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We present a variance shift model for a linear measurement error model using the corrected likelihood of Nakamura (1990). This
model assumes that a single outlier arises from an observation with inflated variance. The corrected likelihood ratio and the score
test statistics are proposed to determine whether the 𝑖th observation has an inflated variance. A parametric bootstrap procedure
is used to obtain empirical distributions of the test statistics and a simulation study has been used to show the performance of
proposed tests. Finally, a real data example is given for illustration.

1. Introduction

Outliers are observations that appear inconsistent with the
rest of the data set and can have a profound destructive
influence on the statistical analysis. To detect these kinds
of observations in the linear models, different approaches
have been suggested, among those one can refer to the case-
deletion and variance shift models. The first approach is
based on the assumption that outliers result from a shift
in the mean of contaminated observations (see Barnett and
Lewis [1] or Weisberg [2]) and the second procedure takes
into account the assumption that an outlier arises from an
error term with an increased variance (Cook and Weisberg
[3]). Cook et al. [4] indicated that the maximum likelihood
estimates for the position of the outlier under two methods
could be different, unless the largest absolute studentized
residual corresponds to the largest absolute residual. Using
the residual maximum likelihood (REML), Thompson [5]
showed that the residual variance and outlier position are the
same under both methods.

In the linear mixed models, case deletion method, vari-
ance shift outlier model, and related diagnostics are studied
widely by different authors. Christensen et al. [6] presented
case deletion diagnostics for both fixed effects and variance

components models. Banerjee and Frees [7] introduced case
deletion diagnostics for both fixed effects and random subject
effect in linear longitudinal models. Xuping and Bocheng
[8] presented a unified diagnostic method for linear mixed
models based upon the joint likelihood given by Robinson
[9]. They showed that the estimates of parameters in case
deletion method are equivalent to those in mean shift
outlier model. Haslett and Dillane [10] proved a “delete =
replace” identity in linear models and applied it to deletion
diagnostics for estimators of variance components. Zewotir
and Galpin [11] provided routine diagnostic tools for fixed
effects, random effects, and variance components, which are
computationally inexpensive. Li et al. [12] considered subset
deletion diagnostics for fixed effects, random effects and one
variance component in varying coefficient mixed models.
Gumedze et al. [13] extended the variance shift outlier model
(VSOM) to the linear mixed model.

In linear regression models, independent variables are
often susceptible to nonnegligible errors, and then it will
be more appropriate to consider the measurement error
models (see Fuller [14] and Stefanski [15]). However, in
measurement error models ordinary maximum likelihood
(ML) estimates lose the consistency. In order to correct
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the bias on parameter estimation, a method in which the
score function itself is corrected for measurement errors, is
available for the estimation of parameters. This method is
based on the corrected log-likelihood of Nakamura [16] (see
also Giménez and Bolfarine [17] for more discussion).

On diagnostic methods for measurement error models,
some previous works are due to Kelly [18] and Wellman and
Gunst [19]. Zhong et al. [20] obtained case deletion andmean
shift outlier model for linear measurement error models
based upon the corrected likelihood of Nakamura [16].
Rasekh [21] studied multiple outlier detection in multivariate
functional measurement error models based on the suitable
definition of standardized residuals. Giménez and Galea [22]
studied influence measures on corrected score estimators in
functional heteroscedastic measurement error models and a
local influence study on functional comparative calibration
models with replicated data is developed by Giménez and
Patat [23].

In this paper, we concentrate on the variance shift model
of Cook et al. [4], for the linear measurement error model,
using the corrected likelihood [16]. In Section 2, we present
the basis of the corrected score method and obtain the
estimates of parameters of the model. In Section 3, a variance
shiftmodel for the linearmeasurement errormodel is derived
and the joint corrected maximum likelihood estimates are
characterized. In Section 4, we develop the likelihood ratio
and the score test statistics. Furthermore, a parametric boot-
strap procedure is used to generate the empirical distribution
of these statistics. In Section 5, to verify the performance of
the proposed test statistics, a simulation study is reported and
finally, an illustrative example is given in Section 6.

2. Corrected Log-Likelihood of
Measurement Error Models

Consider the linear measurement error models:

𝑦 = 𝑍𝛽 + 𝜀, 𝜀 ∼ 𝑁 (0, 𝜎
2
𝐼
𝑛
) ,

𝑋 = 𝑍 + 𝑈, 𝑈 ∼ 𝑁 (0, 𝐼
𝑛
⊗ Λ) ,

(1)

where𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
󸀠,𝑍 is an 𝑛×𝑝 matrix of unobserva-

ble regressors, 𝛽 is a 𝑝×1 vector of unobservable parameters,
and 𝜎

2 is the unknown common variance. The matrix 𝑋

is the observed value of 𝑍 with the measurement error 𝑈.
Furthermore, 𝜀 and 𝑈 are independent, Λ is a 𝑝 × 𝑝 matrix
of known values with nonnegative diagonal elements (Fuller
[14]) and 𝐼

𝑛
is an 𝑛×𝑛 identitymatrix.Themodel (1) is known

as functional linear measurement error model.
The log-likelihood of 𝑦 is given by

𝑙 (𝛽, 𝜎
2
, 𝑍, 𝑦) = −

𝑛

2
log (2𝜋𝜎2)

−
1

2𝜎
2
(𝑦 − 𝑍𝛽)

󸀠

(𝑦 − 𝑍𝛽) .

