝑅

0
with diagnosis rate and vaccination

rate, which implies a decrease in 𝑅
0
with increasing diagnosis

rate 𝑞 and vaccination rate 𝜉. Furthermore, when 50%of HIV
individuals are diagnosed, vaccination level of at least 60%
would be needed to achieve 𝑅

0
< 1. This suggests that the

strategies of diagnosis and vaccination should be stringent
enough to reduce 𝑅

0
.

Next, we consider the effect of different transmission
rate, vaccination rate, vaccine efficacy, and recruitment rate
on transmission of HIV/AIDS. We take the year 2004 as
starting time; since then the policy of diagnosis is consistent.
In [21], we get that the number of diagnosed HIV-positive
individuals and AIDS patients in Yunnan province was 27168
and 1223 in year 2004, respectively. Besides, 22.6% of these
HIV individuals were transmitted by share injectors [22].
Hence,𝐷(0) = 27168×22.6% = 6140,𝐴(0) = 1223×22.6% =

276. Note that the diagnosis rate is estimated to be 0.304
[9]; then we have 𝐼(0) = 𝐷(0)/0.304 = 20197. We have no
reliable data on the number of susceptible individuals, that
is, number of IDUs in Yunnan province. However, we know
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Figure 2: Contour plots of 𝑅

0
versus (a) vaccine efficacy 𝜖 and vaccination rate 𝜉 and (b) diagnosis rate 𝑞 and vaccination rate 𝜉.

that 3.2 million blood samples were tested in Yunnan in [23].
We then assume that in these blood samples the fraction of
share injectors is the same as fraction of transmission via
share injectors (i.e., 22.6%). Then the number of susceptible
individuals who share injectors is 𝑆(0) + 𝑉(0) = 3.2 × 106 ×
22.6% = 723200. If the vaccination rate is assumed to be 0.4,
then 𝑉(0) = 𝑆(0) × 0.4. We obtain the initial values

𝑆 (0) = 516571, 𝑉 (0) = 206628, 𝐼 (0) = 20197,

𝐷 (0) = 6140, 𝐴 (0) = 276.

(58)

Figure 3 shows the variation in the number of HIV infected
individuals with different transmission rates, vaccination
rates, vaccine efficacy, and recruitment rates. It follows from
Figure 3(a) that decreasing transmission rate could lead to
the number of HIV-positive individuals decline. The effect
of increasing vaccination rate on HIV transmission is shown
in Figure 3(b) and it is seen that the number of HIV-
positive individuals becomesmuch smaller if vaccination rate
increases more. Figure 3(c) illustrates that, with increasing
vaccine efficacy, the number of HIV-positive individuals
decreases. Figure 3(d) shows that if the inflow of susceptible
individuals into the community is restricted due to education,
the disease spread will slow down.

5.2. Sensitivity Analysis. In this section, we use sensitivity
analysis method [24] to investigate the impact of vari-
ous intervention measures on HIV transmission in Yun-
nan province, China. We hope that these results obtained
here could improve the knowledge of the effects of different
interventions.

Figures 4(a) and 4(b) show the comparison of sensitivity
coefficients of new cases and prevalence against parameters𝛽,
𝜖, 𝜉, 𝑞, andΠ, separately. Note that the sensitivity coefficient of
new cases and prevalence can be interpreted as the percentage
change in the number of new cases and prevalence for 1%
decline in the parameters𝛽 andΠ or 1% increase in 𝜖, 𝜉, and 𝑞,

respectively [25]. In particular, let function 𝑓 be new cases or
prevalence; the sensitivity coefficients (SC) of new cases and
prevalence are given by

SC =
𝑓 (perturbed variables)−𝑓 (original variable)

𝑓 (original variable)
×100%.

