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Departamento de Matemática Aplicada, E.T.S. Ingeniera Edificación, Universidad de Granada, C/Severo Ochoa s/n,
18071 Granada, Spain

Correspondence should be addressed to D. Gámez; domingo@ugr.es
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Using fixed-point techniques and Faber-Schauder systems in adequate Banach spaces, we approximate the solution of a system of
nonlinear Fredholm integrodifferential equations of the second kind.

1. Introduction

An important area of research interest is the study of
systems of nonlinear Fredholm integrodifferential equations.
A systemof nonlinear Fredholm integrodifferential equations
can be written in vectorial form as

X󸀠 (𝑡) = F (𝑡,X (𝑡)) + ∫
1

0

K (𝑡, 𝑠,X (𝑠)) 𝑑𝑠

(𝑡, 𝑠 ∈ [0, 1]) ,

X (0) = 𝜌,

(1)

where X = [𝑥
1
, . . . , 𝑥

𝑛
]
𝑇
∈ 𝐶([0, 1],R𝑛) is the solution to be

calculated and F = [𝐹
1
, . . . , 𝐹

𝑛
]
𝑇

∈ 𝐶([0, 1] × R𝑛,R𝑛), K =

[𝐾
1
, . . . , 𝐾

𝑛
]
𝑇
∈ 𝐶([0, 1]

2
× R𝑛,R𝑛), and 𝜌 = [𝜌

1
, . . . , 𝜌

𝑛
]
𝑇
∈

R𝑛 are known.
Observe that, for 𝑖 = 1, . . . , 𝑛, the 𝑖th equation of the

system (1) adopts the form

𝑥
󸀠

𝑖
(𝑡) = 𝐹

𝑖
(𝑡, 𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

+ ∫
1

0

𝐾
𝑖
(𝑡, 𝑠, 𝑥

1
(𝑠) , . . . , 𝑥

𝑛
(𝑠)) 𝑑𝑠,

(2)

with 𝑥
𝑖
(0) = 𝜌

𝑖
.

The system (1) is linear when for all 𝑡, 𝑠 ∈ [0, 1] and u =

[𝑢
1
, . . . , 𝑢

𝑛
]
𝑇
∈ R𝑛 we have that

K (𝑡, 𝑠, u) = [
[

[

𝐾
11
(𝑡, 𝑠) ⋅ ⋅ ⋅ 𝐾

1𝑛
(𝑡, 𝑠)

... d
...

𝐾
𝑛1
(𝑡, 𝑠) ⋅ ⋅ ⋅ 𝐾

𝑛𝑛
(𝑡, 𝑠)

]
]

]

[
[

[

𝑢
1

...
𝑢
𝑛

]
]

]

,

with 𝐾
𝑖𝑗
∈ 𝐶 ([0, 1]

2
,R) .

(3)

Many problems of physics and engineering lead to the
solution of integro or integrodifferential equations or systems
of such equations. In most cases, these cannot be solved by
direct methods, and this, together with the powerful com-
puter tools available, has led to the development of numerical
methods that allow obtaining approximate solutions of these
equations or systems of equations. In literature it is easy to
find many of them.

Danfu and Xufeng [1] utilize the CAS wavelet operational
matrix of integration for obtaining numerical solution of
linear Fredholm integrodifferential equations. Jafarian and
Measoomy Nia [2] offer an architecture of artificial neural
networks (NNs) for finding approximate solution of linear
Fredholm integral equations system of the second kind. In
[3], Maleknejad et al. present a rationalized Haar functions
method for solving linear Fredholm integrodifferential sys-
tems. In [4] Maleknejad and Tavassoli Kajani use the hybrid
Legendre and block-pulse functions on interval [0, 1) to solve
the systems of linear integrodifferential equations. In [5],
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a fully discrete version of a piecewise polynomial collocation
method is constructed to solve initial or boundary value
problems of linear Fredholm integrodifferential equations
with weakly singular kernels. In [6], Pour-Mahmoud et al.
extend the Tau method for the numerical solution of inte-
grodifferential equations system (IDES). Yalçinbaş et al. [7]
present a Legendre collocation matrix method to solve high-
order linear Fredholm integrodifferential equations under
the mixed conditions in terms of Legendre polynomials.
Yusufoğlu in [8] introduce a numerical method for solving
initial value problems for a system of integrodifferential
equations (the main idea is based on the interpolations of
unknown functions at distinct interpolation points). Yüzbaşı
et al. [9] present a numerical matrix method based on
collocation points for the approximate solution of the systems
of high-order linear Fredholm integrodifferential equations
with variable coefficients under mixed conditions in terms
of the Bessel polynomials. Zarebnia and Ali Abadi [10] use
the Sinc-collocation method to solve systems of nonlinear
second-order integrodifferential equations. Berenguer et al.
used in [11–14] von Neumann series, fixed-point techniques,
andFaber-Schauder systems inBanach spaces to solve integro
and integrodifferential equations.

In the present paper we approximate the solution of (1)
and we extend the numerical approximation method given
in [14]. This paper is organized as follows. In Section 2 we
describe the proposed method and in Section 3 the conver-
gence of the proposed method is investigated. In Section 4
somenumerical examples are presented to show the efficiency
of the proposed scheme. Finally, in Section 5, we end with
some conclusions.

2. Description of the Proposed Method

We suppose that F, K satisfy a global Lipschitz condition in
its last variable; that is, there exist 𝐿

𝐹
, 𝐿
𝐾
> 0 such that for all

𝑡, 𝑠 ∈ R and u, k ∈ R𝑛

‖F (𝑡, u) − F (𝑡, k)‖
∞

≤ 𝐿
𝐹
‖u − k‖

∞
,

‖K (𝑡, 𝑠, u) − K (𝑡, 𝑠, k)‖
∞

≤ 𝐿
𝐾
‖u − k‖

∞
.

(4)

If we reformulate the system (1) in terms of an adequate
operator, we can derive its unique solvability under a suitable
condition. To be more precise, if V : 𝐶([0, 1],R𝑛) →

𝐶([0, 1],R𝑛) is the operator given for each X as

V (X) (⋅) := 𝜌 + ∫
(⋅)

0

F (𝑢,X (𝑢)) 𝑑𝑢

+ ∫
(⋅)

0

∫
1

0

K (𝑢, 𝑠,X (𝑠)) 𝑑𝑠 𝑑𝑢,

(5)

then solving (1) is equivalent to finding a fixed point X of the
operatorV.

A direct calculation overV leads to

‖V (Y) −V (Z)‖ ≤ 𝐿 ‖Y − Z‖ (6)

for all Y,Z ∈ 𝐶([0, 1],R𝑛), where 𝐿 := 𝐿
𝐹
+ 𝐿
𝐾
, with 𝐿

𝐹

and 𝐿
𝐾
being the Lipschitz constants of F andK, respectively.