(2)

If we replace 𝑍 by 𝑋 without considering the measurement
errors, then the ML estimates are not consistent in general.
To correct for the effects ofmeasurement errors on parameter

estimation, we use the corrected score method proposed
by Nakamura [16]. This method proposes a corrected log-
likelihood 𝑙

∗
(𝛽, 𝜎
2
, 𝑋, 𝑦), which satisfies

𝐸
∗
[
𝜕

𝜕𝛽
𝑙
∗
(𝛽, 𝜎
2
, 𝑋, 𝑦)] =

𝜕

𝜕𝛽
𝑙 (𝛽, 𝜎

2
, 𝑍, 𝑦) ,

𝐸
∗
[

𝜕

𝜕𝜎2
𝑙
∗
(𝛽, 𝜎
2
, 𝑋, 𝑦)] =

𝜕

𝜕𝜎2
𝑙 (𝛽, 𝜎

2
, 𝑍, 𝑦) ,

(3)

where 𝐸
∗ denotes the conditional mean with respect to

𝑋 given 𝑦. For model (1), the appropriate corrected log-
likelihood is suggested by Nakamura [16] as

𝑙
∗
(𝛽, 𝜎
2
, 𝑋, 𝑦)

= −
𝑛

2
log (2𝜋𝜎2)

−
1

2𝜎
2
[(𝑦 − 𝑋𝛽)

󸀠

(𝑦 − 𝑋𝛽) − 𝑛𝛽
󸀠
Λ𝛽] .

(4)

By solving the equations (𝜕/𝜕𝛽)𝑙
∗
(𝛽, 𝜎
2
, 𝑋, 𝑦) = 0 and

(𝜕/𝜕𝜎
2
)𝑙
∗
(𝛽, 𝜎
2
, 𝑋, 𝑦) = 0, the corrected score estimates of

𝛽 and 𝜎
2, respectively, are given by (see [16])

𝛽 = (𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑋
󸀠
𝑦,

𝜎̂
2
=

1

𝑛
[(𝑦 − 𝑋𝛽)

󸀠

(𝑦 − 𝑋𝛽) − 𝑛𝛽
󸀠
Λ𝛽] .

(5)

3. A Variance Shift Model in the Linear
Measurement Error

Suppose the 𝑖th observation is considered with inflated error
variance. A variance shiftmodel for this observation takes the
form

𝑦 = 𝑍𝛽 + 𝑏
𝑖
𝑑
𝑖
+ 𝜀,

𝑋 = 𝑍 + 𝑈,

(6)

where 𝑑
𝑖
is an 𝑛 × 1 vector with value 1 in the 𝑖th element and

zero elsewhere and 𝑏
𝑖
is an unknown randomcoefficient of the

form𝑁(0, 𝛼
𝑖
). Model (6) can be considered as a linear mixed

measurement error model in which 𝑏
𝑖
is a random effect with

the variance 𝛼
𝑖
and the covariance matrix of the data are as

follows:

Var (𝑦) = 𝛼
𝑖
𝑑
𝑖
𝑑
󸀠

𝑖
+ 𝜎
2
𝐼
𝑛
= 𝜎
2
[(𝑤
𝑖
− 1) 𝑑

𝑖
𝑑
󸀠

𝑖
+ 𝐼
𝑛
]

= 𝜎
2
𝐻
𝑖
,

(7)

where 𝑤
𝑖
= 𝛼
𝑖
/𝜎
2
+ 1 and Var (𝑦

𝑖
) = 𝑤
𝑖
𝜎
2, for 𝑤

𝑖
≥ 1.

The log-likelihood and the corrected log-likelihood for
this model are given by

𝑙
𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑍, 𝑦)

= −
𝑛

2
log (2𝜋𝜎2) − 1

2
log 󵄨󵄨󵄨󵄨𝐻𝑖

󵄨󵄨󵄨󵄨

−
1

2𝜎
2
[(𝑦 − 𝑍𝛽)

󸀠

𝐻
−1

𝑖
(𝑦 − 𝑍𝛽)] ,
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𝑙
∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦)

= −
𝑛

2
log (2𝜋𝜎2) − 1

2
log 󵄨󵄨󵄨󵄨𝐻𝑖

󵄨󵄨󵄨󵄨

−
1

2𝜎
2
[(𝑦 − 𝑋𝛽)

󸀠

𝐻
−1

𝑖
(𝑦 − 𝑋𝛽) − tr (𝐻

𝑖

−1
) 𝛽
󸀠
Λ𝛽] ,

(8)

respectively, which have the following properties:

𝐸[
𝜕

𝜕𝛽
𝑙
∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦)] =

𝜕

𝜕𝛽
𝑙
𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑍, 𝑦) ,

𝐸 [
𝜕

𝜕𝜎2
𝑙
∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦)] =

𝜕

𝜕𝜎2
𝑙
𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑍, 𝑦) ,

𝐸 [
𝜕

𝜕𝑤
𝑖

𝑙
∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦)] =

𝜕

𝜕𝑤
𝑖

𝑙
𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑍, 𝑦) .

(9)

Now, for 𝑤
𝑖
fixed, the corrected score estimates of 𝛽 and 𝜎

2

will be obtained with differentiating from the corrected log-
likelihood of the variance shiftmodel given in (8)with respect
to 𝛽 and 𝜎

2 [24]. Then we have

𝛽
𝑖
(𝑤
𝑖
)

= (𝑋
󸀠
𝐻
−1

𝑖
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

𝑋
󸀠
𝐻
−1

𝑖
𝑦,

(10)

𝜎̂
2

𝑖
(𝑤
𝑖
)

=
1

𝑛
[(𝑦 − 𝑋𝛽

𝑖
)
󸀠

𝐻
−1

𝑖
(𝑦 − 𝑋𝛽

𝑖
) − tr (𝐻−1

𝑖
) 𝛽
󸀠

𝑖
Λ𝛽
𝑖
] ,

(11)

respectively. In the following theorem we derive the asymp-
totic expressions of the 𝛽

𝑖
(𝑤
𝑖
) and 𝜎̂

2

𝑖
(𝑤
𝑖
) as functions of 𝛽

and 𝜎̂
2 given no outliers.

