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We study periodic solutions of second order Hamiltonian systems with even potential. By making use of generalized Nehari
manifold, some sufficient conditions are obtained to guarantee the multiplicity and minimality of periodic solutions for second
order Hamiltonian systems. Our results generalize the outcome in the literature.

1. Introduction

Denote by N,Z,R∗,R the sets of all natural numbers, inte-
gers, nonnegative real numbers, and real numbers, respec-
tively. For 𝑁 ∈ N, denote by R𝑁 the 𝑁-dimensional
Euclidean space with the usual inner product (⋅, ⋅) and norm
| ⋅ |.

Consider the second order Hamiltonian systems

�̈� + 𝐴𝑥 + 𝑉



(𝑥) = 0, ∀𝑥 ∈ R
𝑁

. (1)

Assume that

(A1) 𝐴 is a symmetric, negative semidefinite matrix;
(V1) 𝑉 ∈ 𝐶

1

(R𝑁,R) and 𝑉(𝑥) ≥ 0 for all 𝑥 ∈ R𝑁;
(V2) 𝑉(𝑥) = 𝑜(|𝑥|

2

) as 𝑥 → 0;
(V3) |𝑥|−2𝑉(𝑥) → +∞ as |𝑥| → ∞;
(V4) for any 𝑥 ∈ R𝑁 with |𝑥| = 1, 𝜆 → (1/𝜆)(𝑉



(𝜆𝑥), 𝑥)

is strictly increasing on (0,∞);
(V5) there exist 𝑠 > 2 and 𝑎

1
, 𝑎
2

> 0 such that |𝑉(𝑥)| ≤

𝑎
1
+ 𝑎
2
|𝑥|

𝑠;
(V6) 𝑉 is even; that is, 𝑉(−𝑥) = 𝑉(𝑥) for all 𝑥 ∈ R𝑁.

When 𝐴 = 0, in his pioneering work [1] of 1978,
Rabinowitz established the existence of periodic solutions

of (1) when 𝑉 satisfies (V1), (V2), and the well-known AR-
condition:

(V7)

∃𝜇 > 2, 𝑟
0
> 0 such that 0 < 𝜇𝑉 (𝑥) ≤ (𝑥, 𝑉



(𝑥)) ,

∀ |𝑥| ≥ 𝑟
0
.

(2)

He conjectured that (1) possesses a nonconstant solution with
any prescribed minimal period under the same assumptions.
Since then, many authors devoted themselves to the study of
periodic solutions with prescribed minimal period of (1).

When 𝐴 = 0, in 1993, Long (cf. [2]) proved the existence
of 𝑇-periodic solutions with minimal period 𝑇 or 𝑇/3 of (1)
under the assumptions that 𝑉 ∈ 𝐶

2

(R𝑁,R∗) satisfies (V2),
(V6), and (V7). Releasing assumption (V6), Long showed
that (1) possesses periodic solutions with minimal periodic
𝑇/𝑘 for some integer 𝑘 satisfying 1 ≤ 𝑘 ≤ 𝑛 + 2 (cf. [3]) or
1 ≤ 𝑘 ≤ 𝑛 + 1 (cf. [4]). In 2001, Fei et al. (cf. [5]) proved that
(1) has a nonconstant periodic solution with any prescribed
minimal period when 𝑉 ∈ 𝐶

2

(R𝑁,R∗) satisfies (V2), (V6),
and (V7), and 𝑉



(𝑥) is positive semidefinite.
When𝐴 is positive semidefinite,𝑉 ∈ 𝐶

2

(R𝑁,R∗) satisfies
(V2) and (V7); in 1997, Fei and Wang (cf. [6]) showed that
(1) possesses nonconstant 𝑇-periodic solutions with minimal
periodic 𝑇/𝑘 for some odd interger 𝑘 satisfying 1 ≤ 𝑘 ≤
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2(𝑖
𝑇
(𝐴) + V

𝑇
(𝐴)) + 3, where 𝑖

𝑇
(𝐴) = ∑

∞

𝑚=0
𝑀

−

(𝑇
𝑚
(𝐴)),

V
𝑇
(𝐴) = ∑

∞

𝑚=0
𝑀

0

(𝑇
𝑚
(𝐴)), and𝑇

𝑚
(𝐴) = (2𝜋𝑚/𝑇)

2

𝐼−𝐴. If𝑉
is even, replacing (V7) by (V3), and the following condition

∃𝛽 ∈ [0, 2] ,

𝑑 ≥ 0 such that 𝜇𝑉 (𝑥) − (𝑉



(𝑥) , 𝑥) ≤ 𝑑|𝑥|

𝛽

, ∀ |𝑥| ≥ 𝑟
0
,

(3)

Fei and Wang (cf. [7]) estimated that the minimal period is
not smaller than 𝑇/(𝑖

𝑇
(𝐴) + V

𝑇
(𝐴) + 2).

