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Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane
projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their
global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be
applied to solve large-scale nonsmooth equations.

1. Introduction

Consider the constrained monotone equations

𝐹 (𝑥) = 0, 𝑥 ∈ Ω, (1)

where 𝐹 : 𝑅𝑛 → 𝑅
𝑛 is continuous and satisfies the following

monotonicity:

(𝐹 (𝑥) − 𝐹 (𝑦))
𝑇

(𝑥 − 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ Ω, (2)

and Ω ⊂ 𝑅
𝑛 is a nonempty closed convex set. Under these

conditions, the solution set 𝑋∗ of problem (1) is convex [1].
This problem has many applications, such as the power flow
equation [2, 3] and some variational inequality problems
which can be converted into (1) by means of fixed point maps
or normal maps if the underlying function satisfies some
coercive conditions [4].

In recent years, the study of the iterative methods to
solve problem (1) with Ω = 𝑅

𝑛 has received much attention.
The pioneer work was introduced by Solodov and Svaiter
in [5], where the proposed method was called inexact New-
ton method which combines elements of Newton method,
proximal point method, and projection strategy and required
that 𝐹 is differentiable. Its convergence was proven without
any regularity assumptions. And a further study about its
convergence properties was given by Zhou and Toh [6].
Then utilizing the projection strategy in [5], Zhou and Li

extended the BFGS methods [7] and the limited memory
BFGS methods [8] to solve problem (1) with Ω = 𝑅

𝑛.
A significant improvement is that these methods converge
globally without requiring the differentiability of 𝐹.

Conjugate gradient methods are another class of numer-
ical methods [9–15] after spectral gradient methods [16–18]
extended to solve problem (1), and the study of this aspect
is just catching up. As is well known, conjugate gradient
methods are very efficient to solve large-scale unconstrained
nonlinear optimization problem

min𝑓 (𝑥) , 𝑥 ∈ 𝑅
𝑛

, (3)

where𝑓 is smooth, due to their simple iterations and their low
memory requirements. In [19], they were divided into three
categories, that is, early conjugate gradient methods, descent
conjugate gradient methods, and sufficient descent conjugate
gradient methods. Early conjugate gradient methods rarely
ensure a (sufficient) descent condition

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −𝑐

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

, ∀𝑘 ≥ 0, 𝑐 > 0, (4)

where 𝑔
𝑘

= 𝑔(𝑥
𝑘
) is the gradient of 𝑓 at 𝑥

𝑘
(the 𝑘th

iteration) and 𝑑
𝑘
is a search direction, while the later two

categories always satisfy the descent property. One well-
known sufficient descent conjugate gradientmethod, namely,
CG DESCENT, was presented by Hager and Zhang [20, 21]
and satisfied the sufficient descent condition (4) with 𝑐 = 7/8.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 305643, 12 pages
http://dx.doi.org/10.1155/2014/305643

http://dx.doi.org/10.1155/2014/305643


2 Abstract and Applied Analysis

Inspired by Hager and Zhang’s work, a unified framework
of some sufficient descent conjugate gradient methods was
presented in [19, 22]. And by the use of Gram-Schmidt
orthogonalization, the other unified framework of some
sufficient descent conjugate gradient methods was presented
in [23].

Although conjugate gradient methods have been inves-
tigated extensively for solving unconstrained optimization
problems, the study of them to solve nonlinear monotone
equations is relatively rare. For the unconstrained case of
monotone equations, Cheng [10] first introduced a PRP
type method which is a combination of the well-known
PRP conjugate gradient method [24, 25] and the hyperplane
projection method [5]. Then some derivative-free methods
were presented [11–13] which also belong to the conjugate
gradient scheme. More recently, Xiao and Zhu [9] presented
a modified version of the CG DESCENTmethod to solve the
constrained nonlinearmonotone equations. And under some
mild conditions, they proved that their proposed method
is globally convergent. We have mentioned that there are
two unified frameworks of some sufficient descent conjugate
gradientmethods, and theCG DESCENTmethod belongs to
one unified framework. Since theCG DESCENTmethod can
be used to solve the constrained monotone equations, then,
it is natural for us to think about the two unified frameworks.
So, in this paper, we extend the conjugate gradient methods
who belong to the two unified frameworks to solve the
constrained monotone equations and do some numerical
experiments to test their efficiency.

The rest of this paper is organized as follows. In Section 2,
themotivation to investigate two unified frameworks of some
sufficient descent conjugate gradient methods is given. Then
these methods are developed to solve problem (1) and are
described by a model algorithm. In Section 3, we prove the
global convergence of the model algorithm under some mild
conditions. In Section 4, we give several specific versions of
the model algorithm, test them over some test problems,
and compare their numerical performance with that of the
conjugate gradient method proposed in [9]. Finally, some
conclusions are given in Section 5.

2. Motivation and Algorithms

In this section, we simply describe the hyperplane projection
method of Solodov and Svaiter and introduce two classes
of sufficient descent conjugate gradient methods for solving
large-scale unconstrained optimization problems. Combined
with the hyperplane projection method, we extend sufficient
descent conjugate gradient methods to solve large-scale
constrained nonlinear equations (1).

For convenience, we first give the definition of projection
operator 𝑃

Ω
(⋅) which is defined as a mapping from 𝑅

𝑛 to its a
nonempty closed convex subsetΩ:

𝑃
Ω
(𝑥) = argmin {󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 | 𝑦 ∈ Ω} , ∀𝑥 ∈ 𝑅
𝑛

. (5)

And its two fundamental properties are
󵄩󵄩󵄩󵄩𝑃Ω (𝑥) − 𝑃Ω (𝑦)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑅
𝑛

, (6)

(𝑥 − 𝑃
Ω
(𝑥))
𝑇

(𝑦 − 𝑃
Ω
(𝑥)) ≤ 0, ∀𝑥 ∈ 𝑅

𝑛

, 𝑦 ∈ Ω. (7)

Now, we recall the hyperplane projection method in [5]
for the unconstrained case of problem (1). Let 𝑥

𝑘
(𝑘 ≥ 0) be

the current iteration and 𝑧
𝑘
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, where 𝛼

𝑘
is a step

length obtained by means of a one-dimensional line search
and 𝑑
𝑘
is a search direction. If 𝑥

𝑘
is not a solution and satisfies

(𝑥
𝑘
− 𝑧
𝑘
)
𝑇

𝐹 (𝑧
𝑘
) > 0, (8)

then the hyperplane

𝐻
𝑘
= {𝑥 ∈ 𝑅

𝑛

| (𝑥 − 𝑧
𝑘
)
𝑇

𝐹 (𝑧
𝑘
) = 0} (9)

strictly separates the current iteration𝑥
𝑘
from the solution set

of problem (1). By the property (7) of the projection operator,
it is not difficult to verify that

𝑃
𝐻𝑘
(𝑥
𝑘
) = 𝑥
𝑘
−
(𝑥
𝑘
− 𝑧
𝑘
)
𝑇

𝐹 (𝑧
𝑘
)

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝐹 (𝑧
𝑘
) (10)

is closer to the solution set than the iteration𝑥
𝑘
.Then the next

iteration is generated by 𝑥
𝑘+1

= 𝑃
𝐻𝑘
(𝑥
𝑘
).