Theorem 1. For model (6), we have

𝛽
𝑖
(𝑤
𝑖
) = 𝛽 −

𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑥
𝑖
V̂
𝑖

+ 𝑂
𝑝
(𝑛
−1
) ,

𝜎̂
2

𝑖
(𝑤
𝑖
) = 𝜎̂
2

V (1 −
𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

𝑡
2

𝑖

𝑛
) − 𝛽

󸀠
Λ𝛽 + 𝑂

𝑝
(𝑛
−1
) ,

(12)

where 𝑟
𝑖𝑖
is the 𝑖th diagonal element of 𝑅 = 𝐼 − 𝑋(𝑋

󸀠
𝑋−

𝑛Λ)
−1
𝑋
󸀠, V̂
𝑖
= 𝑦
𝑖
− 𝑥
󸀠

𝑖
𝛽 is the 𝑖th residual and 𝑡

𝑖
= V̂
𝑖
/𝜎̂]√𝑟

𝑖𝑖

is the 𝑖th studentized residual of the model, in which 𝜎̂
2

𝜐
=

𝜎̂
2
+ 𝛽
󸀠
Λ𝛽 [25].

Proof. From the estimate of 𝛽 given in (10), we have

(𝑋
󸀠
𝐻
−1

𝑖
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

= [𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ −

𝑤
𝑖
− 1

𝑤
𝑖

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑋]

−1

= (𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

+ (𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

𝑋
󸀠
𝑑
𝑖

⋅ [(
𝑤
𝑖
− 1

𝑤
𝑖

)

−1

− 𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

𝑋
󸀠
𝑑
𝑖
]

−1

⋅ 𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

.

(13)

On the other hand, we know that, 𝑋󸀠𝑋 = 𝑂
𝑝
(𝑛), 𝑋󸀠𝑦 =

𝑂
𝑝
(𝑛), 𝑑󸀠
𝑖
𝑋𝑋
󸀠
𝑑
𝑖
= 𝑂
𝑝
(1),𝑋󸀠𝑑

𝑖
𝑑
󸀠

𝑖
𝑋 = 𝑂

𝑝
(1), (𝑋󸀠𝑋−𝑛Λ)

−1
=

𝑂
𝑝
(𝑛
−1
), and [𝐼+𝑂

𝑝
(𝑛
−1
)]
−1

= 𝐼+𝑂
𝑝
(𝑛
−1
) (see the appendix

for more details). Therefore, the first term in the right hand
side of (13) will be

(𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

= (𝑋
󸀠
𝑋 − 𝑛Λ +

𝑤
𝑖
− 1

𝑤
𝑖

Λ)

−1

= (𝑋
󸀠
𝑋 − 𝑛Λ)

−1

−
𝑤
𝑖
− 1

𝑤
𝑖

(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

⋅ [𝐼 +
𝑤
𝑖
− 1

𝑤
𝑖

Λ(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

]

−1

Λ(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

= (𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−1
) [𝐼 + 𝑂

𝑝
(𝑛
−1
)]
−1

𝑂
𝑝
(𝑛
−1
)

= (𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−2
) ,

(14)

and the second term is

(𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

𝑋
󸀠
𝑑
𝑖

⋅ [(
𝑤
𝑖
− 1

𝑤
𝑖

)

−1

− 𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

𝑋
󸀠
𝑑
𝑖
]

−1

⋅ 𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

= [(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−2
)]𝑋
󸀠
𝑑
𝑖

⋅ [(
𝑤
𝑖
− 1

𝑤
𝑖

)

−1

− 𝑑
󸀠

𝑖
𝑋[(𝑋

󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−2
)]𝑋
󸀠
𝑑
𝑖
]

−1

⋅ 𝑑
󸀠

𝑖
𝑋[(𝑋

󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−2
)]

=
𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−3
) .

(15)
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Combining both terms of (13), we have

(𝑋
󸀠
𝐻
−1

𝑖
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

= (𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+
𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−2
) .

(16)

Consequently, we have

𝛽
𝑖
(𝑤
𝑖
)

= (𝑋
󸀠
𝐻
−1

𝑖
𝑋 − tr (𝐻−1

𝑖
)Λ)
−1

𝑋
󸀠
𝐻
−1

𝑖
𝑦

= [(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+
𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

⋅ (𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

+ 𝑂
𝑝
(𝑛
−2
) ]

⋅ 𝑋
󸀠
(𝐼 −

𝑤
𝑖
− 1

𝑤
𝑖

𝑑
𝑖
𝑑
󸀠

𝑖
)𝑦.