The above results on minimal period problem were
obtained by making use of index theory. Another method
being used to study such a problem is Nehari manifold. As
is well known, the Nehari manifold, introduced by Nehari
(cf. [8, 9]), has been used widely to study the existence of
ground state solutions of partial differential equations (cf.
[10–14]) and that of (1) (cf. [13, 15, 16]). A ground state
solution of a system is a solutionwhich possesses theminimal
energy of all solutions of the system. However, such kind of
solutions may not have prescribed minimal periods. In 1981,
Ambrosetti and Mancini made use of Nehari manifold to
study the existence of periodic solutions with any prescribed
minimal period of first order Hamiltonian systems with
convex potential (cf. [17]). In 2010, Xiao (cf. [18]) proved that
(1) possesses a periodic solution with any prescribedminimal
period and when 𝐴 = 0, 𝑉 satisfies (V6) and the following
assumption:

(V8)

𝑉 ∈ 𝐶

2

(R
𝑁

,R) , 0 < ] (𝑉 (𝑥) , 𝑥) ≤ (𝑉



(𝑥) 𝑥, 𝑥) ,

∀𝑥 ∈ R
𝑁

\ {0} ,

(4)

where ] > 1. For more results on this direction, we refer to
[19, 20].

Motivated by [13, 17, 18], in this paper, we consider the
multiplicity andminimality of periodic solutions of (1) under
the assumption (A1), (V1)–(V6). Our main result reads as
follows.

Theorem 1. Assume that (A1), (V1)–(V6) hold. Then, for any
𝑇 > 0, (1) possesses a periodic solution with minimal period 𝑇.

Corollary 2. If 𝐴 = 0 and 𝑉 satisfies (V6) and (V8), then,
for any 𝑇 > 0, (1) possesses a periodic solution with minimal
period 𝑇.

Theorem 3. Assume that (A1), (V1)–(V6) hold. Then, for
any 𝑇 > 0, (1) possesses infinitely many pairs of 𝑇-periodic
solutions.

The rest of this paper is divided into two parts. In
Section 2, we establish the variational functional and state
some useful lemmas. In Section 3, we introduce Nehari
Manifold and prove our main results.

2. Preliminary

Denote by 𝑆
𝑇
= R/(𝑇Z).𝐻 = 𝑊

1,2

(𝑆
𝑇
,R𝑁) is a Hilbert space

equipping with the usual norm and inner product

‖𝑥‖

2

𝐻
= ∫

𝑇

0

(|�̇�|

2

+ |𝑥|

2

) 𝑑𝑡,

⟨𝑥, 𝑦⟩

𝐻
= ∫

𝑇

0

[(�̇�, ̇𝑦) + (𝑥, 𝑦)] 𝑑𝑡.

(5)

Thevariational functional defined on𝐻, corresponding to (1),
is

𝜑 (𝑥) = ∫

𝑇

0

[

1

2

|�̇� (𝑡)|

2

−

1

2

(𝐴𝑥 (𝑡) , 𝑥 (𝑡)) − 𝑉 (𝑥 (𝑡)) ] 𝑑𝑡.

(6)

If (A1), (V1)–(V5) hold, then𝜑 is continuous differentiable on
𝐻 and

⟨𝜑



(𝑥) , 𝑦⟩

𝐻

= ∫

𝑇

0

[ (�̇� (𝑡) , ̇𝑦 (𝑡)) − (𝐴𝑥 (𝑡) , 𝑦 (𝑡))

− (𝑉



(𝑥 (𝑡)) , 𝑦 (𝑡))] 𝑑𝑡,

∀𝑥, 𝑦 ∈ 𝐻.

(7)

Moreover, 𝜙(𝑥) = ∫

𝑇

0

𝑉(𝑥(𝑡))𝑑𝑡 is weakly continuous and 𝜙



:

𝐻 → 𝐻

∗ is compact.
Define a subspace of𝐻 as follows:

𝐸 = {𝑥 ∈ 𝐻 | 𝑥 (−𝑡) = −𝑥 (𝑡)} . (8)

Then 𝐸 is a closed subspace of 𝐻. If 𝑥 ∈ 𝐸, it has a Fourier
expansion

𝑥 (𝑡) =

∞

∑

𝑛=1

𝑎
𝑛
sin 2𝜋𝑛𝑡

𝑇

. (9)

Obviously, 𝐸 ∩ R𝑁 = {0}. We can define an equivalent inner
product on 𝐸

⟨𝑥, 𝑦⟩

1
= ∫

𝑇

0

(�̇� (𝑡) , ̇𝑦 (𝑡)) 𝑑𝑡. (10)

Let us state a useful lemma and omit the proof. One can
find the details in [21].

Lemma 4. If 𝑥 is a critical point of 𝜑 on 𝐸, then 𝑥 is a critical
point of 𝜑 on𝐻.