Thus, according to the Banach fixed-point theorem (see [15]),
(5) has one unique fixed point; equivalently, (1) has one and
only one solution X ∈ 𝐶([0, 1],R𝑛) provided that 𝐿 < 1. In
addition, for each X̃ ∈ 𝐶([0, 1],R𝑛),

󵄩󵄩󵄩󵄩󵄩
V
𝑚
(X̃) − X󵄩󵄩󵄩󵄩󵄩 ≤

𝐿𝑚

1 − 𝐿

󵄩󵄩󵄩󵄩󵄩
V (X̃) − X̃󵄩󵄩󵄩󵄩󵄩 (7)

and in particular X = lim
𝑚
V𝑚(X̃).

Then, given X̃ = [𝑥
1
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝐶([0, 1],R𝑛), our next
target is to obtain V𝑚(X̃). We consider the functions 𝜑 ∈

𝐶([0, 1],R𝑛) and 𝜉 ∈ 𝐶([0, 1]
2
,R𝑛) defined by

𝜑 (𝑡) := F (𝑡, X̃ (𝑡)) = [𝜑
1
(𝑡) , . . . , 𝜑

𝑛
(𝑡)]
𝑇

,

𝜉 (𝑡, 𝑠) := K (𝑡, 𝑠, X̃ (𝑠)) = [𝜉
1
(𝑡, 𝑠) , . . . , 𝜉

1
(𝑡, 𝑠)]
𝑇

.

(8)

Observe that V(X̃)(𝑡) = [(V(X̃))
1
(𝑡), . . . , (V(X̃))

𝑛
(𝑡)]
𝑇,

where for all 𝑖 = 1, . . . , 𝑛

(V (X̃))
𝑖
(𝑡) = 𝜌

𝑖
+ ∫
𝑡

0

𝜑
𝑖
(𝑢) 𝑑𝑢 + ∫

𝑡

0

∫
1

0

𝜉
𝑖
(𝑢, 𝑠) 𝑑𝑠 𝑑𝑢.

(9)

Now we will make use of the usual Schauder basis
{𝑏
𝑖
}
𝑖≥1

in 𝐶([0, 1],R) and the usual Schauder basis {𝐵
𝑖
}
𝑖≥1

for
the Banach space 𝐶([0, 1]

2
,R) (see [16, 17]), although the

numerical method given works equally well by replacing it
with any complete biorthogonal system in this space. We
denote by {𝑃

𝑖
}
𝑖≥1

and {𝑄
𝑖
}
𝑖≥1

the sequences of projections in
𝐶([0, 1],R) and 𝐶([0, 1]

2
,R), respectively (see Section 3 in

[11]).
Then, for all 𝑡 ∈ [0, 1] and 𝑖 = 1, . . . , 𝑛,

(V (X̃))
𝑖
(𝑡) = 𝜌

𝑖
+ ∑
𝑘≥1

𝜆
𝑖𝑘
∫
𝑡

0

𝑏
𝑘
(𝑢) 𝑑𝑢

+ ∑
𝑘≥1

𝛿
𝑖𝑘
∫
𝑡

0

∫
1

0

𝐵
𝑘
(𝑢, 𝑠) 𝑑𝑠 𝑑𝑢,

(10)

where {𝜆
𝑖𝑘
}
𝑘≥1

and {𝛿
𝑖𝑘
}
𝑘≥1

are the sequences of scalars
satisfying 𝜑

𝑖
= ∑
𝑘≥1

𝜆
𝑖𝑘
𝑏
𝑘
and 𝜉
𝑖
= ∑
𝑘≥1

𝛿
𝑖𝑘
𝐵
𝑘
, where 𝜆

𝑖1
=

𝜑
𝑖
(𝑡
1
) and 𝛿

𝑖1
= 𝜉
𝑖
(𝑡
1
, 𝑡
1
), and for 𝑘 ≥ 2 is 𝜆

𝑖𝑘
= 𝜑
𝑖
(𝑡
𝑘
) −

∑
𝑘−1

𝑙=1
𝑏∗
𝑙
(𝜑
𝑖
)𝑏
𝑙
(𝑡
𝑘
) and 𝛿

𝑖𝑘
= 𝜉
𝑖
(𝑡
𝑝
, 𝑡
𝑞
) − ∑

𝑘−1

𝑙=1
𝐵∗
𝑙
(𝜉
𝑖
)𝐵
𝑙
(𝑡
𝑝
, 𝑡
𝑞
)

with 𝜎(𝑘) = (𝑝, 𝑞).
In view of (10) we can calculate, at least in a theoretical

way,V𝑚(X̃). From a practical point of view, in general these
calculations are not possible explicitly, since they are infinite
sums. The idea of our numerical method is to truncate them
by means of the projections of the Schauder bases {𝑏

𝑖
}
𝑖≥1

,
{𝐵
𝑖
}
𝑖≥1

and approximate the solution in this way. Specifically,
we consider the sequence {Xr}𝑟≥1 defined as follows. Let
X0(𝑡) := X̃(𝑡) = [𝑥

01
(𝑡), . . . , 𝑥

0𝑛
(𝑡)]
𝑇

∈ 𝐶([0, 1],R𝑛),
𝑡 ∈ [0, 1], and {𝑖

1
, 𝑖
2
, . . .}, {𝑗

1
, 𝑗
2
, . . .} be subsets of natural
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numbers and 𝑚 ∈ N. Define inductively for 𝑟 ∈ {1, . . . , 𝑚}

and 𝑡, 𝑠 ∈ [0, 1]

Xr (𝑡) = [𝑥
𝑟1
(𝑡) , . . . , 𝑥

𝑟𝑛
(𝑡)]
𝑇

:= 𝜌 + [∫
𝑡

0

𝑃
𝑖
𝑟

(𝜓
𝑟−1,1

(𝑢)) 𝑑𝑢,

. . . , ∫
𝑡

0

𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑛

(𝑢)) 𝑑𝑢]

𝑇

+ [∫
𝑡

0

∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,1

(𝑢, 𝑠)) 𝑑𝑠 𝑑𝑢,

. . . , ∫
𝑡

0

∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑛

(𝑢, 𝑠)) 𝑑𝑠 𝑑𝑢]

𝑇

,

(11)

where

Ψr−1 (𝑡) = [𝜓
𝑟−1,1

(𝑡) , . . . , 𝜓
𝑟−1,𝑛

(𝑡)]
𝑇

:= F (𝑡,Xr−1 (𝑡)) ,

𝜓
𝑟−1,𝑖

(𝑡) = 𝐹
𝑖
(𝑡,Xr−1 (𝑡)) for 𝑖 = 1, . . . , 𝑛,

Φr−1 (𝑡, 𝑠) = [𝜙
𝑟−1,1

(𝑡, 𝑠) , . . . , 𝜙
𝑟−1,𝑛

(𝑡, 𝑠)]
𝑇

:= K (𝑡, 𝑠,Xr−1 (𝑠)) ,

𝜙
𝑟−1,𝑖

(𝑡, 𝑠) = 𝐾
𝑖
(𝑡, 𝑠,Xr−1 (𝑠)) for 𝑖 = 1, . . . , 𝑛.