We consider the iterative scheme of conjugate gradient
methods for solving the unconstrained optimization problem
(3). For any given starting point 𝑥

0
∈ 𝑅
𝑛, a sequence {𝑥

𝑘
} is

generated by the following recursive relation:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (11)

where 𝛼
𝑘
is a steplength and 𝑑

𝑘
is a descent direction. One

way to generate 𝑑
𝑘
is

𝑑
𝑘
= {

−𝑔
𝑘
, if 𝑘 = 0,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, if 𝑘 ≥ 1,
(12)

where 𝑔
𝑘
= 𝑔(𝑥

𝑘
) and 𝛽

𝑘
is a scalar. The formula of 𝛽

𝑘
in the

CG DESCENT method is defined as

𝛽
𝐻𝑍

𝑘
=

𝑔
𝑇

𝑘
𝑦
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

2

(𝑑
𝑇

𝑘−1
𝑦
𝑘−1

)
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

, (13)

where 𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

. Then the direction 𝑑
𝑘
from (12)

satisfies the sufficient descent condition (4) with 𝑐 = 7/8. For
more efficient versions of the CG DESCENT method, please
refer to [26, 27].

In [19, 22], a generalization of (13) was given by

𝛽
𝐺

𝑘
=
𝑔
𝑇

𝑘
𝑏
𝑘

𝑎
𝑘

−
𝐶
󵄩󵄩󵄩󵄩𝑏𝑘

󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘

𝑔
𝑇

𝑘
𝑑
𝑘−1

, (14)

where 𝑎
𝑘
∈ 𝑅, 𝑏

𝑘
∈ 𝑅
𝑛, and 𝐶 > 1/4. Obviously, 𝛽𝐻𝑍

𝑘

is a special case of (14) with 𝑎
𝑘
= 𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, 𝑏
𝑘
= 𝑦
𝑘−1

,
and 𝐶 = 2. More recently, Xiao and Zhu [9] presented
a modified version of the CG DESCENT method to solve
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the constrained problem (1). This work inspires us to extend
the general case (14) to solve problem (1). So, we define

𝑑
𝑘
= {

−𝐹
𝑘
, if 𝑘 = 0,

−𝐹
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, if 𝑘 ≥ 1,
(15)

where 𝐹
𝑘
= 𝐹(𝑥

𝑘
) and the scalar 𝛽

𝑘
is defined as

𝛽
𝑘
=
𝐹
𝑇

𝑘
𝑏
𝑘

𝑎
𝑘

−
𝜃
𝑘

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘

𝐹
𝑇

𝑘
𝑑
𝑘−1

(16)

with 𝜖‖𝑑
𝑘−1

‖ ≤ 𝑎
𝑘
∈ 𝑅 (𝜖 > 0), 𝜃

𝑘
> 1/2, and 𝑏

𝑘
∈ 𝑅
𝑛.

Moreover, the formula of 𝛽
𝑘
proposed by Xiao and Zhu [9]

corresponds to (16) with 𝜃
𝑘
= 2, 𝑎
𝑘
= 𝑑
𝑇

𝑘−1
𝑦
∗

𝑘−1
, and 𝑏

𝑘
= 𝑦
∗

𝑘−1
,

where 𝑦∗
𝑘
= 𝑦
𝑘
+ 𝜆
𝑘
𝛼
𝑘
‖𝐹
𝑘
‖𝑑
𝑘
, 𝑦
𝑘
= 𝐹
𝑘+1

− 𝐹
𝑘
, and 𝜆

𝑘
= 1 +

‖𝐹
𝑘
‖
−1max{0, −(𝛼

𝑘
𝑑
𝑇

𝑘
𝑦
∗

𝑘
/‖𝛼
𝑘
𝑑
𝑘
‖
2

)}.
The other general way of producing sufficient descent

conjugate gradient methods for solving the unconstrained
optimization (3) was provided in [23]. By using the Gram-
Schmidt orthogonalization, the search direction 𝑑

𝑘
is gener-

ated by

𝑑
𝑘
=

{{{

{{{

{

−𝑔
𝑘
, if 𝑘 = 0,

−(1 + 𝛽
𝑘

𝑔
𝑇

𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2
)𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, if 𝑘 ≥ 1,
(17)

where 𝛽
𝑘
is a scalar, and its definition could be the same as

that in (12). Obviously, it always satisfies 𝑔𝑇
𝑘
𝑑
𝑘
= −‖𝑔

𝑘
‖
2. In

this paper, we will prove that the class of sufficient descent
conjugate gradient methods can also be extended to solve
problem (1) with the corresponding search direction 𝑑

𝑘

defined as

𝑑
𝑘
=

{{{

{{{

{

−𝐹
𝑘
, if 𝑘 = 0,

−(1 + 𝛽
𝑘

𝐹
𝑇

𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2
)𝐹
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, if 𝑘 ≥ 1,
(18)

where the formula of 𝛽
𝑘
could be (16).

Now we introduce the two unified frameworks of some
sufficient descent conjugate gradient methods to solve prob-
lem (1) by adopting the projection strategy in [5].We state the
steps of the model algorithm as follows.

Algorithm 1.
Step 0. Choose an initial point 𝑥

0
∈ Ω, 𝜌 > 0, 𝜎 ∈ (0, 1),

𝑡 ∈ (0, 1) and 𝜖 > 0. Set 𝑘 := 0.
Step 1. If ‖𝐹(𝑥

𝑘
)‖ ≤ 𝜖, stop. Otherwise, generate 𝑑

𝑘
by certain

iteration formula which satisfies sufficient descent condition.
Step 2. Let 𝛼

𝑘
be the largest 𝛼 ∈ {𝜌𝑡𝑗 | 𝑗 = 0, 1, 2, . . .} such that

−𝐹(𝑥
𝑘
+ 𝛼𝑑
𝑘
)
𝑇

𝑑
𝑘
≥ 𝜎𝛼

󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘 + 𝛼𝑑𝑘)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

, (19)
and then compute 𝑧

𝑘
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 3. Compute the new iterate 𝑥
𝑘+1

by

𝑥
𝑘+1

= 𝑃
Ω
(𝑥
𝑘
−
(𝑥
𝑘
− 𝑧
𝑘
)
𝑇

𝐹 (𝑧
𝑘
)

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝐹 (𝑧
𝑘
)) . (20)

Set 𝑘 := 𝑘 + 1. Go to Step 1.