Define an operator on 𝐸 by extending bilinear form

⟨𝐿𝑥, 𝑦⟩

1
= ∫

𝑇

0

[(�̇� (𝑡) , ̇𝑦 (𝑡)) − (𝐴𝑥 (𝑡) , 𝑦 (𝑡))] 𝑑𝑡. (11)

It is easy to verify that 𝐿 is a linear self-adjoint operator. Since
𝐴 is a negative semidefinite matrix, then 𝐿 has a sequence of
eigenvalues

0 < 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
≤ ⋅ ⋅ ⋅ (12)
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with 𝜆
𝑛

→ +∞ as 𝑛 → ∞. Thus for any 𝑥 ∈ 𝐸 \ {0},
⟨𝐿𝑥, 𝑥⟩

1
≥ 𝜆
1
‖𝑥‖

2

1
, where ‖ ⋅ ‖

1
denotes the norm induced

by ⟨⋅, ⋅⟩
1
. Define another equivalent inner product on 𝐸

⟨𝑥, 𝑦⟩ = ⟨𝐿𝑥, 𝑦⟩

1
. (13)

Then, for all 𝑥 ∈ 𝐸, there exist 𝐶
1
, 𝐶
2
> 0 such that 𝐶

1
‖𝑥‖ ≤

‖𝑥‖
1
≤ 𝐶
2
‖𝑥‖, where ‖ ⋅ ‖ denotes the norm induced by ⟨⋅, ⋅⟩.

Functional (6) can be rewritten as

𝜑 (𝑥) =

1

2

‖𝑥‖

2

− ∫

𝑇

0

𝑉 (𝑥 (𝑡)) 𝑑𝑡. (14)

In the end of this section, we introduce two useful
lemmas.

Lemma 5 (see [22]). If 𝑥 ∈ 𝐻 and ∫

𝑇

0

𝑥(𝑡)𝑑𝑡 = 0, then

∫

𝑇

0

|𝑥 (𝑡)|

2

𝑑𝑡 ≤

𝑇

2

4𝜋

2

∫

𝑇

0

|�̇� (𝑡)|

2

𝑑𝑡,

‖𝑥‖

2

∞
≤

𝑇

12

∫

𝑇

0

|�̇�|

2

𝑑𝑡,

(15)

where ‖ ⋅ ‖
∞

= max
𝑡∈[0,𝑇]

|𝑥(𝑡)|.

If 𝑥 ∈ 𝐸, ∫𝑇
0

𝑥(𝑡)𝑑𝑡 = 0. Thus elements of 𝐸 satisfy the
above two inequalities.

Let𝑋 be a Banach space such that the unit sphere 𝑆1 in𝑋

is a submanifold of class (at least) 𝐶1 and let 𝐽 ∈ 𝐶

1

(𝑆

1

,R). A
sequence {𝑥

𝑛
} ⊂ 𝑆

1 is called (𝑃𝑆) sequence for 𝐽 if it satisfies
{𝐽(𝑥
𝑛
)} is bounded and 𝐽



(𝑥
𝑛
) → 0 as 𝑛 → ∞. We say that

𝐽 satisfies the (𝑃𝑆) condition if every (𝑃𝑆) sequence contains
a convergent subsequence.

Lemma 6 (see [13]). If 𝑋 is infinite-dimensional and 𝐽 ∈

𝐶

1

(𝑆

1

,R) is bounded below and satisfies the (𝑃𝑆) condition on
𝑆

1, then 𝐽 has infinitely many pairs of critical points.

3. Proofs of the Main Results

Denote by ℎ(𝑥) = ⟨𝜑



(𝑥), 𝑥⟩. We define the Nehari manifold

M = {𝑥 ∈ 𝐸 \ {0} | ℎ (𝑥) = 0} . (16)

Denote by 𝑆 = {𝑥 ∈ 𝐸 | ‖𝑥‖ = 1}. Fixing 𝑥 ∈ 𝑆, define
𝑔
𝑥
(𝑟) = 𝜑(𝑟𝑥) for 𝑟 ∈ (0,∞). On the one hand, if 𝑥 ∈ M,

then 𝑦 = 𝑥/‖𝑥‖ ∈ 𝑆 and

𝑔



𝑦
(‖𝑥‖) = ⟨𝜑



(‖𝑥‖ 𝑦) , 𝑦⟩

=

⟨𝜑



(𝑥) , 𝑥⟩

‖𝑥‖

=

ℎ (𝑥)

‖𝑥‖

= 0.

(17)

On the other hand, if 𝑔
𝑥
(𝑟) = 0, then

ℎ (𝑟𝑥) = ⟨𝜑



(𝑟𝑥) , 𝑟𝑥⟩ = 𝑟 ⟨𝜑



(𝑟𝑥) , 𝑥⟩

= 𝑟𝑔



𝑥
(𝑟) = 0.

(18)

Thus, for any 𝑥 ∈ 𝑆, 𝑔
𝑥
(𝑟) = 0 if and only if 𝑟𝑥 ∈ M. The

following lemma shows thatM ̸= 0.