(12)

Observe that for 𝑖 = 1, . . . , 𝑛

𝑥
𝑟𝑖
(𝑡) = 𝜌

𝑖
+ ∫
𝑡

0

𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑖

(𝑢)) 𝑑𝑢

+ ∫
𝑡

0

∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑖

(𝑢, 𝑠)) 𝑑𝑠 𝑑𝑢.

(13)

3. Convergence of the Scheme

This section is devoted to provide a convergence analysis for
the numerical scheme {Xr}𝑟≥1. To analyze the convergence we
employ the following two results.

Theorem 1. Let F ∈ 𝐶1([0, 1] × R𝑛,R𝑛) and K ∈ 𝐶1([0, 1]
2
×

R𝑛,R𝑛) such that F,K and 𝜕𝐹
𝑖
/𝜕𝑡, 𝜕𝐹

𝑖
/𝜕𝑢
𝑗
, 𝜕𝐾
𝑖
/𝜕𝑡, 𝜕𝐾

𝑖
/𝜕𝑠,

and 𝜕𝐾
𝑖
/𝜕𝑢
𝑗
for each 𝑖, 𝑗 = 1, . . . , 𝑛 satisfy a global Lips-

chitz condition in the last variables. Then, maintaining the
notation above, the sequences {𝜓󸀠

𝑟−1,𝑖
}
𝑟≥1

, {𝜕𝜙
𝑟−1,𝑖

/𝜕𝑡}
𝑟≥1

, and
{𝜕𝜙
𝑟−1,𝑖

/𝜕𝑠}
𝑟≥1

, with 𝑖 = 1, . . . , 𝑛, are bounded.

Proof. Let us fix 𝑖 = 1, . . . , 𝑛 and write 𝜕𝐹
𝑖
/𝜕u = [𝜕𝐹

𝑖
/𝜕𝑢
1
, . . .,

𝜕𝐹
𝑖
/𝜕𝑢
𝑛
]
𝑇, 𝜕𝐾

𝑖
/𝜕u = [𝜕𝐾

𝑖
/𝜕𝑢
1
, . . . , 𝜕𝐾

𝑖
/𝜕𝑢
𝑛
]
𝑇. Making use

of definitions (11), it follows that, for all 𝑟 ≥ 1, 𝑖 = 1, . . . , 𝑛,
and 𝑡, 𝑠 ∈ [0, 1],

𝜓
󸀠

𝑟−1,𝑖
(𝑡) =

𝜕𝐹
𝑖

𝜕𝑡
(𝑡,Xr−1 (𝑡)) +

𝜕𝐹
𝑖

𝜕u
(𝑡,Xr−1 (𝑡)) ⋅ X

󸀠

r−1 (𝑡) ,

𝜕𝜙
𝑟−1,𝑖

𝜕𝑡
(𝑡, 𝑠) =

𝜕𝐾
𝑖

𝜕𝑡
(𝑡, 𝑠,Xr−1 (𝑠)) ,

𝜕𝜙
𝑟−1,𝑖

𝜕𝑠
(𝑡, 𝑠) =

𝜕𝐾
𝑖

𝜕𝑠
(𝑡, 𝑠,Xr−1 (𝑠))

+
𝜕𝐾
𝑖

𝜕u
(𝑡, 𝑠,Xr−1 (𝑠)) ⋅ X

󸀠

r−1 (𝑠) ,

(14)

where “⋅” stands for the usual inner product in R𝑛.
For all 𝑟 ≥ 1 and 𝑡, 𝑠 ∈ [0, 1], we have
󵄩󵄩󵄩󵄩Ψr−1 (𝑡)

󵄩󵄩󵄩󵄩∞ =
󵄩󵄩󵄩󵄩F (𝑡,Xr−1 (𝑡))

󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩F (𝑡,Xr−1 (𝑡)) − F (𝑡, 0)󵄩󵄩󵄩󵄩∞ + ‖F (𝑡, 0)‖

∞

≤ 𝐿
𝐹

󵄩󵄩󵄩󵄩Xr−1 (𝑡)
󵄩󵄩󵄩󵄩∞ + 𝑅

𝐹
,

(15)

with 𝑅
𝐹

:= max
𝑡∈[0,1]

‖F(𝑡, 0)‖
∞

and 𝐿
𝐹
being the Lipschitz

constant of F and analogous
󵄩󵄩󵄩󵄩Φr−1 (𝑡, 𝑠)

󵄩󵄩󵄩󵄩∞ =
󵄩󵄩󵄩󵄩K (𝑡, 𝑠,Xr−1 (𝑠))

󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩K (𝑡, 𝑠,Xr−1 (𝑠)) − K (𝑡, 𝑠, 0)󵄩󵄩󵄩󵄩∞

+ ‖K (𝑡, 𝑠, 0)‖
∞

≤ 𝐿
𝐾

󵄩󵄩󵄩󵄩Xr−1 (𝑠)
󵄩󵄩󵄩󵄩∞ + 𝑅

𝐾
,

(16)

with 𝑅
𝐾

:= max
(𝑡,𝑠)∈[0,1]

2‖K(𝑡, 𝑠, 0)‖
∞

and 𝐿
𝐾

being the
Lipschitz constant of K.

Now we will show that the sequence {Xr}𝑟≥1 is bounded.
From the monotonicity of the Schauder bases {𝑏

𝑖
}
𝑖≥1

,
{𝐵
𝑖
}
𝑖≥1

and the recursive application of this inequality and the
following one,

󵄩󵄩󵄩󵄩Xr (𝑡)
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩∞ + ∫

𝑡

0

󵄩󵄩󵄩󵄩Ψr−1 (𝑢)
󵄩󵄩󵄩󵄩∞𝑑𝑢

+ ∫
𝑡

0

∫
1

0

󵄩󵄩󵄩󵄩Φ𝑟−1 (𝑢, 𝑠)
󵄩󵄩󵄩󵄩∞𝑑𝑠 𝑑𝑢,

(17)

we have

󵄩󵄩󵄩󵄩Xr (𝑡)
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩∞ + ∫

𝑡

0

(𝐿
𝐹

󵄩󵄩󵄩󵄩Xr−1 (𝑢)
󵄩󵄩󵄩󵄩∞ + 𝑅

𝐹
) 𝑑𝑢

+ ∫
𝑡

0

∫
1

0

(𝐿
𝐾

󵄩󵄩󵄩󵄩Xr−1 (𝑠)
󵄩󵄩󵄩󵄩∞ + 𝑅

𝐾
) 𝑑𝑠 𝑑𝑢

≤ Γ + 𝐿
󵄩󵄩󵄩󵄩Xr−1

󵄩󵄩󵄩󵄩 ,

(18)
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with 𝐿 := 𝐿
𝐹
+𝐿
𝐾
, Γ := ‖𝜌‖