(i) If the search direction 𝑑
𝑘
in Step 1 is generated by the

formula (15), we name the algorithm as Algorithm 1(a). And
if the search direction 𝑑

𝑘
in Step 1 is generated by the formula

(18), we name the algorithm as Algorithm 1(b).

3. Convergence Analysis

In this section, we analyze the convergence properties of
Algorithm 1. We first make the following assumptions.

Assumption 2. The mapping 𝐹 is 𝐿-Lipschitz continuous on
the nonempty closed convex set Ω; that is, there exists a
constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ Ω. (21)

Assumption 3. The solution set 𝑋∗ of problem (1) is non-
empty.

Assumption 4. The parameter 𝛽
𝑘
satisfies inequality

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨 ≤

𝛾
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

, (22)

where 𝛾 is a positive number.

Assumption 4 is not difficult to satisfy. Taking the param-
eter 𝛽

𝑘
in (15) as an example, if there exists a large number

𝑀 < ∞ such that ‖𝑏
𝑘
‖ ≤ 𝑀 for all 𝑘, then it satisfies the

inequality (22). In fact,

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝑇

𝑘
𝑏
𝑘

𝑎
𝑘

−
𝜃
𝑘

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘

𝐹
𝑇

𝑘
𝑑
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝑇

𝑘
𝑏
𝑘

𝑎
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜃
𝑘

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘

𝐹
𝑇

𝑘
𝑑
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

+
𝜃
𝑘

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩𝑀

𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

+
𝜃
𝑘
𝑀
2

𝜖2
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= (
𝑀

𝜖
+
𝜃
𝑘
𝑀
2

𝜖2
)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

.

(23)

The following two lemmas show that the search direction
𝑑
𝑘
, no matter from (15) or (18), satisfies the sufficient descent

condition.

Lemma5. If 𝑎
𝑘
̸= 0, 𝜃
𝑘
> 1/2, and𝑑

𝑘
is generated by (15), then,

for every 𝑘 ≥ 0,

𝐹
𝑇

𝑘
𝑑
𝑘
≤ −(1 −

1

4𝜃
𝑘

)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

. (24)



4 Abstract and Applied Analysis

Table 1: Numerical results for Problem 10.

Init Method Dim = 5000 Dim = 10000 Dim = 20000 Dim = 30000

Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU

𝑥
1

CGD XZ 10/26/0.036 10/26/0.052 10/26/0.052 10/26/0.071
Method 1 13/38/0.026 13/38/0.038 13/38/0.063 13/38/0.089
Method 2 15/32/0.024 19/38/0.047 19/38/0.073 31/74/0.179
Method 3 10/22/0.017 10/22/0.023 10/22/0.039 10/22/0.052
Method 4 13/25/0.022 13/25/0.028 13/25/0.048 13/25/0.061
Method 5 13/25/0.019 13/25/0.028 13/25/0.058 13/25/0.063
Method 6 19/33/0.030 19/34/0.040 19/34/0.062 29/67/0.162

𝑥
2

CGD XZ 5/10/0.007 5/10/0.012 5/10/0.020 5/10/0.027
Method 1 7/19/0.011 7/19/0.017 7/19/0.029 7/19/0.039
Method 2 5/10/0.006 5/10/0.010 7/14/0.022 7/14/0.035
Method 3 4/5/0.004 4/5/0.006 4/5/0.011 4/5/0.016
Method 4 5/6/0.006 5/6/0.008 5/6/0.014 5/6/0.020
Method 5 5/6 /0.005 5/6/0.008 5/6/0.013 5/6/0.020
Method 6 5/6/0.005 5/6/0.009 6/8/0.017 6/8/0.023

𝑥
3

CGD XZ 4/8/0.006 4/8/0.010 4/8/0.016 4/8/0.021
Method 1 7/18/0.010 7/18/0.015 7/18/0.029 7/18/0.037
Method 2 4/7/0.005 4/7/0.008 4/7/0.013 4/7/0.018
Method 3 3/4/0.003 3/4/0.005 3/4/0.009 3/4/0.012
Method 4 4/5/0.005 4/5/0.007 4/5/0.011 4/5/0.015
Method 5 4/5/0.005 4/5/0.006 4/5/0.012 4/5/0.015
Method 6 4/5/0.004 4/5/0.007 4/5/0.011 4/5/0.014

𝑥
4

CGD XZ 15/47/0.027 19/60/0.055 17/51/0.080 21/76/0.141
Method 1 14/47/0.025 17/59/0.048 17/58/0.077 21/75/0.137
Method 2 14/28/0.016 14/28/0.026 14/28/0.047 14/28/0.064
Method 3 18/28/0.022 18/28/0.031 18/28/0.053 18/28/0.076
Method 4 14/21/0.017 14/21/0.023 14/21/0.043 14/21/0.056
Method 5 10/15/0.012 10/15/0.017 10/15/0.028 10/15/0.040
Method 6 21/33/0.025 21/33/0.038 21/33/0.060 21/33/0.085

𝑥
5

CGD XZ 16/41/0.027 24/65/0.066 19/49/0.084 19/51/0.118
Method 1 17/49/0.029 17/55/0.044 19/60/0.084 18/58/0.111
Method 2 13/26/0.017 13/26/0.026 13/26/0.045 13/26/0.060
Method 3 23/35/0.028 23/35/0.040 23/35/0.067 23/35/0.096
Method 4 22/34/0.025 22/34/0.040 22/34/0.068 22/34/0.093
Method 5 21/30/0.023 21/30/0.036 21/30/0.060 21/30/0.082
Method 6 25/41/0.033 24/40/0.046 24/40/0.070 24/40/0.095

𝑥
6

CGD XZ 16/41/0.027 23/56/0.060 18/47/0.073 19/51/0.112
Method 1 16/51/0.027 15/47/0.038 17/54/0.075 17/54/0.101
Method 2 13/26/0.015 13/26/0.026 13/26/0.043 13/26/0.058
Method 3 23/35/0.026 23/35/0.040 23/35/0.067 23/35/0.092
Method 4 22/34/0.025 22/34/0.042 22/34/0.067 22/34/0.088
Method 5 21/30/0.024 21/30/0.035 21/30/0.060 21/30/0.085
Method 6 25/41/0.029 24/40/0.042 24/40/0.072 24/40/0.097
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Table 2: Numerical results for Problem 11.