Lemma 7. For any 𝑥 ∈ 𝑆, there exists a unique 𝑟
0
dependent

on 𝑥 such that
𝑔
𝑥
(𝑟
0
) = sup
𝑟∈R∗

𝑔
𝑥
(𝑟) . (19)

Proof. By the definition of 𝑔
𝑥
, we have

𝑔
𝑥
(𝑟) = 𝜑 (𝑟𝑥) =

1

2

𝑟

2

− ∫

𝑇

0

𝑉 (𝑟𝑥 (𝑡)) 𝑑𝑡. (20)

By (V2), for any 𝜖 > 0, there exists 𝛿
𝜖
> 0 such that𝑉(𝑥) ≤

𝜖|𝑥|

2 for |𝑥| ≤ 𝛿
𝜖
. If 𝑥 ∈ 𝑆, then Lemma 5 implies that ‖𝑥‖

𝐿
∞ ≤

√𝑇/12𝐶
2
and |𝑥(𝑡)| ≤ √𝑇/12𝐶

2
for 𝑡 ∈ [0, 𝑇]. Fixing 𝜖

1
<

3/(𝑇

2

𝐶

2

2
), there exists 𝑟

1
= 𝛿
𝜖
1

/(√𝑇/12𝐶
2
) such that for all

𝑥 ∈ 𝑆 and 0 < 𝑟 < 𝑟
1

𝜑 (𝑟𝑥) =

1

2

𝑟

2

− ∫

𝑇

0

𝑉 (𝑟𝑥 (𝑡)) 𝑑𝑡

≥

1

2

𝑟

2

− 𝜖
1
𝑟

2

∫

𝑇

0

|𝑥|

2

𝑑𝑡 >

𝑟

2

4

.

(21)

Let𝛼
0
= 1/𝑇∫

𝑇

0

|𝑥(𝑡)|𝑑𝑡.Then𝛼
0
> 0. For any 0 < 𝛼 < 𝛼

0
,

denote
𝐴
𝛼
= {𝑡 ∈ [0, 𝑇] | |𝑥 (𝑡)| ≥ 𝛼} . (22)

Thenmeas(𝐴
𝛼
) > 0, wheremeas(𝐴

𝛼
) denotes themeasure of

𝐴
𝛼
. Thus (V1) and (V3) yield that

𝑔
𝑥
(𝑟)

𝑟

2

=

1

2

− ∫

𝑇

0

𝑉 (𝑟𝑥 (𝑡))

𝑟

2

𝑑𝑡

≤

1

2

− ∫

𝐴
𝛼

𝑉 (𝑟𝑥 (𝑡))

|𝑟𝑥 (𝑡)|

2
|𝑥 (𝑡)|

2

𝑑𝑡 → −∞,

as 𝑟 → ∞.

(23)

Consequently, there exists 𝑟
2
> 0 dependent on 𝑥 such that

𝑔
𝑥
(𝑟) < 0 for 𝑟 ≥ 𝑟

2
. By the mean value theorem, there exists

𝑟
0
> 0 dependent on 𝑥 such that 𝑔

𝑥
(𝑟
0
) = sup

𝑟∈R∗𝑔𝑥(𝑟) and
𝑔



𝑥
(𝑟
0
) = 0.

By the definition, 𝑔
𝑥
is continuous differentiable on

(0, +∞). Differentiating 𝑔
𝑥
, we have

𝑔



𝑥
(𝑟)

𝑟

= 1 −

1

𝑟

∫

𝑇

0

(𝑉



(𝑟𝑥) , 𝑥) 𝑑𝑡

= 1 − ∫

𝑇

0

|𝑥|

2

(

1

𝑟 |𝑥|

𝑉



(𝑟 |𝑥| 𝑦) , 𝑦) 𝑑𝑡,

(24)

where 𝑦 = 𝑥/|𝑥|. Because of (V4), 𝑔



𝑥
(𝑟)/𝑟 is strictly

decreasing on (0, +∞). Thus 𝑔



𝑥
(𝑟)/𝑟 and hence 𝑔



𝑥
(𝑟) has

a unique zero point on (0, +∞). It follows that 𝑔
𝑥
(𝑟) has a

unique critical point, which is a maximum.

Remark 8. Fixing 𝑥 ∈ 𝐸 \ {0}, then 𝑥/‖𝑥‖ ∈ 𝑆.
Obviously, 𝜑(𝑟𝑥) = 𝜑(𝑟‖𝑥‖ ⋅ 𝑥/‖𝑥‖) and sup

𝑟∈R∗ 𝜑(𝑟𝑥) =

sup
𝑟∈R∗ 𝜑(𝑟𝑥/‖𝑥‖). If we extend the definition of 𝑔𝑥 to 𝐸\{0},

then Lemma 7 implies that there exists a unique 𝑟
𝑥
> 0 such

that 𝑔
𝑥
(𝑟
𝑥
) = sup

𝑟∈R∗ 𝜑(𝑟𝑥). Also, 𝑔


𝑥
(𝑟) > 0 for 0 < 𝑟 < 𝑟

𝑥

and 𝑔



𝑥
(𝑟) < 0 for 𝑟 > 𝑟

𝑥
.

Now, we study the properties of 𝜑 restricted onM.
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Lemma 9. Consider the following:
𝑐
0
= inf
𝑥∈M 𝜑(𝑥) > 0.

Proof. For any 𝑥 ∈ M, both Lemma 7 and Remark 8 imply
that𝜑(𝑥) = sup

𝑟∈R∗ 𝜑(𝑟𝑥) > 𝑟

2

1
/16. Hence 𝑐

0
= inf
𝑥∈M 𝜑(𝑥) ≥

𝑟

2

1
/16 > 0.