∞
+𝑅 and 𝑅 := 𝑅

𝐹
+𝑅
𝐾
. Applying

it inductively, we arrive at

󵄩󵄩󵄩󵄩Xr
󵄩󵄩󵄩󵄩 ≤ Γ

𝑟

∑
𝑘=1

𝐿
𝑘−1

+ 𝐿
𝑟 󵄩󵄩󵄩󵄩X0

󵄩󵄩󵄩󵄩 , (19)

for all 𝑟 ≥ 1, and therefore the sequence {Xr}𝑟≥1 is bounded.
Since the sequence {Xr}𝑟≥1 in (15) and (16) is bounded it

follows that {Ψ
𝑟−1

}
𝑟≥1

and {Φ
𝑟−1

}
𝑟≥1

are uniformly bounded.
For 𝑖 = 1, . . . , 𝑛, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹
𝑖

𝜕𝑡
(𝑡,Xr−1 (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹
𝑖

𝜕𝑡
(𝑡,Xr−1 (𝑡)) −

𝜕𝐹
𝑖

𝜕𝑡
(𝑡, 0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹
𝑖

𝜕𝑡
(𝑡, 0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿
𝐹
𝑖

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑅
𝑖
,

(20)

with 𝑅
𝑖
:= max

𝑡∈[𝛼,𝛼+𝛽]
|(𝜕𝐹
𝑖
/𝜕𝑡)(𝑡, 0)| and 𝐿

𝐹
𝑖

as the Lipschitz
constant of 𝜕𝐹

𝑖
/𝜕𝑡.

Meanwhile,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐹
𝑖

𝜕u
(𝑡,Xr−1 (𝑡))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐹
𝑖

𝜕u
(𝑡,Xr−1 (𝑡)) −

𝜕𝐹
𝑖

𝜕u
(𝑡, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐹
𝑖

𝜕u
(𝑡, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐿
∗

𝐹
𝑖

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑅
∗

𝑖
,

(21)

with 𝑅∗
𝑖
:= max

𝑗=1,...,𝑛
max
𝑡∈[𝛼,𝛼+𝛽]

|(𝜕𝐹
𝑖
/𝜕𝑢
𝑗
)(𝑡, 0)| and 𝐿∗

𝐹
𝑖

as
themaximum of the Lipschitz constants for each 𝜕𝐹

𝑖
/𝜕𝑢
𝑗
, 𝑗 =

1, . . . , 𝑛.
Therefore, {(𝜕𝐹

𝑖
/𝜕𝑡)(𝑡,Xr−1(𝑡))}𝑟≥1 and {(𝜕𝐹

𝑖
/𝜕u)(𝑡,

Xr−1(𝑡))}𝑟≥1 are bounded.
Next, we will show that the sequence {X󸀠r−1}𝑟≥1 is

bounded.
Given 𝑟 ≥ 1, taking into account the definition of Xr, we

have for all 𝑡 ∈ [0, 1] that

X󸀠r (𝑡) = [𝑃
𝑖
𝑟

(𝜓
𝑟−1,1

(𝑡)) , . . . , 𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑛

(𝑡))]
𝑇

+ [∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,1

(𝑡, 𝑠)) 𝑑𝑠,

. . . , ∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑛

(𝑡, 𝑠)) 𝑑𝑠]

𝑇

.

(22)

In view of the monotonicity of the Schauder bases {𝑏
𝑖
}
𝑖≥1

and {𝐵
𝑖
}
𝑖≥1

and (15), (16), and (19), we obtain
󵄩󵄩󵄩󵄩󵄩
X󸀠r

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩Ψr−1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩Φr−1
󵄩󵄩󵄩󵄩

≤ 𝐿
𝐹

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑅
𝐹
+ 𝐿
𝐾

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑅
𝐾

≤
󵄩󵄩󵄩󵄩Xr−1

󵄩󵄩󵄩󵄩 (𝐿𝐹 + 𝐿
𝐾
) + 𝑅
𝐹
+ 𝑅
𝐾

≤ Γ

𝑟

∑
𝑘=1

𝐿
𝑘
+ 𝐿
𝑟 󵄩󵄩󵄩󵄩X0

󵄩󵄩󵄩󵄩 + 𝑅.

(23)

Therefore, the sequence {X󸀠r}𝑟≥1 is also bounded.
We will prove that the sequences {(𝜕𝐾

𝑖
/𝜕𝑡)(𝑡, 𝑠,

Xr−1(𝑠))}𝑟≥1, {(𝜕𝐾
𝑖
/𝜕𝑠)(𝑡, 𝑠,Xr−1(𝑠))}𝑟≥1, and {(𝜕𝐾

𝑖
/𝜕u)(𝑡, 𝑠,

Xr−1(𝑠))}𝑟≥1 are bounded.
For 𝑖 = 1, . . . , 𝑛, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐾
𝑖

𝜕𝑡
(𝑡, 𝑠,Xr−1 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐾
𝑖

𝜕𝑡
(𝑡, 𝑠,Xr−1 (𝑠)) −

𝜕𝐾
𝑖

𝜕𝑡
(𝑡, 𝑠, 0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐾
𝑖

𝜕𝑡
(𝑡, 𝑠, 0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
1𝑖

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑁
1𝑖
,

(24)

with 𝑁
1𝑖

:= max
(𝑡,𝑠)∈[0,1]

2 |(𝜕𝐾
𝑖
/𝜕𝑡)(𝑡, 𝑠, 0)| and 𝑀

1𝑖
as the

Lipschitz constant of 𝜕𝐾
𝑖
/𝜕𝑡.

By repeating the previous argument we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐾
𝑖

𝜕𝑠
(𝑡, 𝑠,Xr−1 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀
2𝑖

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑁
2𝑖
, (25)

with 𝑁
2𝑖

:= max
(𝑡,𝑠)∈[0,1]

2 |(𝜕𝐾
𝑖
/𝜕𝑠)(𝑡, 𝑠, 0)| and 𝑀

2𝑖
as the

Lipschitz constant of 𝜕𝐾
𝑖
/𝜕𝑠.

Therefore, the sequences {(𝜕𝐾
𝑖
/𝜕𝑡)(𝑡, 𝑠,Xr−1(𝑠))}𝑟≥1 and

{(𝜕𝐾
𝑖
/𝜕𝑠)(𝑡, 𝑠,Xr−1(𝑠))}𝑟≥1 are bounded.

Meanwhile,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐾
𝑖

𝜕u
(𝑡, 𝑠,Xr−1 (𝑠))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐾
𝑖

𝜕u
(𝑡, 𝑠,Xr−1 (𝑠)) −

𝜕𝐾
𝑖

𝜕u
(𝑡, 𝑠, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐾
𝑖

𝜕u
(𝑡, 𝑠, 0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝑀
3𝑖

󵄩󵄩󵄩󵄩Xr−1
󵄩󵄩󵄩󵄩 + 𝑁
3𝑖
,

(26)

with 𝑁
3𝑖

:= max
𝑗=1,...,𝑛

max
(𝑡,𝑠)∈[0,1]

2 |(𝜕𝐾
𝑖
/𝜕𝑢
𝑗
)(𝑡, 𝑠, 0)| and

𝑀
3𝑖

as the maximum of the Lipschitz constants for each
𝜕𝐾
𝑖
/𝜕𝑢
𝑗
, 𝑗 = 1, . . . , 𝑛. Therefore, {(𝜕𝐾

𝑖
/𝜕u)(𝑡, 𝑠,Xr−1(𝑠))} is

bounded.
In view of the identities (14), we have that the sequences,

{𝜓
󸀠

𝑟−1,𝑖
}
𝑟≥1

, {𝜕𝜙
𝑟−1,𝑖

/𝜕𝑡}
𝑟≥1

, and {𝜕𝜙
𝑟−1,𝑖

/𝜕𝑠}
𝑟≥1

, with 𝑖 =

1, . . . , 𝑛, are bounded.

