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We extend the notion of (𝛼𝜓, 𝛽𝜑)-contractive mapping, a very recent concept by Berzig and Karapinar. This allows us to consider
contractive conditions that generalize a wide range of nonexpansive mappings in the setting of metric spaces provided with binary
relations that are not necessarily neither partial orders nor preorders.Thus, using this kind of contractive mappings, we show some
related fixed point theorems that improve some well known recent results and can be applied in a variety of contexts.

1. Introduction and Preliminaries

After the appearance of the pioneering Banach contractive
mapping principle and due to its possible applications, fixed
point theory has become one of the most useful branches of
nonlinear analysis, with applications to very different settings,
including, among others, resolution of all kind of equations
(differential, integral, matrix, etc.), image recovery, convex
minimization and split feasibility, and equilibrium problems.

In the last decades, fixed point theorems in partially
ordered metric spaces have attracted much attention, espe-
cially after the works of Ran and Reurings [1], Nieto and Rod-
ŕıguez-López [2], Bhaskar and Lakshmikantham [3], Berinde
and Borcut [4, 5], Karapınar [6, 7], Berzig and Samet [8],
and Karapınar et al. [9–11], among others. Their results have
been extended to contractivity conditions in which alte-
ring distance functions (a notion introduced by Khan et al.
[12]) play an important role. Very recently, Alghamdi and
Karapınar [13] used a similar notion in 𝐺-metric spaces, and
Berzig and Karapinar [14] also considered a more general
kind of contractivity conditions using a pair of generalized
altering distance functions.

In this paper, by introducing the notion of generalized-
(𝛼𝜓, 𝛽𝜑)-contractive mappings, we collect, improve, and gen-
eralize some existing results on this topic in the literature.

Now, we recollect some basic definitions and useful
results for the sake of completeness of the paper. First, we
recollect the concept of altering distance function as follows.

Definition 1 (Khan et al. [12]). A function 𝜓 : [0, +∞) →

[0, +∞) is called an altering distance function if the following
properties are satisfied:

(i) 𝜓(𝑡) is continuous and nondecreasing;
(ii) 𝜓(𝑡) = 0 if and only if 𝑡 = 0.

In what follows, we state the definition of R-preserving
mapping which plays crucial roles in the setting of main
results.

Definition 2 (see, e.g., [14]). Let𝑋 be a set andR be a binary
relation on 𝑋. We say that 𝑇 : 𝑋 → 𝑋 is R-preserving
mapping if

𝑥, 𝑦 ∈ 𝑋 : 𝑥R𝑦 󳨐⇒ 𝑇𝑥R𝑇𝑦. (1)
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Throughout the paper, let N denote the set of all nonneg-
ative integers, and let R be the set of all real numbers.

Example 3 (see, e.g., [14]). Let𝑋 = R and a function𝑇 : 𝑋 →

𝑋 be defined as 𝑇𝑥 = 𝑒
𝑥. Define 𝛼, 𝛽 : 𝑋 × 𝑋 → 0,∞) by

𝛼 (𝑥, 𝑦) = {

1, if 𝑥 ≤ 𝑦,

2, otherwise;

𝛽 (𝑥, 𝑦) = {

1, if 𝑥 ≤ 𝑦,

0, otherwise.

(2)

Define the first binary relationR
1
by 𝑥R

1
𝑦 if and only if

𝛼(𝑥, 𝑦) ≤ 1, and define the second binary relation by 𝑥R
2
𝑦

if and only if 𝛽(𝑥, 𝑦) ≥ 1. Then, we obtain easily that 𝑇 is
simultaneouslyR

1
-preserving andR

2
-preserving.

Definition 4 (see [14]). Let 𝑁 ∈ N. We say that R is 𝑁–
transitive on 𝑋 if

𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑁+1
∈ 𝑋 : 𝑥

𝑖
R𝑥
𝑖+1

∀𝑖 ∈ {0, 1, . . . , 𝑁} 󳨐⇒ 𝑥
0
R𝑥
𝑁+1

.

(3)

The following remark is a consequence of the previous
definition.

Remark 5 (see [14]). Let 𝑁 ∈ N. We have the following.