Lemma 10. 𝜑 satisfies the (𝑃𝑆) condition onM.

Proof. Assume that {𝑥
𝑛
} ⊂ M is a (𝑃𝑆) sequence of 𝜑. Then

there exists 𝑑 ≥ 0 such that 𝜑(𝑥
𝑛
) ≤ 𝑑 and 𝜑



(𝑥
𝑛
) → 0

as 𝑛 → ∞. We show that {𝑥
𝑛
} is bounded. Suppose, to the

opposite, that ‖𝑥
𝑛
‖ → ∞ as 𝑛 → ∞. Set 𝑦

𝑛
= 𝑥
𝑛
/‖𝑥
𝑛
‖.

Then {𝑦
𝑛
} ⊂ 𝑆. Passing to a subsequence, 𝑦

𝑛
⇀ 𝑦
0
. If 𝑦
0
= 0,

then 𝑦
𝑛
(𝑡) ⇒ 0 uniformly for 𝑡 ∈ [0, 𝑇]. Hence, for any 𝑟 > 0,

we have

𝑑 ≥ 𝜑 (𝑥
𝑛
) = 𝜑 (






𝑥
𝑛






𝑦
𝑛
) ≥ 𝜑 (𝑟𝑦

𝑛
)

=

1

2

𝑟

2

− ∫

𝑇

0

𝑉 (𝑟𝑦
𝑛
(𝑡)) 𝑑𝑡 →

1

2

𝑟

2

.

(25)

This is a contradiction if 𝑟 >
√
2𝑑. So 𝑦

0
̸= 0. Arguing

similarly to [23], there exist 𝛿
1
> 0, 𝛿

2
> 0 such that

meas ({𝑡 ∈ [0, 𝑇] |






𝑦
0
(𝑡)






≥ 𝛿
1
}) ≥ 𝛿

2
. (26)

Denote 𝐴 = {𝑡 ∈ [0, 𝑇] | |𝑦
0
(𝑡)| ≥ 𝛿

1
}. But (V3) implies that

0 ≤

𝜑 (𝑥
𝑛
)






𝑥
𝑛






2

≤

1

2

− ∫

𝐴

𝑉 (






𝑥
𝑛






𝑦
𝑛
)






𝑥
𝑛






2




𝑦
𝑛






2






𝑦
𝑛






2

𝑑𝑡 → −∞, as 𝑛 → ∞.

(27)

This is a contradiction. Hence {‖𝑥
𝑛
‖} is bounded. Since 𝜙



is compact, passing to a subsequence, {𝜙



(𝑥
𝑛
)} converges

strongly. Since 𝑥
𝑛

= 𝜑



(𝑥
𝑛
) + 𝜙



(𝑥
𝑛
), then {𝑥

𝑛
} contains a

convergent subsequence.

Define the maps as follows:

�̂� : 𝐸 \ {0} → M, �̂� (𝑥) = 𝑟
𝑥
𝑥,

𝑚 = �̂�|
𝑆
: 𝑆 → M, 𝑚 = 𝑚|

𝑆
,

̂
Ψ : 𝐸 \ {0} → R,

̂
Ψ (𝑥) = 𝜑 (�̂� (𝑥)) ,

Ψ : 𝑆 → R, Ψ =
̂
Ψ|
𝑆
,

(28)

where 𝑟
𝑥
is defined on Remark 8.

Lemma 11. Assume that (V1)–(V4) hold. Then the following
statements hold:

(B1) there exists a normalization function 𝜑 such that

𝑢 → 𝜓 (𝑢) := ∫

‖𝑢‖

0

𝜑 (𝑡) 𝑑𝑡 ∈ 𝐶

1

(𝐸 \ {0} ,R) ; (29)

𝐽 := 𝜓

 is bounded on bounded sets and 𝐽(𝑤)𝑤 = 1 for
all 𝑤 ∈ 𝑆;

(B2) for each𝑤 ∈ 𝐸\ {0} there exists 𝑠
𝑤
such that if 𝛼

𝑤
(𝑠) :=

Φ(𝑠𝑤), then 𝛼



𝑤
(𝑠) > 0 for 0 < 𝑠 < 𝑠

𝑤
and 𝛼



𝑤
(𝑠) < 0

for 𝑠 > 𝑠
𝑤
;

(B3) there exists 𝛿 > 0 such that 𝑠
𝑤
≥ 𝛿 for all𝑤 ∈ 𝑆 and for

each compact subset 𝑊 ⊂ 𝑆 there exists a constant 𝐶
𝑊

such that 𝑠
𝑤
≤ 𝐶
𝑆
for all 𝑤 ∈ 𝑊.