For a dense subset {𝑡
𝑖
}
𝑖≥1

of distinct points in [0, 1], let 𝑇
𝑖

be the set {𝑡
𝑗
, 1 ≤ 𝑗 ≤ 𝑖} ordered in an increasing way for

𝑖 ≥ 2. Let Δ𝑇
𝑖
denote the maximum distance between two

consecutive points of 𝑇
𝑖
.

Theorem 2. With the previous notation and the same hypoth-
esis as in Theorem 1, for all 𝑟 ≥ 1, there are 𝜂

𝑟
, 𝜏
𝑟
> 0 and

𝑖
𝑟
, 𝑗
𝑟
≥ 2 such that

󵄩󵄩󵄩󵄩󵄩󵄩
[𝜓
𝑟−1,1

− 𝑃
𝑖
𝑟

(𝜓
𝑟−1,1

) , . . . , 𝜓
𝑟−1,𝑛

− 𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑛

)]
𝑇󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
𝑟
Δ𝑇
𝑖
𝑟

,

󵄩󵄩󵄩󵄩󵄩󵄩
[𝜙
𝑟−1,1

− 𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,1

) , . . . , 𝜙
𝑟−1,𝑛

− 𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑛

)]
𝑇󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜏
𝑟
Δ𝑇
𝑗
𝑟

.

(27)
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Proof. The announced estimation follows from the inequali-
ties obtained in Propositions 4 and 5 in [11], respectively, and
applyingTheorem 1.

In the result below we show that the sequence defined in
(11) approximates the solution of (1).

Theorem 3. With the same hypothesis as in Theorem 1, sup-
pose that V : 𝐶([0, 1],R𝑛) → 𝐶([0, 1],R𝑛) is the integral
operator (5), X̃ ∈ 𝐶([0, 1],R𝑛), and that {Xr}𝑟≥1 is the sequence
defined by (11). Let us also assume that 𝑚 ∈ N, 𝑖

𝑟
, 𝑗
𝑟
≥ 2,

and {𝜀
1
, . . . , 𝜀

𝑚
} is a set of positive numbers such that for all

𝑟 ∈ {1, . . . , 𝑚} we have

Δ𝑇
𝑖
𝑟

≤
𝜀
𝑟

2𝜂
𝑟

, Δ𝑇
𝑗
𝑟

≤
𝜀
𝑟

2𝜏
𝑟

. (28)

Then
󵄩󵄩󵄩󵄩V (Xr−1) − Xr

󵄩󵄩󵄩󵄩 ≤ 𝜀
𝑟
. (29)

Moreover, if X is the exact solution of the integral equation (1),
then the error ‖X − Xm‖ is given by

󵄩󵄩󵄩󵄩X − Xm
󵄩󵄩󵄩󵄩 ≤

𝐿
𝑚

1 − 𝐿

󵄩󵄩󵄩󵄩󵄩
VX̃ − X̃󵄩󵄩󵄩󵄩󵄩 +

𝑚

∑
𝑟=1

𝐿
𝑚−𝑟

𝜀
𝑟
. (30)

Proof. For𝑚 ≥ 1, from (7), we have

󵄩󵄩󵄩󵄩󵄩
X −V

𝑚X̃󵄩󵄩󵄩󵄩󵄩 ≤
𝐿
𝑚

1 − 𝐿

󵄩󵄩󵄩󵄩󵄩
VX̃ − X̃󵄩󵄩󵄩󵄩󵄩 . (31)

First we deal with proving (29). For all 𝑟 ∈ {1, . . . , 𝑚} and
𝑡 ∈ [0, 1], Theorem 2 gives
󵄩󵄩󵄩󵄩VXr−1 (𝑡) − Xr (𝑡)

󵄩󵄩󵄩󵄩∞

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜌 + [∫
𝑡

0

𝜓
𝑟−1,1

(𝑢) 𝑑𝑢, . . . , ∫
𝑡

0

𝜓
𝑟−1,𝑛

(𝑢) 𝑑𝑢]

𝑇

+ [∫
𝑡

0

∫
1

0

𝜙
𝑟−1,1

(𝑢, 𝑠) 𝑑𝑠 𝑑𝑢,

. . . , ∫
𝑡

0

∫
1

0

𝜙
𝑟−1,𝑛

(𝑢, 𝑠) 𝑑𝑠 𝑑𝑢]

𝑇

− (𝜌 + [∫
𝑡

0

𝑃
𝑖
𝑟

(𝜓
𝑟−1,1

(𝑢)) 𝑑𝑢,

. . . , ∫
𝑡

0

𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑛

(𝑢)) 𝑑𝑢]

𝑇

+ [∫
𝑡

0

∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,1

(𝑢, 𝑠)) 𝑑𝑠 𝑑𝑢,

. . . , ∫
𝑡

0

∫
1

0

𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑛

(𝑢, 𝑠)) 𝑑𝑠 𝑑𝑢]

𝑇

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[∫
𝑡

0

(𝜓
𝑟−1,1

(𝑢) − 𝑃
𝑖
𝑟

(𝜓
𝑟−1,1

(𝑢))) 𝑑𝑢,

. . . , ∫
𝑡

0

(𝜓
𝑟−1,𝑛

(𝑢) − 𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑛

(𝑢))) 𝑑𝑢]

𝑇󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[∫
𝑡

0

∫
1

0

(𝜙
𝑟−1,1

(𝑢, 𝑠) − 𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,1

(𝑢, 𝑠))) 𝑑𝑠 𝑑𝑢,

. . . , ∫
𝑡

0

∫
1

0

(𝜙
𝑟−1,𝑛

(𝑢, 𝑠)

−𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑛

(𝑢, 𝑠))) 𝑑𝑠𝑑𝑢]

𝑇󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩
[𝜓
𝑟−1,1

(𝑢) − 𝑃
𝑖
𝑟

(𝜓
𝑟−1,1

(𝑢)) ,

. . . , 𝜓
𝑟−1,𝑛

(𝑢) − 𝑃
𝑖
𝑟

(𝜓
𝑟−1,𝑛

(𝑢))]
𝑇󵄩󵄩󵄩󵄩󵄩󵄩∞

𝑑𝑢

+ ∫
𝑡

0

∫
1

0

󵄩󵄩󵄩󵄩󵄩󵄩
[𝜙
𝑟−1,1

(𝑢, 𝑠) − 𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,1

(𝑢, 𝑠)) , . . . ,

𝜙
𝑟−1,𝑛

(𝑢, 𝑠) − 𝑄
𝑗
2

𝑟

(𝜙
𝑟−1,𝑛

(𝑢, 𝑠))]
𝑇󵄩󵄩󵄩󵄩󵄩󵄩∞

𝑑𝑠 𝑑𝑢

≤ 𝜂
𝑟
Δ𝑇
𝑖
𝑟

+ 𝜏
𝑟
Δ𝑇
𝑗
𝑟

≤ 𝜀
𝑟
.