(1) IfR is transitive, then it is𝑁-transitive for all𝑁 ∈ N.
(2) IfR is𝑁-transitive, then it is 𝑘𝑁-transitive for all 𝑘 ∈

N.

Definition 6 (see [14]). Let (𝑋, 𝑑) be a metric space and R
1
,

R
2
be two binary relations on 𝑋. We say that (𝑋, 𝑑) is

(R
1
,R
2
)-regular if for every sequence {𝑥

𝑛
} in 𝑋 such that

𝑥
𝑛

→ 𝑥 ∈ 𝑋 as 𝑛 → +∞ and

𝑥
𝑛
R
1
𝑥
𝑛+1

, 𝑥
𝑛
R
2
𝑥
𝑛+1

, ∀𝑛 ∈ N, (4)

there exists a subsequence {𝑥
𝑛(𝑘)

} such that

𝑥
𝑛(𝑘)

R
1
𝑥, 𝑥

𝑛(𝑘)
R
2
𝑥, ∀𝑘 ∈ N. (5)

Definition 7. We say that a subset𝐷 of𝑋 is (R
1
,R
2
)-directed

if for all 𝑥, 𝑦 ∈ 𝐷, there exists 𝑧 ∈ 𝑋 such that

𝑥R
1
𝑧, 𝑦R

1
𝑧, 𝑥R

2
𝑧, 𝑦R

2
𝑧. (6)

Definition 8. Let 𝑇 : 𝑋 → 𝑋 be a mapping. We say that a
subset𝐷 of𝑋 is (R

1
,R
2
)-directed with respect to 𝑇 if for all

𝑥, 𝑦 ∈ 𝐷, there exists 𝑧 ∈ 𝑋 such that

{𝑇
𝑛

𝑧} is a convergent sequence,

𝑥R
1
𝑧, 𝑦R

1
𝑧, 𝑥R

2
𝑧, 𝑦R

2
𝑧.

(7)

Remark 9. A subset𝐷 of𝑋 is an (R
1
,R
2
)-directed subset if,

and only if, it is an (R
1
,R
2
)-directed subset with respect to

the identity mapping 𝐼
𝑋
.

We recall the notion of a pair of generalized altering
distance as follows.

Definition 10. We say that the pair of functions (𝜓, 𝜑) is a pair
of generalized altering distance (where 𝜓, 𝜑 : [0, +∞) →

0, +∞)) if the following hypotheses hold:

(a1) 𝜓 is continuous;
(a2) 𝜓 is nondecreasing;
(a3) lim

𝑛→∞
𝜑(𝑡
𝑛
) = 0 ⇒ lim

𝑛→∞
𝑡
𝑛
= 0.

The condition (a3) was introduced by Popescu in [16]
and Moradi and Farajzadeh in [15]. Notice that the above
conditions do not determine the values 𝜓(0) and 𝜑(0).

Definition 11 (see [14]). Let (𝑋, 𝑑) be a metric space and 𝑇 :

𝑋 → 𝑋 be a given mapping. We say that 𝑇 is an (𝛼𝜓, 𝛽𝜑)-
contractive mapping if there exists a pair of generalized
altering distance functions (𝜓, 𝜑) and two mappings 𝛼, 𝛽 :

𝑋 × 𝑋 → [0, +∞) such that

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (𝑥, 𝑦) 𝜓 (𝑑 (𝑥, 𝑦))

− 𝛽 (𝑥, 𝑦) 𝜑 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋.

(8)

2. Main Results

Firstly, we present two technical properties that will be very
useful in the proof of our main result.