Proof. It follows from the discussion in [13] and Remark 8
that (B1), (B2) hold, and 𝑟

𝑥
≥ 𝑟
1
/2 for all 𝑥 ∈ 𝑆. Next, we show

that the last part of (B3) holds. Arguing by contradiction,
we suppose that there exists a compact subset 𝑊 ∈ 𝑆 and a
sequence {𝑟

𝑥
𝑛

𝑥
𝑛
} ⊂ M, where {𝑥

𝑛
} ⊂ 𝑊 and {𝑟

𝑥
𝑛

} ⊂ R∗ \ {0},
such that 𝑟

𝑥
𝑛

→ ∞ as 𝑛 → ∞. Since 𝑊 is compact and
𝑥
𝑛
∈ 𝑊, passing to a subsequence, 𝑥

𝑛
→ 𝑥
0
∈ 𝑆. Since the

embedding of𝐻 into𝐶(𝑆
𝑇
, 𝑅

𝑁

) is compact and 𝑥
𝑛
∈ 𝑊, then

𝑥
𝑛
(𝑡) ⇒ 𝑥

0
(𝑡) uniformly for 𝑡 ∈ [0, 𝑇]. Denote by 𝐴

𝑥
0

= {𝑡 ∈

[0, 𝑇] | |𝑥
0
(𝑡)| ≥ 1/𝑇 ∫

𝑇

0

|𝑥
0
(𝑡)|𝑑𝑡}. Since 𝑟

𝑥
𝑛

|𝑥
𝑛
(𝑡)| → ∞, if

𝑡 ∈ 𝐴
𝑥
0

, then Fatou’s lemma yields

𝜙 (𝑟
𝑥
𝑛

𝑥
𝑛
)

𝑟

2

𝑥
𝑛

≥ ∫

𝐴
𝑥
0

𝑉(𝑟
𝑥
𝑛

𝑥
𝑛
(𝑡))

𝑟

2

𝑥
𝑛






𝑥
𝑛
(𝑡)






2






𝑥
𝑛
(𝑡)






2

𝑑𝑡 → ∞,

as 𝑛 → ∞.

(30)

Thus𝜑(𝑟
𝑥
𝑛

𝑥
𝑛
) = 1/2𝑟

2

𝑥
𝑛

−𝜙(𝑟
𝑥
𝑛

𝑥
𝑛
) → −∞, which contradicts

with the fact that 𝜑(𝑟
𝑥
𝑛

𝑥
𝑛
) > 𝑟

2

1
/16 > 0. Consequently, there

exists 𝐶
𝑊

> 0 such that 𝑟
𝑥

≤ 𝐶
𝑊

for all 𝑥 ∈ 𝑊 and (B3)
holds.

Lemma 12 (see [13]). The mapping �̂� is continuous and 𝑚 is
a homeomorphism between 𝑆 andM.

Lemma 13 (see [13]). Consider the following.

(1) ̂
Ψ,Ψ ∈ 𝐶

1

(𝑆,R) and

⟨
̂
Ψ



(𝑥) , 𝑦⟩ =

‖�̂� (𝑥)‖

‖𝑥‖

⟨Ψ



(�̂� (𝑥)) , 𝑦⟩ ,

∀𝑥, 𝑦 ∈ 𝐸, 𝑥 ̸= 0,

⟨Ψ



(𝑥) , 𝑦⟩ = ‖𝑚 (𝑥)‖ ⟨Ψ



(𝑚 (𝑥)) , 𝑦⟩ ,

∀𝑦 ∈ 𝑇
𝑥
(𝑆) ,

(31)

where 𝑇
𝑥
(𝑆) = {𝑦 ∈ 𝐸 | ⟨𝜑(𝑥), 𝑦⟩ = 0} is the tangent

space of 𝑆 at 𝑥.
(2) If {𝑥

𝑛
} is a (PS) sequence for Ψ, then {𝑚(𝑥

𝑛
)} is a (PS)

sequence for 𝜑. If {𝑥
𝑛
} ⊂ M is a bounded (PS) sequence

for 𝜑, then {𝑚

−1

(𝑥
𝑛
)} is a (PS) sequence for Ψ.

(3) 𝑥 is a critical point of Ψ if and only if 𝑚(𝑥) is a non-
trivial critical point of 𝜑. Moreover, the corresponding
values of Ψ and 𝜑 coincide and inf

𝑆
Ψ = infM 𝜑.

(4) If 𝜑 is even, then so is Ψ.

Lemma 14. If 𝜑 satisfies the (𝑃𝑆) condition, so does Ψ.

Proof. Assume that {𝑥
𝑛
} is a (𝑃𝑆) sequence for Ψ. According

to Lemma 13, {𝑚(𝑥
𝑛
)} ⊂ M is a (𝑃𝑆) sequence for 𝜑. Since
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𝜑 satisfies the (𝑃𝑆) condition, passing to a subsequence,
𝑚(𝑥
𝑛
) → 𝑦. Thus {𝑥

𝑛
} contains a convergent subsequence,

which converges to 𝑚

−1

(𝑦). Hence Ψ satisfies the (𝑃𝑆)

condition.

Proof of Theorem 1. According to Lemmas 9 and 13,
inf
𝑥∈𝑆

Ψ(𝑥) = inf
𝑥∈M 𝜑(𝑥) = 𝑐

0
. Let {𝑦

𝑛
} be a minimizing

sequence for Ψ restricted to 𝑆. By Ekeland’s variational
principle, we may assume that Ψ(𝑦

𝑛
) → 0 as 𝑛 → ∞.