(32)

And, in turn, applying (29) and recursively (6), we obtain
󵄩󵄩󵄩󵄩󵄩
V
𝑚
(X̃) − Xm

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩V
𝑚
(X0) − Xm

󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑟=1

󵄩󵄩󵄩󵄩󵄩
V
𝑚−𝑟+1

(Xr−1) −V
𝑚−𝑟

(Xr)
󵄩󵄩󵄩󵄩󵄩

=

𝑚

∑
𝑟=1

󵄩󵄩󵄩󵄩V
𝑚−𝑟

V (Xr−1) −V
𝑚−𝑟

(Xr)
󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑟=1

𝐿
𝑚−𝑟 󵄩󵄩󵄩󵄩V (Xr−1) − Xr

󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑟=1

𝐿
𝑚−𝑟

𝜀
𝑟
.

(33)

Finally, using the triangle inequality,

󵄩󵄩󵄩󵄩X − Xm
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
X −V

𝑚X̃󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
V
𝑚
(X̃) − Xm

󵄩󵄩󵄩󵄩󵄩
, (34)

the proof is complete in view of (31) and (33).

Observe that under the hypotheses of Theorem 3, by
inequality (30), we have

󵄩󵄩󵄩󵄩X − Xm
󵄩󵄩󵄩󵄩 ≤

𝐿𝑚

1 − 𝐿

󵄩󵄩󵄩󵄩󵄩
VX̃ − X̃󵄩󵄩󵄩󵄩󵄩 +

1 − 𝐿𝑚

1 − 𝐿
max
𝑟≥1

{𝜀
𝑟
} . (35)

Therefore, given 𝜀 > 0, there exists𝑚 ≥ 1 such that ‖X−Xm‖ <
𝜀 for sufficiently small 𝜀

𝑟
, since the points of the partition can
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be chosen in such a way that Δ𝑇
𝑖
𝑟

and Δ𝑇
𝑗
𝑟

become so close
to zero as we desire and the first sum on the right hand side
approach zero when𝑚 increases.

Remark 4. If we consider an interval [𝑎, 𝑏], then 𝐿 = (𝑏 −

𝑎)𝐿
𝐹
+ (𝑏 − 𝑎)

2
𝐿
𝑘
and the bound obtained in Theorem 3 for

‖VXr−1(𝑡) − Xr(𝑡)‖∞ is given by
󵄩󵄩󵄩󵄩VXr−1 (𝑡) − Xr (𝑡)

󵄩󵄩󵄩󵄩∞ ≤ 𝜂
𝑟
Δ𝑇
𝑖
𝑟

(𝑏 − 𝑎) + 𝜏
𝑟
Δ𝑇
𝑗
𝑟

(𝑏 − 𝑎)
2

≤ 𝜀
𝑟
,

(36)

when

Δ𝑇
𝑖
𝑟

≤
𝜀
𝑟

2𝜂
𝑟
(𝑏 − 𝑎)

, Δ𝑇
𝑗
𝑟

≤
𝜀
𝑟

2𝜏
𝑟
(𝑏 − 𝑎)

2
. (37)

4. Numerical Examples

We now turn our attention to the application of the method
presented in this paper for the numerical solution of six
test problems. In order to construct the Schauder basis, we
consider the subset {𝑡

𝑖
}
𝑖≥1

defined by 𝑡
1
= 0, 𝑡

2
= 1 and for

𝑛 ∈ N ∪ {0}, 𝑡
𝑖+1

= (2𝑘 + 1)/2𝑛+1, if 𝑖 = 2𝑛 + 𝑘 + 1, where
0 ≤ 𝑘 < 2𝑛 are integers. To define the sequence {Xr}𝑟≥1, we
take X0(𝑡) = 𝜌 and 𝑖

𝑟
= 𝑗
𝑟
= 𝑗 (for all 𝑟 ≥ 1). We include, for

different values of 𝑗, the absolute errors committed in some
representative points of [0, 1]when we approximate the exact
solution X(𝑡) by the iteration Xr(𝑡), where 𝑟 is shown in each
table. The algorithms associated with the numerical methods
were performed using Mathematica 7. In Examples 1, 2, and
3, X(𝑡) = 𝑥(𝑡) and Xr(𝑡) = 𝑥

𝑟
(𝑡). In the other examples,

X(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡)]
𝑇 and Xr(𝑡) = [𝑥

𝑟1
(𝑡), 𝑥
𝑟2
(𝑡)]
𝑇.

Example 1. Consider the Fredholm integrodifferential equa-
tion appearing in [1]:

𝑥
󸀠

(𝑡) = − 2𝜋 sin (2𝜋𝑡) −
1

2
sin (4𝜋𝑡)

+ ∫
1

0

sin (4𝜋𝑡 + 2𝜋𝑠) 𝑦 (𝑠) 𝑑𝑠,

𝑥 (0) = 1,

(38)

whose exact solution is 𝑥(𝑡) = cos(2𝜋𝑡). Numerical results
obtained for this problem when we apply the method
described in this paper and the results obtained in [1] are
given in Table 1.

Example 2. Consider the Fredholm integrodifferential equa-
tion:

𝑥
󸀠

(𝑡) = 𝑓 (𝑡) +
1

125
∫
5

0

𝑠𝑡𝑥 (𝑠) 𝑑𝑠,

𝑥 (0) =
1

125
,

(39)

where 𝑓(𝑡) is chosen so that the exact solution is given by
𝑥(𝑡) = 𝑒−5𝑡/250. The numerical results are given in Table 2.

Table 1: Absolute errors for Example 1.

𝑡
𝑗 = 33 Method in [1]

|𝑥
4
(𝑡) − 𝑥(𝑡)| with 𝑘 = 4,𝑀 = 1

0.1 4.93 × 10−4 2.40 × 10−3

0.2 8.90 × 10−4 5.07 × 10−3

0.3 4.00 × 10−3 6.25 × 10−3

0.4 5.70 × 10−3 3.87 × 10−3

0.5 6.40 × 10
−3

1.74 × 10
−2

0.6 3.72 × 10
−3

1.58 × 10
−2

0.7 7.78 × 10−4 8.41 × 10−3

0.8 8.96 × 10−4 9.65 × 10−3

0.9 9.40 × 10−4 9.49 × 10−3

Table 2: Absolute errors for Example 2.