Init Method Dim = 5000 Dim = 10000 Dim = 20000 Dim = 30000

Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU

𝑥
1

CGD XZ 5/12/0.019 5/12/0.025 5/12/0.033 5/12/0.039
Method 1 7/21/0.023 7/21/0.030 7/21/0.039 7/21/0.054
Method 2 5/13/0.015 5/14/0.017 5/14/0.028 5/15/0.039
Method 3 12/25/0.022 12/25/0.036 12/25/0.047 12/25/0.065
Method 4 5/8/0.009 5/8/0.012 5/8/0.017 5/8/0.025
Method 5 5/8/0.009 5/8/0.014 5/8/0.017 5/8/0.025
Method 6 5/10/0.008 5/11/0.022 5/11/0.021 5/12/0.030

𝑥
2

CGD XZ 3/6/0.004 3/6/0.009 3/6/0.013 3/6/0.018
Method 1 6/17/0.011 6/17/0.018 6/17/0.027 6/17/0.039
Method 2 3/6/0.004 3/6/0.007 3/6/0.012 3/6/0.015
Method 3 9/18/0.014 9/18/0.022 9/18/0.034 9/18/0.046
Method 4 3/4/0.004 3/4/0.006 3/4/0.009 3/4/0.013
Method 5 3/4/0.004 3/4/0.006 3/4/0.010 3/4/0.013
Method 6 3/4/0.004 3/4/0.006 3/4/0.009 3/4/0.013

𝑥
3

CGD XZ 14/41/0.028 14/41/0.043 14/41/0.073 14/41/0.101
Method 1 5/13/0.008 5/13/0.013 5/13/0.021 5/13/0.031
Method 2 13/37/0.022 13/37/0.036 13/37/0.061 13/37/0.086
Method 3 10/20/0.015 10/20/0.024 10/20/0.040 10/20/0.056
Method 4 14/28/0.021 14/28/0.033 14/28/0.054 14/28/0.075
Method 5 14/28/0.021 14/28/0.032 14/28/0.055 14/28/0.080
Method 6 14/28/0.020 14/28/0.032 14/28/0.052 14/28/0.076

𝑥
4

CGD XZ 17/50/0.034 17/50/0.051 17/50/0.086 17/50/0.124
Method 1 20/68/0.038 17/50/0.044 19/54/0.085 18/51/0.118
Method 2 18/44/0.025 16/38/0.040 17/42/0.072 17/42/0.096
Method 3 20/40/0.028 21/42/0.043 20/40/0.075 18/36/0.094
Method 4 15/30/0.020 15/30/0.034 15/30/0.057 15/30/0.080
Method 5 16/32/0.026 16/32/0.039 16/32/0.063 16/32/0.083
Method 6 22/41/0.031 19/38/0.042 19/38/0.066 19/38/0.097

𝑥
5

CGD XZ 21/59/0.044 21/68/0.068 17/52/0.089 16/42/0.106
Method 1 19/61/0.033 18/56/0.051 17/50/0.078 16/48/0.107
Method 2 12/23/0.016 12/23/0.023 12/23/0.043 12/23/0.063
Method 3 17/34/0.024 17/34/0.036 17/34/0.063 17/34/0.088
Method 4 32/52/0.040 32/52/0.070 31/50/0.101 31/50/0.148
Method 5 21/35/0.028 21/35/0.043 21/35/0.073 21/35/0.101
Method 6 29/39/0.034 27/36/0.048 27/36/0.079 27/36/0.112

𝑥
6

CGD XZ 21/59/0.041 22/68/0.071 20/62/0.097 16/42/0.104
Method 1 17/59/0.035 19/67/0.058 18/63/0.092 18/52/0.118
Method 2 14/27/0.020 14/27/0.031 14/27/0.050 14/27/0.074
Method 3 17/34/0.023 17/34/0.040 17/34/0.060 17/34/0.090
Method 4 30/48/0.042 31/50/0.060 31/50/0.103 31/50/0.143
Method 5 21/35/0.028 21/35/0.040 21/35/0.073 21/35/0.101
Method 6 29/39/0.032 27/36/0.046 27/36/0.083 27/36/0.112

Proof. Since 𝑑
0
= −𝐹
0
, then 𝐹𝑇

0
𝑑
0
= −‖𝐹

0
‖
2 which satisfies

(24). For every 𝑘 ≥ 1, multiplying (15) by 𝐹
𝑘
, we have

𝐹
𝑇

𝑘
𝑑
𝑘

= −
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑘
𝐹
𝑇

𝑘
𝑑
𝑘−1

= −
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

+
𝐹
𝑇

𝑘
𝑏
𝑘

𝑎
𝑘

𝐹
𝑇

𝑘
𝑑
𝑘−1

−
𝜃
𝑘

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘

(𝐹
𝑇

𝑘
𝑑
𝑘−1

)
2

=

−
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

𝑎
2

𝑘
+ 𝑎
𝑘
(𝐹
𝑇

𝑘
𝑏
𝑘
) (𝐹
𝑇

𝑘
𝑑
𝑘−1

) − 𝜃
𝑘

󵄩󵄩󵄩󵄩𝑏𝑘
󵄩󵄩󵄩󵄩

2

(𝐹
𝑇

𝑘
𝑑
𝑘−1

)
2

𝑎
2

𝑘

.

(25)
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Table 3: Numerical results for Problem 12.