The (𝑃𝑆) condition implies that {𝑦
𝑛
} contains a converging

subsequence, whose limit is denoted by 𝑦
0
. Thus 𝑦

0
is a

critical point ofΨ. According to Lemma 13 again, 𝑥
0
= 𝑚(𝑦

0
)

is a critical point of 𝜑, which is also a nonconstant𝑇-periodic
solution of (1).

Claim. 𝑥
0
has minimal period 𝑇.

Suppose, to the opposite, that 𝑥
0
hasminimal period𝑇/𝑘,

where 𝑘 ≥ 2 is an integer. Let 𝑦
0
(𝑡) = 𝑥

0
(𝑡/𝑘). Obviously,

𝑦
0
∈ 𝐸. It follows from Lemma 7 that there exists 𝑟 > 0 such

that 𝑟𝑦
0
∈ M. It follows that

inf
𝑥∈M

𝜑 (𝑥) ≤ 𝜑 (𝑟𝑦
0
)

= ∫

𝑇

0

[

1

2






𝑟 ̇𝑦
0
(𝑡)






2

− 𝑉 (𝑟𝑦
0
(𝑡))] 𝑑𝑡

= ∫

𝑇

0

[

1

2𝑘

2









𝑟�̇�
0
(

𝑡

𝑘

)









2

− 𝑉(𝑟𝑥
0
(

𝑡

𝑘

))] 𝑑𝑡

= ∫

𝑇

0

[

1

2𝑘

2






𝑟�̇�
0
(𝜏)






2

− 𝑉 (𝑟𝑥
0
(𝜏))] 𝑑𝜏

< ∫

𝑇

0

[

1

2






𝑟�̇�
0
(𝜏)






2

− 𝑉 (𝑟𝑥
0
(𝜏))] 𝑑𝜏

= 𝜑 (𝑟𝑥
0
) ≤ 𝜑 (𝑥

0
) = inf
𝑥∈M

𝜑 (𝑥) ,

(32)

which is a contradiction.Hence𝑥
0
hasminimal period𝑇.

Proof of Corollary 2. For 𝑥 ∈ R𝑁 with |𝑥| = 1, set 𝑎(𝜆) =

𝜆

−1

(𝑉



(𝜆𝑥), 𝑥). Then (V8) implies that

𝑎



(𝜆) =

1

𝜆

3

[(𝑉



(𝜆𝑥) 𝜆𝑥, 𝜆𝑥)

− (𝑉



(𝜆𝑥) , 𝜆𝑥)] > 0;

(33)

that is, 𝑎(𝜆) is increasing strictly on (0, +∞). Thus (V4) is
satisfied. It is easy to check that 𝑉 satisfies (V1)–(V3) when
(V8) is available.

Without assumption (V5), 𝜑 may not be continuous dif-
ferentiable on𝐻. However, we canuse themethod introduced
in [1] to handle such a situation. Let 𝐾 > 1 and 𝜒 ∈

𝐶

∞

(R+,R+) such that 𝜒(𝑠) = 1 if 𝑠 ≤ 𝐾, 𝜒(𝑠) = 0 if 𝑠 ≥ 𝐾+1,
and 𝜒



(𝑠) < 0 if 𝑠 ∈ (𝐾,𝐾 + 1). Set

𝑉
𝐾
(𝑥) = 𝜒 (|𝑥|) 𝑉 (𝑥) + [1 − 𝜒 (|𝑥|)] 𝜌 (𝐾) |𝑥|

4

, (34)

where 𝜌(𝐾) ≥ max
𝐾≤|𝑥|≤𝐾+1

(𝑉(𝑥)/|𝑥|

4

). Since 𝑉 satisfies
(V8), it follows from Lemma 2.3 in [18] that

0 < (] + 1)𝑉 (𝑥) ≤ (𝑉



(𝑥) , 𝑥) ,

∀𝑥 ∈ R
𝑁

\ {0} .

(35)

Arguing similarly to Lemma 2.9 in [1], we have

0 < 𝜆𝑉
𝐾
(𝑥) ≤ (𝑉



𝐾
(𝑥) , 𝑥) , ∀𝑥 ∈ R

𝑁

\ {0} , (36)

where 𝜆 = min{] + 1, 4} > 2. Let 𝑎
3

= min
|𝑥|=1

𝑉
𝑘
(𝑥) and

𝑎
4
= max

|𝑥|=1
𝑉
𝑘
(𝑥). Since 𝐾 > 1, then 𝑎

3
= min

|𝑥|=1
𝑉(𝑥) > 0

and 𝑎
4
= max

|𝑥|=1
𝑉(𝑥) > 0. Obviously, 𝑎

3
, 𝑎
4
are independent

of𝐾. Arguing similarly to Lemma4.1 of [22], we can prove the
following inequality:

𝑉
𝐾
(𝑥) ≥ 𝑎

3
|𝑥|

𝜆

− 𝑎
4
, ∀𝑥 ∈ R

𝑁

. (37)

Hence 𝑉
𝐾
satisfies (V1)–(V6).