Lemma 12. If (𝜓, 𝜑) is a pair of generalized altering distance
functions and 𝑟, 𝑠 ∈ [0, +∞) are such that 𝜓(𝑟) ≤ (𝜓 − 𝜑)(𝑠),
then one, and only one, of the following conditions holds:

either 𝑟 < 𝑠 or 𝑠 = 0. (9)

Proof. Firstly, notice that both possibilities are not compati-
ble. Suppose that 𝑟 ≥ 𝑠. Since 𝜓 is nondecreasing and 𝜑 ≥ 0,

𝜓 (𝑠) ≤ 𝜓 (𝑟) ≤ (𝜓 − 𝜑) (𝑠)

= 𝜓 (𝑠) − 𝜑 (𝑠) ≤ 𝜓 (𝑠) ,

(10)

so 𝜓(𝑟) = 𝜓(𝑠) and 𝜑(𝑠) = 0. Defining 𝑡
𝑛
= 𝑠 for all 𝑛 ∈ N, we

have that lim
𝑛→∞

𝜑(𝑡
𝑛
) = 0. By (a3), 𝑠 = lim

𝑛→∞
𝑡
𝑛
= 0.

Lemma 13. Let {𝑥
𝑛
} be a sequence in a metric space (𝑋, 𝑑).

(1) If {𝑥
𝑛
} is not Cauchy, then there exists 𝜀

0
> 0 and two

subsequences {𝑥
𝑚(𝑘)

}
𝑘∈N and {𝑥

𝑛(𝑘)
}
𝑘∈N verifying that,

for all 𝑘 ∈ N,

𝑘 ≤ 𝑚 (𝑘) < 𝑛 (𝑘) , 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀
0
,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑝
) < 𝜀
0
,

∀𝑝 ∈ {𝑚 (𝑘) + 1,𝑚 (𝑘) + 2, . . . , 𝑛 (𝑘) − 2, 𝑛 (𝑘) − 1}

(11)

Furthermore, lim
𝑘→∞

𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = 𝜀
0
.

(2) In addition to this, if {𝑥
𝑛
} also verifies {𝑑(𝑥

𝑛
, 𝑥
𝑛+1

)} →

0, then

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

) = 𝜀
0
,

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝

) = 𝜀
0

∀𝑝 ≥ 0.

(12)
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Proof. The first part is well-known as 𝑛(𝑘) can be chosen to
be the lowest integer 𝑝 that does not verify 𝑑(𝑥

𝑚(𝑘)
, 𝑥
𝑝
) ≥ 𝜀
0
,

then 𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) < 𝜀
0
. The first part of the second item

can be proved as follows. For all 𝑘 ∈ N,

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

) ≤ 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

+ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) + 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−1

) ;

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)−1

) + 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)

+ 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

) .

(13)

Therefore, taking limit as 𝑘 → ∞ in

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) − 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) − 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

)

≤ 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)

≤ 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) + 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)

+ 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

) ,

(14)

we deduce that lim
𝑘→∞

𝑑(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

) = 𝜀
0
. To prove

the second part of the second item, we proceed by induction
methodology on 𝑝 ∈ N. If 𝑝 = 0, it follows from item (1).
Suppose that (12) holds for some 𝑝 ≥ 0. On the one hand,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝+1

)

≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝

) + 𝑑 (𝑥
𝑛(𝑘)+𝑝

, 𝑥
𝑛(𝑘)+𝑝+1

) ,

(15)

and on the other hand,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝

) ≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝+1

)

+ 𝑑 (𝑥
𝑛(𝑘)+𝑝+1

, 𝑥
𝑛(𝑘)+𝑝

) .

(16)

Joining both inequalities,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝

) − 𝑑 (𝑥
𝑛(𝑘)+𝑝+1

, 𝑥
𝑛(𝑘)+𝑝

)

≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝+1

)

≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝

)

+ 𝑑 (𝑥
𝑛(𝑘)+𝑝

, 𝑥
𝑛(𝑘)+𝑝+1

) .

(17)

Taking limit as 𝑘 → ∞ and using (12) and {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} →

0, we conclude that

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝+1

) = 𝜀
0
. (18)

Next we introduce the notion of generalized-(𝛼𝜓, 𝛽𝜑)-
contractive mappings which is an extension of Definition 11.