(17)

Multiplying the above matrix expression out and simplifying
them, 𝛽

𝑖
(𝑤
𝑖
)will be derived. Next, substituting 𝛽

𝑖
(𝑤
𝑖
) in the

estimate of 𝜎2 given in (11), we can write

𝑛𝜎̂
2

𝑖
(𝑤
𝑖
)

= (𝑦 − 𝑋𝛽
𝑖
)
󸀠

𝐻
−1

𝑖
(𝑦 − 𝑋𝛽

𝑖
) − tr (𝐻−1

𝑖
) 𝛽
󸀠

𝑖
Λ𝛽
𝑖

= 𝑦
󸀠
𝐻
−1

𝑖
𝑦 − 𝛽
󸀠

𝑖
𝑋
󸀠
𝐻
−1

𝑖
𝑦

= 𝑦
󸀠
𝑦 −

𝑤
𝑖
− 1

𝑤
𝑖

𝑦
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑦

− [𝛽 −
𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑥
𝑖
V̂
𝑖
+ 𝑂
𝑝
(𝑛
−1
)]

󸀠

⋅ (𝑋
󸀠
𝑦 −

𝑤
𝑖
− 1

𝑤
𝑖

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑦)

= 𝑦
󸀠
𝑦 −

𝑤
𝑖
− 1

𝑤
𝑖

𝑦
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑦 − 𝛽
󸀠
𝑋
󸀠
𝑦

+
𝑤
𝑖
− 1

𝑤
𝑖

𝛽
󸀠
𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑦

+
𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑋
󸀠
𝑦V̂
𝑖

−
(𝑤
𝑖
− 1)
2

𝑤
𝑖
[1 + 𝑟

𝑖𝑖
(𝑤
𝑖
− 1)]

𝑑
󸀠

𝑖
𝑋(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑦V̂
𝑖

+ 𝑂
𝑝
(1)

= 𝑛𝜎̂
2
−

𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

V̂2
𝑖
+ 𝑂
𝑝
(1)

= 𝑛𝜎̂
2

𝜐
(1 −

𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

𝑡
2

𝑖

𝑛
) − 𝑛𝛽

󸀠
Λ𝛽 + 𝑂

𝑝
(1) ,

(18)

and hence, 𝜎̂2
𝑖
(𝑤
𝑖
) will be obtained.

In the rest of paper, we define 𝛽
𝑖
(𝑤
𝑖
) = 𝛽 − ((𝑤

𝑖
− 1)/(1 +

𝑟
𝑖𝑖
(𝑤
𝑖
−1)))(𝑋

󸀠
𝑋 − 𝑛Λ)

−1

𝑥
𝑖
V̂
𝑖
and 𝜎̃

2

𝑖
(𝑤
𝑖
) = 𝑛𝜎̂

2

V (1 − (𝑟
𝑖𝑖
(𝑤
𝑖
−

1)/(1+𝑟
𝑖𝑖
(𝑤
𝑖
−1)))(𝑡

2

𝑖
/𝑛))−𝑛𝛽

󸀠
Λ𝛽. It is obvious that for𝑤

𝑖
= 1

or 𝑟
𝑖𝑖
= 0, 𝛽

𝑖
(𝑤
𝑖
) = 𝛽, 𝜎̃2

𝑖
(𝑤
𝑖
) = 𝜎̂
2 and for 𝑟

𝑖𝑖
> 0 we have

lim
𝑤𝑖→+∞

𝛽
𝑖
(𝑤
𝑖
) = 𝛽 − 𝑟

𝑖𝑖

−1
(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

𝑥
𝑖
V̂
𝑖
= 𝛽
𝑚𝑖
,

lim
𝑤𝑖→+∞

𝜎̃
2

𝑖
(𝑤
𝑖
) = 𝜎̂
2

V (1 −
𝑡
2

𝑖

𝑛
) − 𝛽

󸀠
Λ𝛽 = 𝜎̂

2

𝑚𝑖
.

(19)

Remark 2. 𝛽
𝑚𝑖

and 𝜎̂
2

𝑚𝑖
are the corrected score estimates of

𝛽 and 𝜎
2, respectively, in a mean shift outlier model for 𝑖th

observation, given by [20, 25].
Now 𝑙

∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦) evaluated at (𝛽, 𝜎

2
) = (𝛽

𝑖
(𝑤
𝑖
),

𝜎̂
2

𝑖
(𝑤
𝑖
)) is, except for an additive constant, proportional to

ℎ (𝑤
𝑖
) = −𝑛 log [𝜎̂2

𝑖
(𝑤
𝑖
)] − log (𝑤

𝑖
) . (20)

Using Taylor series expansion, an approximate to the ℎ (𝑤
𝑖
)

analogues to one given by Cook et al. [4] will be as

ℎ̃ (𝑤
𝑖
) = −𝑛 log[𝜎̂2 −

𝑤
𝑖
− 1

1 + 𝑟
𝑖𝑖
(𝑤
𝑖
− 1)

V̂2
𝑖

𝑛
] − log (𝑤

𝑖
) . (21)

The existence of the value of 𝑤
𝑖
, say 𝑤

𝑖
, over the range of

[1, +∞) that maximizes ℎ̃ (𝑤
𝑖
), was proved by Cook et al. [4].

4. Analogue of Likelihood Ratio Test
and Score Test Statistics

In this section we derive analogues of likelihood ratio test
and score test statistics for testing the null hypothesis that the
observation is not unusual (𝑤

𝑖
= 1) against the alternative

that it has an inflated variance, 𝑤
𝑖
> 1.

4.1. Corrected Likelihood Ratio Test. Let 𝑙∗
𝑖
(𝛽
𝑖
(𝑤
𝑖
) , 𝜎̂
2

𝑖
(𝑤
𝑖
) ,

𝑤
𝑖
, 𝑋, 𝑦) and 𝑙

∗
(𝛽, 𝜎̂
2
, 𝑋, 𝑦) be the corrected log-likelihood

evaluated at (𝛽
𝑖
(𝑤
𝑖
), 𝜎̂
2

𝑖
(𝑤
𝑖
), 𝑤
𝑖
) and under the null hypoth-

esis, respectively, for testing. Consider

𝐻
0
: 𝑤
𝑖
= 1 versus 𝐻

1
: 𝑤
𝑖
> 1. (22)

The corrected likelihood ratio test is defined as

CLRT
𝑖

= −2 [𝑙
∗
(𝛽, 𝜎̂
2
, 𝑋, 𝑦) − 𝑙

∗

𝑖
(𝛽
𝑖
(𝑤
𝑖
) , 𝜎̂
2

𝑖
(𝑤
𝑖
) , 𝑤
𝑖
, 𝑋, 𝑦)] .