𝑡
𝑗 = 33

𝑡
𝑗 = 33

|𝑥
3
(𝑡) − 𝑥(𝑡)| |𝑥

3
(𝑡) − 𝑥(𝑡)|

0.125 1.91 × 10
−3

2.625 5.93 × 10
−3

0.250 2.41 × 10−3 2.750 6.11 × 10−3

0.375 3.51 × 10−3 2.825 6.29 × 10−3

0.500 3.83 × 10−3 3.00 6.49 × 10−3

0.625 4.02 × 10
−3

3.125 6.69 × 10
−3

0.750 4.15 × 10
−3

3.250 6.91 × 10
−3

0.825 4.25 × 10−3 3.375 7.13 × 10−3

1.00 4.34 × 10−3 3.500 7.35 × 10−3

1.125 4.43 × 10−3 3.625 7.59 × 10−3

1.250 4.50 × 10
−3

3.750 7.84 × 10
−3

1.375 4.60 × 10
−3

3.875 8.09 × 10
−3

1.500 4.69 × 10−3 4 8.35 × 10−3

1.625 4.81 × 10−3 4.125 8.62 × 10−3

1.750 4.91 × 10−3 4.250 8.90 × 10−3

1.875 5.50 × 10
−3

4.375 9.19 × 10
−3

2 5.51 × 10
−3

4.500 9.48 × 10
−3

2.125 5.53 × 10−3 4.625 9.78 × 10−3

2.250 5.54 × 10−3 4.750 1.01 × 10−2

2.375 5.56 × 10−3 4.875 1.04 × 10−2

2.500 5.57 × 10−3 5 1.07 × 10−2

Example 3. Consider the Fredholm integrodifferential equa-
tion:

𝑥
󸀠

(𝑡) = − 𝑒
−𝑡

+
1

10
(−2 + 𝑒

−2
+ cos (2)) + cos (𝑡)

+ ∫
2

0

𝑥 (𝑠)

10
𝑑𝑠,

𝑥 (0) = 1,

(40)

whose exact solution is 𝑥(𝑡) = 𝑒
−𝑡 + sin(𝑡). The numerical

results are given in Table 3.

Example 4. Consider now the following system of Fredholm
integrodifferential equations with the exact solutions 𝑥

1
(𝑡) =

cos(𝑡) and 𝑥
2
(𝑡) = 𝑡:

𝑥
󸀠

1
(𝑡) = −

1

12
−
1

5
𝑡
2 sin (1) 𝑥

2
(𝑠) − sin (𝑡)

+ ∫
1

0

(
𝑡3

5
𝑥
1
(𝑠) +

𝑠2

3
𝑥
2
(𝑠)) 𝑑𝑠,
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Table 3: Absolute errors for Example 3.

𝑡
𝑗 = 33

𝑡
𝑗 = 33

|𝑥
5
(𝑡) − 𝑥(𝑡)| |𝑥

5
(𝑡) − 𝑥(𝑡)|

0.125 1.00 × 10−4 1.125 7.05 × 10−4

0.250 1.95 × 10−4 1.250 7.54 × 10−4

0.375 2.85 × 10
−4

1.375 7.97 × 10
−4

0.500 3.69 × 10−4 1.500 8.34 × 10−4

0.625 4.48 × 10−4 1.625 8.64 × 10−4

0.750 5.21 × 10
−4

1.750 8.88 × 10
−4

0.825 5.89 × 10−4 1.875 9.06 × 10−4

1.00 6.50 × 10−4 2 9.19 × 10−4

Table 4: Absolute errors for Example 4.

𝑡
𝑗 = 9 X5 = [𝑥

51
, 𝑥
52
]
𝑇

𝑗 = 17 X5 = [𝑥
51
, 𝑥
52
]
𝑇

𝑗 = 33 X5 = [𝑥
51
, 𝑥
52
]
𝑇

|𝑥
51
(𝑡) − 𝑥

1
(𝑡)| |𝑥

52
(𝑡) − 𝑥

2
(𝑡)| |𝑥

51
(𝑡) − 𝑥

1
(𝑡)| |𝑥

52
(𝑡) − 𝑥

2
(𝑡)| |𝑥

51
(𝑡) − 𝑥

1
(𝑡)| |𝑥

52
(𝑡) − 𝑥

2
(𝑡)|

0.125 1.7𝐸 − 4 4.8𝐸 − 5 4.4𝐸 − 5 1.2𝐸 − 5 1.1𝐸 − 5 3.2𝐸 − 6

0.250 3.7𝐸 − 4 9.7𝐸 − 5 9.3𝐸 − 5 2.4𝐸 − 5 2.3𝐸 − 5 6.3𝐸 − 6

0.375 5.9𝐸 − 4 1.4𝐸 − 4 1.4𝐸 − 4 3.6𝐸 − 5 3.7𝐸 − 5 9.5𝐸 − 6

0.5 8.2𝐸 − 4 1.9𝐸 − 4 2.0𝐸 − 4 4.8𝐸 − 5 5.2𝐸 − 5 1.2𝐸 − 5

0.625 1.0𝐸 − 3 2.3𝐸 − 4 2.7𝐸 − 4 5.9𝐸 − 5 6.8𝐸 − 5 1.5𝐸 − 5

0.750 1.3𝐸 − 3 2.7𝐸 − 4 3.3𝐸 − 4 7.0𝐸 − 5 8.5𝐸 − 5 1.8𝐸 − 5

0.875 1.6𝐸 − 3 3.1𝐸 − 4 4.0𝐸 − 4 8.0𝐸 − 5 1.0𝐸 − 4 2.0𝐸 − 5

1 1.9𝐸 − 3 3.5𝐸 − 4 4.7𝐸 − 4 8.9𝐸 − 5 1.2𝐸 − 4 2.3𝐸 − 5

𝑥
󸀠

2
(𝑡) =

20

21
−
1

5
𝑡𝑥
2
(𝑡) sin (1)

+ ∫
1

0

(
𝑡2

5
𝑥
1
(𝑠) +

𝑠

7
𝑥
2
(𝑠)) 𝑑𝑠,

𝑥
1
(0) = 1,

𝑥
2
(0) = 0.

(41)

The numerical results are given in Table 4.

Example 5. Consider now the following system of Fredholm
integrodifferential equations with the exact solutions 𝑥

1
(𝑡) =

𝑡2 and 𝑥
2
(𝑡) = 𝑡:

𝑥
󸀠

1
(𝑡) = 2𝑡 −

1

5
𝑥
1
(𝑡) (− cos (1) + sin (𝑡))

+ ∫
1

0

𝑡2𝑠

5
sin (𝑥

2
(𝑠)) 𝑑𝑠,

𝑥
󸀠

2
(𝑡) = 1 −

1

48
𝑥
2
(𝑡) (𝜋 − log (4)) + ∫

1

0

𝑡𝑠

6
arctg (𝑥

1
(𝑠)) 𝑑𝑠,

𝑥
1
(0) = 0,

𝑥
2
(0) = 0.

(42)

The numerical results are given in Table 5.

Example 6. Consider now the following system of Fredholm
integrodifferential equations with the exact solutions 𝑥

1
(𝑡) =

sin(𝑡) and 𝑥
2
(𝑡) = cos(𝑡):

𝑥
󸀠

1
(𝑡) = 𝑥

2
(𝑡) +

1

10
(−1 + cos (2) − sin (2))

+
1

10
∫
2

0

(𝑥
1
(𝑠) + 𝑥

2
(𝑠)) 𝑑𝑠,

𝑥
󸀠

2
(𝑡) = − 𝑥

1
(𝑡) +

1

15
(1 − cos (2) − sin (2))

+
1

15
∫
2

0

(𝑥
2
(𝑠) − 𝑥

1
(𝑠)) 𝑑𝑠,

𝑥
1
(0) = 0,

𝑥
2
(0) = 1.