Definition 14. Let (𝑋, 𝑑) be ametric space and let𝑇 : 𝑋 → 𝑋

be a given mapping. We say that 𝑇 is a generalized-(𝛼𝜓, 𝛽𝜑)-
contractive mapping if there exists a pair of generalized

altering distance functions (𝜓, 𝜑) and two mappings 𝛼, 𝛽 :

𝑋 × 𝑋 → [0, +∞) such that

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (𝑥, 𝑦) 𝜓 (𝑀 (𝑥, 𝑦))

− 𝛽 (𝑥, 𝑦) 𝜑 (𝑀 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋,

(19)

where 𝑀(𝑥, 𝑦) is given by one of the following cases:

(i) 𝑀
1
(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), (𝑑(𝑥, 𝑇𝑦)

+ 𝑑(𝑦, 𝑇𝑥))/2} (type I);
(ii) 𝑀

2
(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)} (type II);

(iii) 𝑀
3
(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), (𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦))/2, (𝑑

(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥))/2} (type III);
(iv) 𝑀

4
(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), (𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦))/2}

(type IV);
(v) 𝑀

5
(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) (type V),

for all 𝑥, 𝑦 ∈ 𝑋.

In the sequel, the binary relationsR
1
andR

2
are defined

as follows.

Definition 15. Let𝑋 be a set, and 𝛼, 𝛽 : 𝑋×𝑋 → [0, +∞) are
twomappings. We define two binary relationsR

1
andR

2
on

𝑋 by

𝑥, 𝑦 ∈ 𝑋 : 𝑥R
1
𝑦 ⇐⇒ 𝛼 (𝑥, 𝑦) ≤ 1,

𝑥, 𝑦 ∈ 𝑋 : 𝑥R
2
𝑦 ⇐⇒ 𝛽 (𝑥, 𝑦) ≥ 1.

(20)

Now we are ready to study the existence and the unique-
ness of fixed points.

2.1. Existence of Fixed Points. Wemaynow state our firstmain
result.

Theorem 16. Let (𝑋, 𝑑) be a complete metric space and 𝑁 ∈

N \ {0} and 𝑇 : 𝑋 → 𝑋 be an (𝛼𝜓, 𝛽𝜑)-contractive mapping
of type I satisfying the following conditions:

(i) R
1
andR

2
are 𝑁-transitive;

(ii) 𝑇 isR
1
-preserving andR

2
-preserving;

(iii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
R
1
𝑇𝑥
0
and 𝑥

0
R
2
𝑇𝑥
0
;

(iv) 𝑇 is continuous.

Then, 𝑇 has a fixed point; that is, there exists 𝑥∗ ∈ 𝑋 such
that 𝑇𝑥

∗

= 𝑥
∗.

Proof. Let 𝑥
0
∈ 𝑋 such that 𝑥

0
R
𝑖
𝑇𝑥
0
for 𝑖 = 1, 2. Define the

sequence {𝑥
𝑛
} in 𝑋 by

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, ∀𝑛 ≥ 0. (21)

If 𝑥
𝑛
= 𝑥
𝑛+1

for some 𝑛 ≥ 0, then 𝑥
∗

= 𝑥
𝑛
is a fixed point 𝑇.

Assume that 𝑥
𝑛

̸= 𝑥
𝑛+1

; that is,

𝑑 (𝑥
𝑛
, 𝑛
𝑛+1

) > 0, ∀𝑛 ≥ 0. (22)
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From (ii) and (iii), we have

𝑥
0
R
1
𝑇𝑥
0
󳨐⇒ 𝛼 (𝑥

0
, 𝑥
1
)

= 𝛼 (𝑥
0
, 𝑇𝑥
0
) ≤ 1 󳨐⇒ 𝛼 (𝑥

1
, 𝑥
2
)

= 𝛼 (𝑇𝑥
0
, 𝑇𝑥
1
) ≤ 1;

𝑥
0
R
2
𝑇𝑥
0
󳨐⇒ 𝛽 (𝑥

0
, 𝑥
1
)

= 𝛽 (𝑥
0
, 𝑇𝑥
0
) ≥ 1 󳨐⇒ 𝛽 (𝑥

1
, 𝑥
2
)

= 𝛽 (𝑇𝑥
0
, 𝑇𝑥
1
) ≥ 1.