Init Method Dim = 5000 Dim = 10000 Dim = 20000 Dim = 30000

Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU

𝑥
1

CGD XZ 24/66/0.095 24/66/0.130 21/60/0.205 21/60/0.308
Method 1 14/34/0.037 15/38/0.070 15/46/0.146 17/56/0.250
Method 2 26/66/0.063 28/75/0.126 32/102/0.317 41/136/0.612
Method 3 30/49/0.060 30/49/0.099 30/49/0.191 30/49/0.278
Method 4 23/43/0.050 23/43/0.085 22/42/0.159 22/42/0.224
Method 5 24/44/0.051 23/43/0.083 22/42/0.160 22/42/0.222
Method 6 25/61/0.060 28/76/0.127 33/103/0.320 38/120/0.538

𝑥
2

CGD XZ 19/55/0.056 19/55/0.112 18/53/0.177 18/53/0.260
Method 1 16/40/0.041 18/54/0.090 13/33/0.112 14/41/0.189
Method 2 18/36/0.038 18/36/0.068 18/36/0.127 18/36/0.186
Method 3 19/37/0.040 19/37/0.070 18/36/0.130 18/36/0.188
Method 4 19/37/0.040 19/37/0.073 18/36/0.128 18/36/0.188
Method 5 19/37/0.042 19/37/0.072 18/36/0.127 18/36/0.193
Method 6 18/36/0.039 18/36/0.069 18/36/0.128 18/36/0.188

𝑥
3

CGD XZ 20/57/0.059 19/54/0.095 19/54/0.183 19/54/0.266
Method 1 15/43/0.041 12/28/0.050 13/34/0.111 18/55/0.251
Method 2 19/37/0.040 19/37/0.068 20/39/0.141 20/39/0.202
Method 3 19/36/0.039 19/36/0.068 19/36/0.130 19/36/0.195
Method 4 21/40/0.046 21/40/0.081 21/40/0.147 21/40/0.213
Method 5 21/40/0.046 21/40/0.081 21/40/0.148 21/40/0.214
Method 6 19/37/0.041 19/37/0.073 18/36/0.128 18/36/0.186

𝑥
4

CGD XZ 19/54/0.054 19/54/0.098 19/54/0.181 19/54/0.263
Method 1 12/28/0.029 12/29/0.054 16/51/0.163 14/36/0.175
Method 2 19/37/0.041 19/37/0.072 20/39/0.142 20/39/0.205
Method 3 19/36/0.041 19/36/0.077 19/36/0.134 19/36/0.190
Method 4 20/38/0.043 20/38/0.076 20/38/0.141 20/38/0.207
Method 5 20/38/0.043 20/38/0.075 20/38/0.141 20/38/0.204
Method 6 19/37/0.040 19/37/0.068 18/36/0.128 18/36/0.188

𝑥
5

CGD XZ 20/57/0.058 20/57/0.101 20/57/0.190 20/57/0.273
Method 1 17/40/0.040 16/49/0.080 12/28/0.097 12/28/0.141
Method 2 19/37/0.040 19/37/0.072 19/37/0.138 20/39/0.211
Method 3 20/38/0.042 20/38/0.074 20/38/0.143 20/38/0.204
Method 4 21/40/0.046 21/40/0.075 21/40/0.149 21/40/0.212
Method 5 21/40/0.049 21/40/0.077 21/40/0.149 21/40/0.212
Method 6 20/39/0.043 20/39/0.076 20/39/0.142 19/38/0.196

𝑥
6

CGD XZ 19/54/0.052 19/54/0.094 19/54/0.182 19/54/0.264
Method 1 15/40/0.038 12/28/0.052 12/30/0.097 17/51/0.233
Method 2 19/37/0.038 19/37/0.068 19/37/0.136 20/39/0.203
Method 3 19/36/0.040 19/36/0.075 19/36/0.133 19/36/0.197
Method 4 20/38/0.043 20/38/0.076 20/38/0.140 20/38/0.202
Method 5 20/38/0.042 20/38/0.075 20/38/0.142 20/38/0.206
Method 6 19/37/0.040 19/37/0.072 19/37/0.133 18/36/0.185
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Table 4: Numerical results for Problem 13.

Method Init = 𝑥
1

Init = 𝑥
2

Init = 𝑥
3

Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU
CGD XZ 8032/100720/3.926 6960/88626/3.395 6608/83404/3.206
Method 1 14474/81644/4.073 14776/83135/4.152 14105/79821/3.985
Method 2 14547/80367/3.784 14535/79834/3.782 14233/78523/3.724
Method 3 15974/67287/3.949 15950/67116/3.929 15522/64072/3.830
Method 4 14289/77460/4.229 14583/78517/4.262 14034/76578/4.094
Method 5 14633/79306/4.089 14585/78940/4.017 14428/78917/4.018
Method 6 12394/61365/3.314 13192/64579/3.495 12500/60647/3.319

Method Init = 𝑥
4

Init = 𝑥
5

Init = 𝑥
6

Iter/Nf/CPU Iter/Nf/CPU Iter/Nf/CPU
CGD XZ 8018/100772/3.874 118/1232/0.050 7583/92362/3.612
Method 1 14482/81707/4.059 125/445/0.029 14523/81523/4.078
Method 2 14490/80119/3.795 65/209/0.014 14829/81427/3.871
Method 3 15571/65689/3.826 125/586/0.032 15802/66762/3.889
Method 4 14618/78866/4.250 132/450/0.032 14716/79737/4.267
Method 5 14605/79474/4.059 127/440/0.030 14530/79232/4.032
Method 6 12928/62759/3.474 126/536/0.031 12651/63054/3.378

Table 5: Number of times when each method was the fastest.

Method Iteration metric Function
evaluation metric Time metric

CGD XZ 17 0 3
Method 1 28 16 19
Method 2 26 22 24
Method 3 12 19 13
Method 4 12 15 11
Method 5 12 15 10
Method 6 10 16 11

Denote 𝑢
𝑘
= 𝑎
𝑘
𝐹
𝑘
/√2𝜃
𝑘
and V

𝑘
= √2𝜃

𝑘
(𝐹
𝑇

𝑘
𝑑
𝑘−1

)𝑏
𝑘
. By

applying the inequality 𝑢𝑇
𝑘
V
𝑘
≤ 1/2(‖𝑢

𝑘
‖
2

+ ‖V
𝑘
‖
2

) to the
second term in (25), we obtain (24).

The lemma above is similar to Theorem 1.1 in [20]. And
from this lemma, we can see that the descent property of
𝑑
𝑘
from (15) is independent of any line search and choices

of the parameters 𝑎
𝑘
and 𝑏
𝑘
. While different choices of the

parameters 𝑎
𝑘
, 𝑏
𝑘
, and 𝜃

𝑘
may yield very different numerical

behaviors.

Lemma 6. Let {𝑑
𝑘
} be the sequence generated by (18), and

then, for all 𝑘 ≥ 0, it holds that

𝐹
𝑇

𝑘
𝑑
𝑘
= −

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

≤ −(1 −
1

4𝜃
𝑘

)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

, (26)

where 𝜃
𝑘
> 1/2.