(43)

The numerical results are given in Table 6.

5. Conclusion

In this paper we have successfully approximated the solu-
tion of systems of nonlinear Fredholm integrodifferential
equations. To this end, we have used the Banach fixed-point
theorem and the Schauder basis. Moreover, the convergence
of the proposed scheme is analyzed and some illustrative
examples were included to demonstrate the validity and
applicability of the method. The approximating functions 𝑥

𝑟

and [𝑥
𝑟1
, 𝑥
𝑟2
]
𝑇 are the sumof integrals of piecewise univariate
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Table 5: Absolute errors for Example 5.

𝑡
𝑗 = 9 X4 = [𝑥

41
, 𝑥
42
]
𝑇

𝑗 = 17 X4 = [𝑥
41
, 𝑥
42
]
𝑇

𝑗 = 33 X4 = [𝑥
41
, 𝑥
42
]
𝑇

|𝑥
41
(𝑡) − 𝑥

1
(𝑡)| |𝑥

42
(𝑡) − 𝑥

2
(𝑡)| |𝑥

41
(𝑡) − 𝑥

1
(𝑡)| |𝑥

42
(𝑡) − 𝑥

2
(𝑡)| |𝑥

41
(𝑡) − 𝑥

1
(𝑡)| |𝑥

42
(𝑡) − 𝑥

2
(𝑡)|

0.125 3.4𝐸 − 7 3.1𝐸 − 6 6.1𝐸 − 8 8.1𝐸 − 7 1.1𝐸 − 8 2.3𝐸 − 7

0.250 2.1𝐸 − 6 1.2𝐸 − 5 4.4𝐸 − 7 3.2𝐸 − 6 7.3𝐸 − 8 9.4𝐸 − 7

0.375 6.5𝐸 − 6 2.7𝐸 − 5 1.4𝐸 − 6 7.2𝐸 − 6 2.2𝐸 − 7 2.1𝐸 − 6

0.5 1.5𝐸 − 5 4.9𝐸 − 5 3.3𝐸 − 6 1.3𝐸 − 5 4.8𝐸 − 7 3.9𝐸 − 6

0.625 2.9𝐸 − 5 7.7𝐸 − 5 6.3𝐸 − 6 2.1𝐸 − 5 8.3𝐸 − 7 6.2𝐸 − 6

0.750 4.9𝐸 − 5 1.1𝐸 − 4 1.1𝐸 − 5 2.9𝐸 − 5 1.2𝐸 − 6 9.2𝐸 − 6

0.875 7.7𝐸 − 5 1.5𝐸 − 4 1.6𝐸 − 5 4.1𝐸 − 5 1.5𝐸 − 6 1.2𝐸 − 5

1 1.1𝐸 − 4 1.9𝐸 − 4 2.4𝐸 − 5 5.3𝐸 − 5 1.6𝐸 − 6 1.7𝐸 − 5

Table 6: Absolute errors for Example 6.

𝑡
𝑗 = 17 X3 = [𝑥

31
, 𝑥
32
]
𝑇

𝑗 = 33 X3 = [𝑥
31
, 𝑥
32
]
𝑇

𝑗 = 65 X3 = [𝑥
31
, 𝑥
32
]
𝑇

|𝑥
31
(𝑡) − 𝑥

1
(𝑡)| |𝑥

32
(𝑡) − 𝑥

2
(𝑡)| |𝑥

31
(𝑡) − 𝑥

1
(𝑡)| |𝑥

32
(𝑡) − 𝑥

2
(𝑡)| |𝑥

31
(𝑡) − 𝑥

1
(𝑡)| |𝑥

32
(𝑡) − 𝑥

2
(𝑡)|

0.125 1.1𝐸 − 3 4.8𝐸 − 5 8.5𝐸 − 4 8.3𝐸 − 6 9.3𝐸 − 5 9.8𝐸 − 7

0.250 2.2𝐸 − 3 1.1𝐸 − 4 9.2𝐸 − 4 2.1𝐸 − 5 1.8𝐸 − 4 1.1𝐸 − 6

0.375 3.4𝐸 − 3 2.0𝐸 − 4 2.9𝐸 − 3 4.0𝐸 − 5 3.3𝐸 − 4 1.5𝐸 − 6

0.5 4.5𝐸 − 3 3.1𝐸 − 4 4.1𝐸 − 3 6.3𝐸 − 5 5.4𝐸 − 4 1.8𝐸 − 6

0.625 5.7𝐸 − 3 4.3𝐸 − 4 5.6𝐸 − 3 9.0𝐸 − 5 7.8𝐸 − 4 4.3𝐸 − 6

0.750 6.8𝐸 − 3 5.7𝐸 − 4 6.7𝐸 − 3 1.2𝐸 − 4 9.2𝐸 − 4 8.5𝐸 − 6

0.875 8.0𝐸 − 3 7.3𝐸 − 4 7.9𝐸 − 3 1.5𝐸 − 4 3.5𝐸 − 3 1.3𝐸 − 5

1 9.2𝐸 − 3 9.0𝐸 − 4 8.8𝐸 − 3 1.9𝐸 − 4 5.3𝐸 − 3 1.9𝐸 − 5

1.125 1.0𝐸 − 2 1.0𝐸 − 3 9.7𝐸 − 3 2.3𝐸 − 4 7.9𝐸 − 3 2.6𝐸 − 5

1.250 1.1𝐸 − 2 1.2𝐸 − 3 1.0𝐸 − 2 2.8𝐸 − 4 8.2𝐸 − 3 3.3𝐸 − 5

1.375 1.2𝐸 − 2 1.4𝐸 − 3 1.1𝐸 − 2 3.2𝐸 − 4 9.0𝐸 − 3 4.1𝐸 − 5

1.5 1.4𝐸 − 2 1.6𝐸 − 3 1.3𝐸 − 2 3.7𝐸 − 4 9.9𝐸 − 3 4.9𝐸 − 5

1.625 1.5𝐸 − 2 1.8𝐸 − 3 1.5𝐸 − 2 4.1𝐸 − 4 1.0𝐸 − 2 5.7𝐸 − 5

1.750 1.6𝐸 − 2 2.0𝐸 − 3 1.6𝐸 − 2 4.6𝐸 − 4 1.2𝐸 − 2 6.4𝐸 − 5

1.875 1.8𝐸 − 2 2.2𝐸 − 3 1.7𝐸 − 2 5.1𝐸 − 4 1.5𝐸 − 2 7.2𝐸 − 5

2 1.9𝐸 − 2 2.4𝐸 − 3 1.8𝐸 − 2 5.5𝐸 − 4 1.7𝐸 − 2 7.9𝐸 − 5

and bivariate polynomials of degree 2 and the calculation
of the coefficients of such polynomials just requires linear
combinations of several evaluations of the basic functions at
sufficient number of points.
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