(23)
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4.2. Score Test Statistic. In order to derive the score test
statistic, we only require the estimate of parameters under
the null hypothesis. In the following theorem based on the
observed information matrix we obtain this test statistic
under the hypothesis of 𝑤

𝑖
= 1.

Theorem 3. The score test statistic for the 𝑖th observation
(𝑆𝐶
𝑖
), based on the observed information matrix for testing

𝐻
0
: 𝑤
𝑖
= 1, is given by

𝑆𝐶
𝑖
(𝑤
𝑖
= 1)

=

𝑛𝐴
2
(𝑟
𝑖𝑖
𝑡
2

𝑖
− 1)
2

2 {(𝑛 − 1) [2𝐴 (𝑟
𝑖𝑖
𝑡
2

𝑖
− 1) + 1] − 𝐴2(𝑟

𝑖𝑖
𝑡
2

𝑖
− 1)
2

}

𝑖𝑓 𝑟
𝑖𝑖
𝑡
2

𝑖
> 1,

(24)

where 𝐴 = 𝜎̂
2

V/𝜎̂
2.

Proof. Let the corrected observed informationmatrix of𝑦 for
𝜎
2 and 𝑤

𝑖
be 𝐽(𝜎2, 𝑤

𝑖
), then the score test statistic (see [26])

for testing𝐻
0
: 𝑤
𝑖
= 1 against𝐻

1
: 𝑤
𝑖
> 1 is

SC
𝑖
= [

𝜕

𝜕𝑤
𝑖

𝑙
∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦)]

2

𝐽
𝑤𝑤

, (25)

where 𝐽𝑤𝑤 is the lower right corner of 𝐽−1(𝜎2, 𝑤
𝑖
). Substitut-

ing 𝑤
𝑖
= 1, 𝛽 = 𝛽, and 𝜎

2
= 𝜎̂
2 into the elements of (25), we

have
𝜕

𝜕𝑤
𝑖

𝑙
∗

𝑖
(𝛽, 𝜎
2
, 𝑤
𝑖
, 𝑋, 𝑦)

= −
1

2
+

1

2𝜎̂2
(V̂2
𝑖
− 𝛽
󸀠
Λ𝛽) =

1

2
𝐴 (𝑟
𝑖𝑖
𝑡
2

𝑖
− 1) ,

𝐽 (𝜎
2
, 𝑤
𝑖
)

=
[
[

[

𝑛

2𝜎̂4

1

2𝜎̂4
(V̂2
𝑖
− 𝛽
󸀠
Λ𝛽)

1

2𝜎̂4
(V̂2
𝑖
− 𝛽
󸀠
Λ𝛽) −

1

2
+

1

𝜎̂2
(V̂2
𝑖
− 𝛽
󸀠
Λ𝛽)

]
]

]

=
[
[

[

𝑛

2𝜎̂4

1

2𝜎̂2
[𝐴 (𝑟
𝑖𝑖
𝑡
2

𝑖
− 1) + 1]

1

2𝜎̂2
[𝐴 (𝑟
𝑖𝑖
𝑡
2

𝑖
− 1) + 1] 𝐴 (𝑟

𝑖𝑖
𝑡
2

𝑖
− 1) +

1

2

]
]

]

,

(26)

where 𝐽𝑤𝑤 = 2𝑛/{(𝑛 − 1) [2𝐴(𝑟
𝑖𝑖
𝑡
2

𝑖
− 1) + 1] − 𝐴

2
(𝑟
𝑖𝑖
𝑡
2

𝑖
− 1)
2
},

and then substituting in (25) the result is achieved.

Because the null hypothesis is on the boundary of the
parameter space, the standard asymptotic theory does not
apply in this case [27]. Therefore, a parametric bootstrap
procedure can be used to approximate the distributions of the
likelihood ratio and the score test statistic (see Section 4.3 and
[13]).

4.3. Empirical Distribution. Based on the Gumedze et al.
[13] the following parametric bootstrap procedures, for test

statistics CLRT
𝑖
and SC

𝑖
, can be used to derive the empirical

distributions of these statistics under the hypothesis of no
outliers exist in the observations:

Step 1. Fit model (1) to the data and calculate estimates𝑍 (see
Zare and Rasekh [28]), 𝛽 and 𝜎̂

2, where

𝑍
󸀠
= 𝑋
󸀠
+ 𝜎̂
−2

𝜐
Λ𝛽̂̂
󸀠
. (27)

Step 2a. Generate a new data vector from

𝑦
∗
= 𝑍𝛽 + 𝜀

∗
,

𝑋
∗
= 𝑍 + 𝑈,

(28)

where 𝜀
∗ is randomly generated as 𝑁(0, 𝜎̂

2
𝐼
𝑛
) and 𝑈 is

randomly generated as𝑁(0, 𝐼
𝑛
⊗ Λ). Fit model (1) to 𝑦

∗.

Step 2b. Compute the test statistic (CLRT
𝑖
or SC

𝑖
) for 𝑖 =

1, 2, 3, . . . , 𝑛, by fitting a variance shift model to simulated
data 𝑦

∗ for each observation in turn and save the order
statistics of the set {CLRT

𝑖
or SC
𝑖
: 𝑖 = 1, 2, 3, . . . , 𝑛}.

Step 3.Repeat Steps 2a and 2b𝑅 times, for𝑅 acceptably large,
for example, 𝑅 = 10000. Therefore, an empirical distribution
of size 𝑅 is generated for each order statistic.