Proof. The desired result is very easy to obtain. In fact, if 𝑘 =
0, it is clear that 𝐹𝑇

0
𝑑
0
= −‖𝐹

0
‖
2

≤ −(1 − (1/4𝜃
0
))‖𝐹
0
‖
2. If

𝑘 ≥ 1, we have

𝐹
𝑇

𝑘
𝑑
𝑘
= 𝐹
𝑇

𝑘
(−(1 + 𝛽

𝑘

𝐹
𝑇

𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2
)𝐹
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

)

= −
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

≤ −(1 −
1

4𝜃
𝑘

)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

.

(27)

The lemma above indicates that the descent property of
𝑑
𝑘
from (18) is independent of the choices of 𝛽

𝑘
.

Lemma 7. Suppose Assumptions 2 and 3 hold. Let 𝛼
𝑘
be the

steplength involved in Algorithm 1, and let sequences {𝑥
𝑘
} and

{𝑧
𝑘
} be generated by Algorithm 1. Then steplength 𝛼

𝑘
is well

defined and satisfies the following inequality:

𝛼
𝑘
≥ min{𝜌,

𝑡 (1 − (1/4𝜃
𝑘
))

𝐿 + 𝜎
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘 + 𝛼𝑘𝑡

−1𝑑
𝑘
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
} . (28)

Proof. Suppose that, at 𝑘th iteration, 𝑥
𝑘
is not a solution, that

is, 𝐹
𝑘
̸= 0, and, for all 𝑗 = 0, 1, . . ., inequality (19) fails to hold,

and then

−𝐹(𝑥
𝑘
+ 𝜌𝑡
𝑗

𝑑
𝑘
)
𝑇

𝑑
𝑘
< 𝜎𝜌𝑡
𝑗
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝜌𝑡
𝑗

𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

. (29)

Since 𝐹 is continuous, taking the limits with respect to 𝑗 on
the both sides of (29) yields

−𝐹(𝑥
𝑘
)
𝑇

𝑑
𝑘
≤ 0, (30)

which contradicts Lemmas 5 and 6. So, the step length 𝛼
𝑘
is

well defined and can be determined within a finite number of
trials.
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Now, we prove inequality (28). If 𝛼
𝑘
̸= 𝜌, then by using the

selection of 𝛼
𝑘
, we have

−𝐹(𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)
𝑇

𝑑
𝑘
< 𝜎𝛼
𝑘
𝑡
−1
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

.

(31)

Combining it with (24), (26), and the Lipschitz continuity of
𝐹 yields

(1 −
1

4𝜃
𝑘

)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

≤ −𝐹
𝑇

𝑘
𝑑
𝑘

= (𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
) − 𝐹
𝑘
)
𝑇

𝑑
𝑘
− 𝐹(𝑥

𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)
𝑇

𝑑
𝑘

≤ 𝐿𝛼
𝑘
𝑡
−1󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩

2

+ 𝜎𝛼
𝑘
𝑡
−1
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

.

(32)

From Lemmas 5 and 6, we have that

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑑𝑘 + 𝐹𝑘 − 𝐹𝑘

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑑𝑘 + 𝐹𝑘

󵄩󵄩󵄩󵄩

2

− 2𝐹
𝑇

𝑘
𝑑
𝑘
−
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

≥ (1 −
1

2𝜃
𝑘

)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩

2

.

(33)

Since 𝐹
𝑘
̸= 0, then (33) indicates 𝑑

𝑘
̸= 0. So, it follows from

inequality (32) that

𝛼
𝑘
≥

𝑡 (1 − (1/4𝜃
𝑘
))

𝐿 + 𝜎
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘 + 𝛼𝑘𝑡

−1𝑑
𝑘
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
. (34)

Then inequality (28) is obtained.

Lemma 8. Let 𝑥∗ ∈ 𝑋
∗ and let sequences {𝑥

𝑘
} and {𝐹

𝑘
} be

generated by Algorithm 1. Then one has

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− 𝜎
2󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩

4

. (35)

Furthermore,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘
󵄩󵄩󵄩󵄩 = lim
𝑘→∞

𝛼
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 = 0. (36)

And there exists a positive number𝑀 such that ‖𝐹
𝑘
‖ ≤ 𝑀 and

‖𝐹(𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)‖ ≤ 𝑀 for all 𝑘 ≥ 0.

Proof. Since 𝑥∗ ∈ 𝑋
∗, then 𝐹(𝑥

∗

) = 0 and 𝑃
Ω
(𝑥
∗

) = 𝑥
∗.

Since the mapping 𝐹 is monotone, then 𝐹(𝑧
𝑘
)
𝑇

(𝑧
𝑘
− 𝑥
∗

) ≥ 0;
further,

𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑥
∗

) ≥ 𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
) . (37)

By using (19) and 𝑧
𝑘
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, we have

𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
) = −𝛼

𝑘
𝐹(𝑧
𝑘
)
𝑇

𝑑
𝑘
≥ 𝜎𝛼
2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2 󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩 ,

(38)

which implies that

𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
)

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

≥ 𝜎𝛼
2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

= 𝜎
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑧𝑘

󵄩󵄩󵄩󵄩

2

. (39)

Obviously, 𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
) ≥ 0. By using the property (7) of

the projection operator 𝑃
Ω
(⋅) and (37), we have

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
Ω
(𝑥
𝑘
−
𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
)

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝐹 (𝑧
𝑘
)) − 𝑃

Ω
(𝑥
∗

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑘
−
𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
)

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝐹 (𝑧
𝑘
) − 𝑥
∗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−

(𝐹(𝑧
𝑘
)
𝑇

(𝑥
𝑘
− 𝑧
𝑘
))
2

󵄩󵄩󵄩󵄩𝐹 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
.

(40)

Substituting the second term in (40) by (39), inequality (35)
follows.

The inequality (35) shows that the sequence {‖𝑥
𝑘
− 𝑥
∗

‖}

is convergent, and then taking the limits with respect to 𝑘 on
the both sides of (35) yields (36).

Since 𝐹 is Lipschitz continuous, then from (35), we have
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘) − 𝐹 (𝑥

∗

)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(41)

And from (36), we know that there exists a positive number
𝑀
󸀠 such that 𝛼

𝑘
‖𝑑
𝑘
‖ ≤ 𝑀

󸀠, and then
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
) − 𝐹 (𝑥

∗

)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝐿𝑀
󸀠

𝑡
−1

.

(42)

Denote 𝑀 = 𝐿‖𝑥
0
− 𝑥
∗

‖ + 𝐿𝑀
󸀠

𝑡
−1; we have that ‖𝐹

𝑘
‖ ≤ 𝑀

and ‖𝐹(𝑥
𝑘
+ 𝛼
𝑘
𝑡
−1

𝑑
𝑘
)‖ ≤ 𝑀.