Consider the disturbed second order Hamiltonian sys-
tems

�̈� + 𝑉



𝐾
(𝑥) = 0, (38)

whose variational function is

𝜑
𝐾
(𝑥) = ∫

𝑇

0

[

1

2

|�̇� (𝑡)|

2

− 𝑉
𝐾
(𝑥 (𝑡))] 𝑑𝑡. (39)

Since 𝑉
𝐾
satisfies (V1)–(V6), applying Theorem 1, (38) pos-

sesses a periodic solution 𝑥
𝐾
with minimal period 𝑇.

Claim. There exists 𝐾
0

> 0 independent of 𝐾 such that
‖𝑥
𝐾
‖
𝐿
∞ < 𝐾

0
.

Let 𝑥
1
(𝑡) = 𝑏

1
√𝑇/(2𝜋

2
) sin(2𝜋𝑡/𝑇) ∈ 𝐸 with 𝑏

1
=

(1, 0, . . . , 0)



∈ R𝑁, where () denotes the transposition of a
vector. Computing directly, we have






𝑥
1






2

=






𝑥
1






2

1
= 1,






𝑥
1






2

𝐿
2 =

𝑇

2

4𝜋

2

.
(40)

So 𝑥
1
∈ 𝑆. It follows from (37) that

𝜑
𝐾
(𝑟𝑥
1
) =

1

2

𝑟

2

− ∫

𝑇

0

𝑉
𝐾
(𝑟𝑥
1
) 𝑑𝑡

≤

1

2

𝑟

2

− 𝑎
3
𝑟

𝜆




𝑥
1






𝜆

𝐿
𝜆

+ 𝑎
4
𝑇

≤

1

2

𝑟

2

− 𝑎
3
𝑀

𝜆

1
𝑟

𝜆




𝑥
1






𝜆

𝐿
2 + 𝑎
4
𝑇

≤

1

2

𝑟

2

− 𝑎
3
𝑀

𝜆

1
𝑟

𝜆
𝑇

𝜆

(2𝜋)

𝜆

+ 𝑎
4
𝑇 = ℎ (𝑟) ,

(41)

where 𝑀
1
denotes the constant such that ‖𝑥‖

𝐿
𝜆 ≥ 𝑀

1
‖𝑥‖
𝐿
2 .

Since 𝜆 > 2, ℎ(𝑟) → −∞ as 𝑟 → +∞. Then there exists
𝑀
2
> 0 independent of𝐾 such that ℎ(𝑟) ≤ 𝑀

2
. Thus

𝑐
𝐾

= inf
𝑥∈M

𝜑
𝐾
(𝑥) = inf

𝑥∈𝑆

max
𝑟∈R∗

𝜑
𝐾
(𝑟𝑥)

≤ max
𝑟∈R∗

𝜑
𝐾
(𝑟𝑥
1
) ≤ max
𝑟∈R∗

ℎ (𝑟) ≤ 𝑀
2
.

(42)
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Hence

𝑀
2
≥ 𝑐
𝐾

= 𝜑
𝐾
(𝑥
𝐾
)

= ∫

𝑇

0

[

1

2

(𝑉



𝐾
(𝑥
𝐾
) , 𝑥
𝐾
) − 𝑉
𝐾
(𝑥
𝐾
)] 𝑑𝑡

≥

𝜆 − 2

2

∫

𝑇

0

𝑉
𝐾
(𝑥
𝐾
) 𝑑𝑡.

(43)

Consequently, we have

𝑐

−2

∞
‖𝑥‖

2

𝐿
∞ ≤ ‖𝑥‖

2

= 2𝜑
𝐾
(𝑥
𝐾
)

+ 2∫

𝑇

0

𝑉
𝐾
(𝑥
𝐾
) 𝑑𝑡 ≤

2𝜆

𝜆 − 2

𝑀
2
.

(44)

It follows that there exists𝐾
0
> 0 independent of𝐾 such that

‖𝑥
𝐾
‖
𝐿
∞ ≤ 𝐾

0
. If 𝐾 > 𝐾

0
, by the definition of 𝑉

𝐾
, 𝑉
𝐾

= 𝑉

and hence 𝑥
𝐾
is a nonconstant𝑇-periodic solution of (1) with

𝐴 = 0.

Proof of Theorem 3. Since 𝑉 is even, so do 𝜑 and Ψ. Since
inf
𝑥∈𝑆

Ψ(𝑥) = 𝑐
0
> 0 and Ψ satisfies the (𝑃𝑆) condition, then

Lemma 6 yields that Ψ has infinitely many pairs of critical
points. According to Lemma 13, 𝜑 has infinitelymany pairs of
critical points. Thus (1) has infinitely many pairs of periodic
solutions.

Example 15. Let 𝐴 = 0 and let 𝑉 be

𝑉 (𝑥) = |𝑥|

2

[ln (1 + |𝑥|

2

)]

2

. (45)

It is easy to check that 𝑉 does not satisfy (V8) or even (V7)
(cf. [23]). However,𝑉 satisfies (V1)–(V6). ApplyingTheorems
1 and 3, for any 𝑇 > 0, (1) possesses infinitely many pairs of
𝑇-periodic solutions and has at least one solution with 𝑇 as
its minimal period.
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