Step 4. Calculate the 100(1 − 𝛼) percentile for each order
statistic for the level of size 𝛼.

The percentile of the 𝑘th order statistic can be considered
as a threshold for the 𝑘th largest value of the test statistic from
the original data and if the 𝑘 largest values of the test statistic
from the original data all exceed their respective thresholds,
then it is concluded that these are all outliers.

5. Simulation Study

A parametric bootstrap simulation study is carried out
to demonstrate the empirical performance of the various
proposed test statistics in terms of the probability of a type
𝐼 error and power on a single unit.

The response variable𝑦
𝑗
is generated from themodel𝑦

𝑗
=

𝑍𝛽 + 𝜀
𝑗
; 𝑗 = 1, 2, . . . , 1100, where 𝑦

𝑗
= (𝑦
1𝑗
, 𝑦
2𝑗
, . . . , 𝑦

𝑛𝑗
)
󸀠,

𝑍 = (1
𝑛
, 𝑧), 1

𝑛
is a 𝑛 × 1 vector all of whose elements are 1’s,

𝑧
󸀠
= (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) and 𝜀

𝑗
is rewritten in accordance with 𝑦

𝑗
.

We consider the following combinations for simulation: 𝑛 =

40 or 100 where 𝛽 = (𝛽
0
, 𝛽
1
) = (10, 0.3) or (𝛽

0
, 𝛽
1
) = (20, 1),

𝑧
𝑖
∼ 𝑈 (100, 900), 𝜀

𝑖𝑗
∼ 𝑁(0, 𝜎

2
), 𝑖 = 1, 2, . . . , 𝑛, 𝜎2 = 2 or 8

and Λ = diag(𝜆
1
, 𝜆
2
) = diag (0, 0.25) or Λ = diag (0, 1). The

simulation study was conducted using the 𝑅 software and the
codes are available from the second author upon request.

For each simulated data set, the CLRT and the score test
statistics were calculated for the first observation. The choice
of the first observationwas arbitrary. To generate an empirical
distribution of the test statistic under the null hypothesis,
data sets for 𝑘 = 1, 2, . . . , 2500 were simulated as 𝑦

∗

𝑗𝑘
=

𝑍
𝑗
𝛽
𝑗
+ 𝜀
∗

𝑗𝑘
, where 𝜀

∗

𝑗𝑘
∼ 𝑁(0, 𝜎̂

2

𝑗
𝐼
𝑛
), 𝛽
𝑗
, 𝑍
𝑗
, and 𝜎̂

2

𝑗
are the

corrected estimate of 𝛽, 𝑍 and 𝜎
2 from 𝑦

𝑗
. The probability
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Table 1: The probability of a type Ι error (𝛼 = 0.05) and power of CLRT and score test statistics for a variance shift model in a linear
measurement error with combination different of parameters 𝛽, 𝜎2, Λ, and 𝑏 = 1.

𝑛 𝛽 𝜎
2 (𝜆

1
, 𝜆
2
) CLRT Score test

Sig level Power Sig level Power

40

(20, 1)
2

(0, 1) 0.0457 0.0620 0.0459 0.0621
(0, 0.25) 0.0478 0.0870 0.0477 0.0873

8
(0, 1) 0.0478 0.0511 0.0477 0.0513

(0, 0.25) 0.0411 0.0600 0.0414 0.0603

(10, 0.3)
2

(0, 1) 0.0443 0.0909 0.0441 0.0909
(0, 0.25) 0.0388 0.0944 0.0387 0.0945

8
(0, 1) 0.0388 0.0600 0.0387 0.0603

(0, 0.25) 0.0354 0.0619 0.0360 0.0621

100

(20, 1)
2

(0, 1) 0.0450 0.0801 0.0450 0.0801
(0, 0.25) 0.0520 0.0950 0.0522 0.0954

8
(0, 1) 0.0520 0.0649 0.0522 0.0648

(0, 0.25) 0.0529 0.0668 0.0531 0.0666

(10, 0.3)
2

(0, 1) 0.0520 0.0950 0.0522 0.0954
(0, 0.25) 0.0520 0.0989 0.0522 0.0990

8
(0, 1) 0.0529 0.0631 0.0531 0.0630

(0, 0.25) 0.0520 0.0636 0.0522 0.0639

Table 2: The probability of a type Ι error (𝛼 = 0.05) and power of CLRT and score test statistics for a variance shift model in a linear
measurement error with combination different of parameters 𝛽, 𝜎2, Λ, and 𝑏 = 3.

𝑛 𝛽 𝜎
2 (𝜆

1
, 𝜆
2
) CLRT Score test

Sig level Power Sig level Power

40

(20, 1)
2

(0, 1) 0.0455 0.2840 0.0453 0.2844
(0, 0.25) 0.0476 0.4311 0.0478 0.4311

8
(0, 1) 0.0478 0.1385 0.0475 0.1386

(0, 0.25) 0.0419 0.1558 0.0419 0.1557

(10, 0.3)
2

(0, 1) 0.0413 0.4768 0.0417 0.4770
(0, 0.25) 0.0364 0.4832 0.0364 0.4833

8
(0, 1) 0.0367 0.1592 0.0363 0.1593

(0, 0.25) 0.0368 0.1608 0.0366 0.1611

100

(20, 1)
2

(0, 1) 0.0450 0.3660 0.0453 0.3663
(0, 0.25) 0.0525 0.4823 0.0529 0.4824

8
(0, 1) 0.0520 0.1584 0.0521 0.1584

(0, 0.25) 0.0537 0.1629 0.0534 0.1629

(10, 0.3)
2

(0, 1) 0.0524 0.5239 0.0522 0.5239
(0, 0.25) 0.0531 0.5394 0.0528 0.5391

8
(0, 1) 0.0529 0.1653 0.0534 0.1656

(0, 0.25) 0.0525 0.1672 0.0525 0.1674

of a type 𝐼 error estimate for a given test statistic and 𝛼 =

0.05 was calculated as the number of data sets for which the
test statistic exceeded the 95th percentile of the empirical
distribution, divided by 1100 [13].