Theorem 9. Let Assumption 4 hold and let {𝑑
𝑘
} be a sequence

generated by Algorithm 1. Then
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤ (1 + 2𝛾)
󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩 . (43)

And one has

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 = 0. (44)

Proof. If 𝑑
𝑘
is generated by (15), we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩 ≤ (1 + 𝛾)

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 , (45)

which satisfies (43). If 𝑑
𝑘
is generated by (18), then

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 + 2

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩 . (46)
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The inequality (43) is obtained easily. From Lemma 8, we
know that there exists 0 < 𝑀 < ∞ such that ‖𝐹

𝑘
‖ ≤ 𝑀,

and then
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤ (1 + 2𝛾)𝑀. (47)

Suppose (44) does not hold, then there exists 𝜖 > 0 such
that

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜖, ∀𝑘 ≥ 0. (48)

From (33), we have that ‖𝑑
𝑘
‖ ≥ √(1 − 1/(2𝜃

𝑘
))‖𝐹
𝑘
‖, which

implies

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≥

√(1 −
1

(2𝜃
𝑘
)
)𝜖, ∀𝑘 ≥ 0. (49)

By inequalities (28), (47), (48), and (49), we have

𝛼
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≥ min{𝜌,

𝑡 (1 − (1/4𝜃
𝑘
))

𝐿 + 𝜎
󵄩󵄩󵄩󵄩𝐹 (𝑥𝑘 + 𝛼𝑘𝑡

−1𝑑
𝑘
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
}
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩

≥ min{𝜌,
𝑡 (1 − (1/4𝜃

𝑘
))

𝐿 + 𝜎𝑀

𝜖
2

(1 + 2𝛾)
2

𝑀2
}

× √(1 −
1

(2𝜃
𝑘
)
)𝜖

> 0.

(50)

This contradicts (36). So the conclusion (44) holds.

4. Numerical Experiments

In this section, we give some specific versions of Algorithm 1
and investigate their numerical behaviors. Let us review
the HS conjugate gradient method [28]. It generates search
direction 𝑑

𝑘
by (12) and parameter 𝛽

𝑘
by

𝛽
𝐻𝑆

𝑘
=

𝑔
𝑇

𝑘
𝑦
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (51)

Among early conjugate gradient methods, the HS method
is a relatively efficient one. And many conjugate gradient
methods are its improved versions, such as the well-known
CG DESCENT method. Now based on the HS method
and Assumption 4, we give several specific versions of
Algorithm 1(a) as follows.

Method 1. Consider Algorithm 1(a) with

𝛽
1

𝑘
=

𝐹
𝑇

𝑘
𝑦
𝑘−1

max {0.5𝑑𝑇
𝑘−1

𝑦
𝑘−1

+ 0.5
󵄩󵄩󵄩󵄩𝐹𝑘−1

󵄩󵄩󵄩󵄩

2

, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

2

(max {0.5𝑑𝑇
𝑘−1

𝑦
𝑘−1

+ 0.5
󵄩󵄩󵄩󵄩𝐹𝑘−1

󵄩󵄩󵄩󵄩

2

, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2

× 𝐹
𝑇

𝑘
𝑑
𝑘−1

.

(52)

Method 2. Consider Algorithm 1(a) with

𝛽
2

𝑘
=

𝐹
𝑇

𝑘
𝑦
𝑘−1

max {max {𝑑𝑇
𝑘−1

𝑦
𝑘−1

,
󵄩󵄩󵄩󵄩𝐹𝑘−1

󵄩󵄩󵄩󵄩

2

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

2

(max {max {𝑑𝑇
𝑘−1

𝑦
𝑘−1

,
󵄩󵄩󵄩󵄩𝐹𝑘−1

󵄩󵄩󵄩󵄩

2

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2

× 𝐹
𝑇

𝑘
𝑑
𝑘−1

.

(53)

Method 3. Consider Algorithm 1(a) with

𝛽
3

𝑘
=

𝐹
𝑇

𝑘
𝑦
∗

𝑘−1

max {𝑑𝑇
𝑘−1

𝑦
∗

𝑘−1
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦
∗

𝑘−1

󵄩󵄩󵄩󵄩

2

(max {𝑑𝑇
𝑘−1

𝑦
∗

𝑘−1
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
𝐹
𝑇

𝑘
𝑑
𝑘−1

,

(54)

where 𝑦∗
𝑘−1

= 𝑦
𝑘−1

+ 𝛼
𝑘−1

𝑑
𝑘−1

.

Since the definition of parameter 𝛽
𝑘
in Algorithm 1(b)

could be the same as that in Algorithm 1(a), and the descent
property of𝑑

𝑘
inAlgorithm 1(b) is independent of the choices

of parameter 𝛽
𝑘
, we can give several specific versions of

Algorithm 1(b) as follows.

Method 4. Consider Algorithm 1(b) with (52).

Method 5. Consider Algorithm 1(b) with

𝛽
5

𝑘
=

𝐹
𝑇

𝑘
𝑦
𝑘−1

max {max {𝑑𝑇
𝑘−1

𝑦
𝑘−1

, −𝐹
𝑇

𝑘−1
𝑑
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

2

(max {max {𝑑𝑇
𝑘−1

𝑦
𝑘−1

, −𝐹
𝑇

𝑘−1
𝑑
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2

× 𝐹
𝑇

𝑘
𝑑
𝑘−1

.

(55)

Method 6. Consider Algorithm 1(b) with

𝛽
6

𝑘
=

𝐹
𝑇

𝑘
𝑦
𝑘−1

max {𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

. (56)

From Lemma 8, we know that a sequence {𝐹
𝑘
} gen-

erated by Algorithm 1 is norm bounded. Then it is easy
to verify that the parameters 𝛽

𝑘
in Methods 1–6 sat-

isfy Assumption 4. So, from the convergence analysis in
Section 3, we know that Methods 1–6 are convergent in the
sense that lim inf

𝑘→∞
‖𝐹
𝑘
‖ = 0.

Next, we test the performance of Methods 1–6 via the
following four constrainedmonotone problems and compare
them with the method (abbreviated as CGD XZ) in [9].