(59)

It follows from Figure 4 that a decrease in transmis-
sion coefficient 𝛽 causes new cases and prevalence decline
substantially. Besides, an increase in vaccine efficacy 𝜖 and
vaccination rate 𝜉 can lead to a decrease in new cases and
prevalence, whereas the change of both diagnosis rate 𝑞
and recruitment rate Π slightly affects the new cases or
prevalence. Thus, new cases and prevalence are sensitive
to transmission coefficient, vaccine efficacy, and vaccination
rate.Then, reducing the transmission coefficient and increas-
ing the vaccine efficacy and vaccination rate can greatly
reduce new cases and prevalence.

6. Conclusion

In this paper, we established an epidemic model to investi-
gate effects of saturated diagnosis and vaccination on HIV
transmission. It proved that backward bifurcation occurs by
employing center manifold theory, which causes the disease-
free equilibrium to be locally asymptotically stable instead of
globally asymptotically stable for 𝑅

0
< 1. Thus, making the

basic reproduction number less than unity is not enough to
eliminate theHIV infection.Wenote that𝑅

0
< 1 is equivalent

to

𝜉 > ((𝜇 + 𝜔) [𝛽(1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
))

− (𝜎
1
+ 𝑞 + 𝜇) ])
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Figure 3: Variation in the number of HIV-positive individuals with different (a) transmission coefficient, (b) vaccination rate, (c) vaccine
efficacy, and (d) recruitment rate.

× ( (𝜎
1
+ 𝑞 + 𝜇)

−𝛽 (1 − 𝜖) (1+
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)))

−1

:= 𝜉
𝑐
,

(60)

which means that only the vaccination rate is greater than
𝜉
𝑐
; HIV infection might be eliminated, depending on initial

data. There exists the critical threshold 𝑅
𝑐
, which cannot

be explicitly expressed due to nonlinearity, such that when
𝑅
0
< min{𝑅

𝑐
, (𝜎
1
+ 𝜇)𝑚/(𝜎

1
+ 𝑞 + 𝜇)} < 1, the disease-

free equilibrium is globally asymptotically stable. However,
if 𝑅
0
> 1, the disease uniformly persists.

It is interesting to note that if the diagnosis is described
linearly backward bifurcation does not happen. This implies
that nonlinear diagnosis due to limited medical resources
leads to backward bifurcation, and consequently complete
elimination of HIV infection becomes difficult. That is, HIV
infection might be extinct only by improving integrated
interventions, which ensures that 𝑅

0
is less than 𝑅

𝑐
and (𝜎

1
+

𝜇)𝑚/(𝜎
1
+ 𝑞 + 𝜇).
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Figure 4: Sensitivity coefficients of new cases (a) and prevalence (b) on 𝛽, 𝜖, 𝜉, 𝑞, andΠ over time 𝑡. All other parameters are shown in Table 1.

Since several candidate HIV vaccines are in develop-
ment, it is useful to study the effectiveness. Moreover,
the detection of HIV-positive individuals is limited due to
medical resources. We then applied the proposed model
with nonlinear diagnosis and vaccination to examine HIV
infection among IDUs in Yunnan province, China. Sen-
sitivity analysis shows that new cases and prevalence are
sensitive to transmission rate, vaccine efficacy, and vacci-
nation rate, whereas diagnosis rate and recruitment rate
slightly affect both of them. Therefore, enlarging vaccina-
tion rate, improving vaccine efficacy, and lowering trans-
mission rate by reducing sterile injecting equipment are
beneficial to reduce transmission of HIV infection. In
order to efficiently reduce HIV transmission, combined
intervention strategies are suggested to be implemented
simultaneously.

Effective antiretroviral therapy (ART) is an important
strategy to slow down the progression to AIDS due to great
reduction in viral loads and is not included in our model.
Note that when HIV infected individuals are diagnosed
and CD4 T cell counts decrease to 350 copies/𝜇L, they
will accept treatment. We will include treatment strategy to
construct HIV/AIDS models to investigate the transmission
of HIV/AIDS in the future work and provide policy makers
with effective suggestions.
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