The CLRT and the score test statistics were performed
for a variance shift model for the first observation of each
simulated data and 95th percentiles from the empirical dis-
tribution of each test statistics were used as threshold values
for the test statistics observed on the original data set 𝑦

𝑗
. The

empirical probability of type 𝐼 errors for thresholds derived
from the empirical distribution under the null hypothesis are

calculated for the corrected likelihood ratio and score test
statistics for 𝛼 = 0.05 (Tables 1, 2, and 3). A glance at the
results of these tables indicate that in general the probability
of a type 𝐼 errors of both CLRT and score test statistics are
close to the nominal value of 0.05.

In order to access the relative sensitivity of the CLRT and
score test statistics, we introduce the shift values 1, 3, and 5
for the first observation and again for each combination of
parameters, 1100 data sets are generated from the following
model:

𝑦
𝑗
= 𝑍𝛽 + 𝑏𝑑

1
+ 𝜀
𝑗
, (29)
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Table 3: The probability of a type Ι error (𝛼 = 0.05) and power of CLRT and score test statistics for a variance shift model in a linear
measurement error with combination different of parameters 𝛽, 𝜎2, Λ, and 𝑏 = 5.

𝑛 𝛽 𝜎
2 (𝜆

1
, 𝜆
2
) CLRT Score test

Sig level Power Sig level Power

40

(20, 1)
2

(0, 1) 0.0457 0.7172 0.0459 0.7174
(0, 0.25) 0.0478 0.8755 0.0475 0.8758

8
(0, 1) 0.0476 0.3169 0.0474 0.3168

(0, 0.25) 0.0411 0.3536 0.0414 0.3537

(10, 0.3)
2

(0, 1) 0.0449 0.9002 0.0446 0.9001
(0, 0.25) 0.0389 0.9082 0.0387 0.9082

8
(0, 1) 0.0388 0.3600 0.0387 0.3600

(0, 0.25) 0.0366 0.3650 0.0364 0.3654

100

(20, 1)
2

(0, 1) 0.0457 0.7893 0.0453 0.7894
(0, 0.25) 0.0523 0.9035 0.0521 0.9037

8
(0, 1) 0.0525 0.3547 0.0528 0.3546

(0, 0.25) 0.0535 0.3897 0.0532 0.3897

(10, 0.3)
2

(0, 1) 0.0525 0.9229 0.0522 0.9226
(0, 0.25) 0.0521 0.9272 0.0521 0.9271

8
(0, 1) 0.0536 0.4024 0.0535 0.4023

(0, 0.25) 0.0520 0.4059 0.0522 0.4059

for 𝑏 = 1, 3, or 5, where 𝑑
1
is an 𝑛 × 1 vector with value 1 in

the first element and zero elsewhere.The CLRT, the score test
statistic, and their empirical distribution were calculated as
for the probability of a type 𝐼 error given above, consequently
the power of the test statistics are also derived. Results of
Tables 1–3 show that with increase of the displacement, 𝑏,
the power of the CLRT and score test statistic, increases in
general. Moreover, we can see that power of the test statistics
also increase as sample size increases. These tables also show
the result of the CLRT and score test statistics are nearly
identical in the empirical probability of a type 𝐼 errors and
power.

6. Example: Concrete Compressive
Strength Data

These data were given by Wellman and Gunst [19] and
contain comprehensive strength measurements of 41 sample
of concrete. It was desired to use a linear regression model
to predict comprehensive strength of concrete 28 days after
pouring from the strengthmeasurements taken twodays after
pouring. Zhong et al. [20] analyzed this data set using the
linear measurement error model with Λ = diag (0, 1). The
zero diagonal element inΛ corresponds to the constant term,
a predictor variable measured without error. They indicated
that the sample 21 exhibits a strong influence on the fitted
model. Here we consider a variance shift measurement error
model for this data set.

Figures 1, 2, and 3 show plots of the square of studentized
residual 𝑡2

𝑖
of the data under model (1), estimates of the

variance shift parameter𝑤
𝑖
, and estimated variance 𝜎̂2

𝑖
under

model (6), versus case numbers, respectively. From these
figures it is obvious that case 21 stands out as a possible outlier

Case number
0

0

10

10

20 30 40

21

5

15

Sq
ua

re
 o

f s
tu

de
nt

iz
ed

re
sid

ua
l

Figure 1: Plot of square of the studentized residual (𝑡2
𝑖
) versus case

number.
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Figure 2: Plot of variance shift estimates (𝑤
𝑖
) versus case number.

with relatively large values of 𝑡2
𝑖
and 𝑤

𝑖
and a small estimated

𝜎̂
2

𝑖
.
Next, the corrected likelihood ratio and score test statis-

tics were calculated for each observation under model (6),
and then 10000 simulated data sets were generated from the
fitted model under the null hypothesis (𝐻

0
: 𝑤
𝑖

= 1).
In each simulation, a variance shift model was fitted for
each observation and the test statistics were sorted and used
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Figure 3: Plot of error variance estimates (𝜎̂2
𝑖
) versus case number.
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Figure 4: Corrected likelihood ratio test statistic for each case, with
95th ercentile of the empirical distribution under𝐻

0
shown for the

first 𝑘 order statistics for corrected likelihood ratio test: 𝑘 = 1 (solid
line), 𝑘 = 2 (dashed line), and 𝑘 = 3 (dotted line).

to generate the empirical distribution of the order statistics
for each test [13]. Figures 4 and 5 give plots of the test
statistics from the real data and 95th percentile from the
empirical distribution of the first, second and third largest
values for each test statistic. These figures show that the
statistics for observation 21 is larger than the 95th percentile
of the distribution of the corresponding order statistics.