Problem 10 (see [29]). The mapping 𝐹 is taken as 𝐹(𝑥) =

(𝐹
1
(𝑥), . . . , 𝐹

𝑛
(𝑥))
𝑇, where 𝐹

𝑖
(𝑥) = 𝑒

𝑥𝑖 − 1, 𝑖 = 1, . . . , 𝑛, and
Ω = 𝑅

𝑛

+
.
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Problem 11 (see [17]). The mapping 𝐹 is taken as 𝐹(𝑥) =

(𝐹
1
(𝑥), . . . , 𝐹

𝑛
(𝑥))
𝑇, where

𝐹
𝑖
(𝑥) = 𝑥

𝑖
− sin (󵄨󵄨󵄨󵄨𝑥𝑖 − 1

󵄨󵄨󵄨󵄨) , 𝑖 = 1, 2, . . . , 𝑛, (57)

andΩ = {𝑥 ∈ 𝑅
𝑛

| ∑
𝑛

𝑖=1
𝑥
𝑖
≤ 𝑛, 𝑥

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛}.

Problem 12 (see [30]). The mapping 𝐹 is taken as 𝐹(𝑥) =

(𝐹
1
(𝑥), . . . , 𝐹

𝑛
(𝑥))
𝑇, where

𝐹
1
(𝑥) = 𝑥

1
− 𝑒

cos((𝑥1+𝑥2)/(𝑛+1)),

𝐹
𝑖
(𝑥) = 𝑥

𝑖
− 𝑒

cos((𝑥𝑖−1+𝑥𝑖+𝑥𝑖+1)/(𝑛+1)), 𝑖 = 2, 3, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) = 𝑥

𝑛
− 𝑒

cos((𝑥𝑛−1+𝑥𝑛)/(𝑛+1)),

(58)

andΩ = 𝑅
𝑛

+
.

Problem 13 (see [31]). The mapping 𝐹 is given by

𝐹 (𝑥) = (

1 0 0 0

0 1 −1 0

0 1 1 0

0 0 0 0

)(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

)+(

𝑥
3

1

𝑥
3

2

2𝑥
3

3

2𝑥
3

4

)+(

−10

1

−3

0

)

(59)

andΩ = {𝑥 ∈ 𝑅
4

| ∑
4

𝑖=1
𝑥
𝑖
≤ 4, 𝑥

𝑖
≥ 0, 𝑖 = 1, 2, 3, 4}.

For Methods 1–6 and CGD XZ method, we set 𝜎 = 10−4,
𝑡 = 0.5, and𝜌 = 𝑠𝑇

𝑘
𝑠
𝑘
/(𝑠
𝑇

𝑘
𝑦
𝑘
), where 𝑠

𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
and𝜌 ≥ 1/𝐿

which is obtained by the monotonicity and the 𝐿-Lipschitz
continuity of 𝐹. The stopping criterion is ‖𝐹

𝑘
‖
∞
≤ 10
−5.

Our computations were carried out using MATLAB
R2011b on a desktop computer with an Intel(R) Xeon(R)
2.40GHZ CPU, 6.00GB of RAM, and Windows operating
system. The numerical results were reported in Tables 1, 2,
3, and 4, where the initial points 𝑥

1
= (10, 10, . . . , 10)

𝑇,
𝑥
2
= (1, 1, . . . , 1)

𝑇, 𝑥
3
= (1, 1/2, . . . , 1/𝑛)

𝑇, 𝑥
4
= (0.1, 0.1,

. . . , 0.1)
𝑇, 𝑥
5
= (1/𝑛, 2/𝑛, . . . , 1)

𝑇, and 𝑥
6
= (1 − 1/𝑛, 1 −

2/𝑛, . . . , 0)
𝑇 and Dim, Iter, Nf, and CPU stand for the

dimension of the problem, the number of iterations, the
number of function evaluations, and the CPU time elapsed
in seconds, respectively. Table 5 showed the number that each
method solved the test problems with the least iterations, the
least function evaluations, and the best time, respectively.

The performance of the seven methods was evaluated
using the profiles of Dolan and Morè [32]. That is, we
plotted the fraction 𝑃 of the test problems for which each
of the methods was within a factor 𝜏 of the best time.
Figures 1–3 showed the performance profiles referring to the
number of iterations, the number of function evaluations,
and CPU time, respectively. Figure 1 indicated that relative
to the number of iterations, Methods 1 and 2 performed best
for 𝜏 near 1. When 𝜏 ≥ 1.3, CGD XZ was comparable with
Methods 1 and 2 and had a higher number of wins than
Methods 3–6. Figure 2 revealed that relative to the number
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Figure 1: Performance profile based on the number of iterations.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 1.5 2 2.5 3 3.5 4 4.5 5

𝜏

CGDXZ
Method 1

Method 2

Method 3

Method 4

Method 5

Method 6

Figure 2: Performance profile based on the number of function
evaluations.

of function evaluations, Method 2 performed best for 𝜏 near
1. When 𝜏 ≥ 1.6, Method 5 performed more robust and
then Methods 3 and 4. Figure 3 revealed that relative to the
CPU time metric, Method 2 performed best for 𝜏 near 1.
Method 5 performedmore robustwhen 𝜏 ≥ 1.3, andMethods
2–4 were competitive. While CGD XZ performed worst, it
had a lower number of wins than the rest of the methods.
So, from the analysis above, we can conclude that all these
methods were efficient to solve these test problems. If we
consider the number ofwins,Method 2 performedbestwhich
is also revealed by Table 5, while from the view of robustness,
Method 5 performed best.

5. Conclusions

In this paper, we discussed two unified frameworks of some
sufficient descent conjugate gradient methods and combined
them with the hyperplane projection method of Solodov
and Svaiter to solve convex constrained nonlinear monotone
equations.The twounified frameworks inherit the advantages
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Figure 3: Performance profile based on the CPU time.

of some usual conjugate gradient methods for solving large-
scale unconstrained minimization problems. That is, they
satisfy the sufficient descent condition 𝐹

𝑇

𝑘
𝑑
𝑘

≤ −𝑐‖𝐹
𝑘
‖
2

(𝑐 > 0) independently of any line search, and they do
not require 𝐹’s Jacobian, then they are suitable to solve
large-scale nonsmoothmonotone equations. In Section 4, we
gave several specific versions of the two unified frameworks
and investigated their numerical behaviors over some test
problems. From the numerical results, we concluded that
these specific versions are efficient.

Let us review problem (1) and introduce a monotone
inclusion problem

0 ∈ 𝑇 (𝑥) , (60)

where the set-value mapping 𝑇 : 𝑅
𝑛

→ 2
𝑅
𝑛

is maximal
monotone. Obviously, the latter is more general than the
former; then, our further investigation is to extend these suf-
ficient descent conjugate gradient methods to solve problem
(60).
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