Finally, the fitted regression line measurement error
model and the variance shift measurement error model for
case 21 are shown in Figure 6.

7. Conclusions

We extended the variance shift model to the linear mea-
surement error models based on the corrected likelihood
of Nakamura [16]. We derived the approximate estimate of
parameters of the proposed model under the variance shift
and indicated that if the variance shift parameter tends to
infinity, these estimates will be the same as those obtained
from a mean shift outlier model. Also, we proposed a
corrected likelihood ratio test and derived the score test
statistic for testing that an observation stands out as possible
outlier and it is shown that the score test statistic is function
of studentized residuals of model. The performance of both
the corrected likelihood ratio and the score test statistics is
studied using a parametric bootstrap simulation, and it was
found out that with the increase of 𝑏 or sample size, the power
of both test statistics increases.
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Figure 5: Score test statistic for each case, with 95th percentile of the
empirical distribution under𝐻

0
shown for the first 𝑘 order statistics

for score test: 𝑘 = 1 (solid line), 𝑘 = 2 (dashed line), and 𝑘 = 3

(dotted line).
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Figure 6: Concrete compressive strengths, in pounds per square
inch, at 2 and 28 days, measurement error model (dashed line); a
variance shift model (solid line).

Appendix

We assume that as 𝑛 tends to infinity, the limit of 𝑛−1𝑍󸀠𝑍
exists (𝑛−1𝑍󸀠𝑍 = 𝑂(1)). The existence of this limit is assured
in Lee and Nelder [29]. Since 𝐸(𝑋

󸀠
𝑋) = 𝑍

󸀠
𝑍 + 𝑛Λ and

𝐸(𝑋
󸀠
𝑦) = 𝑍

󸀠
𝑍𝛽, by the law of large numbers, it is easy

to get 𝑛−1𝑋󸀠𝑋 = 𝑛
−1
𝑍
󸀠
𝑍 + Λ + 𝑂

𝑝
(𝑛
−1/2

) and 𝑛
−1
𝑋
󸀠
𝑦 =

𝑛
−1
𝑍
󸀠
𝑍𝛽 + 𝑂

𝑝
(𝑛
−1/2

). Consequently, we have

𝑍
󸀠
𝑍 = 𝑂 (𝑛) ,

𝑋
󸀠
𝑋 = 𝑍

󸀠
𝑍 + 𝑛Λ + 𝑂

𝑝
(𝑛
1/2

) = 𝑂
𝑝
(𝑛) ,

(𝑋
󸀠
𝑋 − 𝑛Λ)

−1

= 𝑂
𝑝
(𝑛
−1
) ,

𝑋
󸀠
𝑦 = 𝑍

󸀠
𝑍𝛽 + 𝑂

𝑝
(𝑛
1/2

) = 𝑂
𝑝
(𝑛) ,

(A.1)

Moreover, 𝐸(𝑑󸀠
𝑖
𝑋) = 𝑑

󸀠

𝑖
𝑍, and then

𝑑
󸀠

𝑖
𝑋 = 𝑑

󸀠

𝑖
𝑍 + 𝑂

𝑝
(1) ,

𝑋
󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑋 = 𝑍

󸀠
𝑑
𝑖
𝑑
󸀠

𝑖
𝑍 + 𝑂

𝑝
(1) ,

𝑑
󸀠

𝑖
𝑋𝑋
󸀠
𝑑
𝑖
= 𝑑
󸀠

𝑖
𝑍𝑍
󸀠
𝑑
𝑖
+ 𝑂
𝑝
(1) ,

(A.2)

also, [𝐼 + 𝑂
𝑝
(𝑛
−1
)]
−1

= 𝐼 + 𝑂
𝑝
(𝑛
−1
) is obtained from Taylor

series expansion.
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[23] P. Giménez and M. L. Patat, “Local influence for functional
comparative calibration models with replicated data,” Statistical
Papers, vol. 55, pp. 431–454, 2014.

[24] K. Zare, A. Rasekh, and A. A. Rasekhi, “Estimation of variance
components in linear mixed measurement error models,” Sta-
tistical Papers, vol. 53, no. 4, pp. 849–863, 2012.

[25] K. Zare and A. Rasekh, “Diagnostic measures for linear mixed
measurement error models,” SORT, vol. 35, no. 2, pp. 125–144,
2011.

[26] D. R. Cox and D. V. Hinkley,Theoretical Statistics, Chapman &
Hall, London, UK, 1974.

[27] S. G. Self and K.-Y. Liang, “Asymptotic properties of maximum
likelihood estimators and likelihood ratio tests under nonstan-
dard conditions,” Journal of the American Statistical Association,
vol. 82, no. 398, pp. 605–610, 1987.

[28] K. Zare and A. Rasekh, “Residuals and leverages in the linear
mixed measurement error models,” Journal of Statistical Com-
putation and Simulation, vol. 84, no. 7, pp. 1427–1443, 2014.

[29] Y. Lee and N. A. Nelder, “Hierarchical generalized linear
models,” Journal of the Royal Statistical Society B, vol. 58, no.
4, pp. 619–678, 1996.