(23)

By induction, from (ii) it follows that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 1, 𝛽 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 ∀𝑛 ≥ 0. (24)

Substituting 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛+1
in (19), we obtain

𝜓 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) ≤ 𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) 𝜓 (𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

))

− 𝛽 (𝑥
𝑛
, 𝑥
𝑛+1

) 𝜑 (𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

)) .

(25)

So, by (24) it follows that

𝜓 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) ≤ (𝜓 − 𝜑) (𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

)) , (26)

where

𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

)

= max(𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
)

2

)

= max(𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

𝑥
𝑛+2

) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+1

)

2

)

= max(𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

)

2

)

= max (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

))

(27)

(the last equality follows from 𝑑(𝑥
𝑛
, 𝑥
𝑛+2

) ≤ 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)+

𝑑(𝑥
𝑛+1

, 𝑥
𝑛+2

)). By Lemma 12, either 𝑑(𝑥
𝑛+1

, 𝑥
𝑛+2

) < 𝑀
1

(𝑥
𝑛
, 𝑥
𝑛+1

) or 𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

) = 0, but the second case is
impossible by (22). Then, we get

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) < max (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

))

= 𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

) ,

(28)

that is,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) < 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ,

𝑀
1
(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ∀𝑛 ≥ 0.

(29)

From (29), {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is monotone decreasing and, conse-
quently, there exists 𝑟 ≥ 0 such that

{𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)} 󳨀→ 𝑟 as 𝑛 󳨀→ ∞. (30)

Notice that (26) and (29) imply that, for all 𝑛 ≥ 0,

𝜓 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) ≤ (𝜓 − 𝜑) (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

= 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) − 𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) .

(31)

Letting 𝑛 → +∞ in (31) and taking into account that 𝜓 is
continuous, we obtain that the sequence {𝜑(𝑑(𝑥

𝑛
, 𝑥
𝑛+1

))} has
finite limit and

𝜓 (𝑟) ≤ 𝜓 (𝑟) − lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑟) , (32)

which implies that lim
𝑛→∞

𝜑(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) = 0. Then, by (a3),
we get

{𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)} 󳨀→ 0 as 𝑛 󳨀→ ∞. (33)

Next we show that {𝑥
𝑛
} is a Cauchy sequence reasoning

by contradiction. If {𝑥
𝑛
} is not Cauchy, Lemma 13 assures us

that there exists 𝜀
0
> 0 and two subsequences {𝑥

𝑚(𝑘)
}
𝑘∈N and

{𝑥
𝑛(𝑘)

}
𝑘∈N verifying that, for all 𝑘 ∈ N,

𝑘 ≤ 𝑚 (𝑘) < 𝑛 (𝑘) , 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀
0
,

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) < 𝜀
0
,

(34)

and also

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

) = 𝜀
0
,

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝑝

) = 𝜀
0

∀𝑝 ≥ 0.

(35)

Since 𝑛(𝑘) > 𝑚(𝑘), consider, for all 𝑘 ∈ N, the Euclidean
division (𝑛(𝑘) − 𝑚(𝑘)) : 𝑁, whose quotient will be denoted
by 𝜇
𝑘
− 1 (then 𝜇

𝑘
≥ 1) and whose rest will be denoted by

𝑁 + 1 − 𝜂
𝑘
as follows:

n(k) − m(k)

N + 1 − 𝜂
k

N

𝜇
k
− 1

n(k) − m(k)

= (𝜇
k
− 1)N + (N + 1 − 𝜂

k
),

0 ≤ N + 1 − 𝜂
k
< N,

(36)

⇐⇒ {

𝑛 (𝑘) − 𝑚 (𝑘) = 𝑁𝜇
𝑘
+ 1 − 𝜂

𝑘
,

1 < 𝜂
𝑘
≤ 𝑁 + 1,

⇐⇒ {

𝑛 (𝑘) + 𝜇
𝑘
= 𝑚 (𝑘) + 𝑁𝜇

𝑘
+ 1,

1 < 𝜂
𝑘
≤ 𝑁 + 1.

(37)

Notice that 𝜇
𝑘
and 𝜇

𝑘
are convenient integer numbers such

that 𝜇
𝑘

≥ 1 and 2 ≤ 𝜇
𝑘

≤ 𝑁 + 1. Hence, 𝜇
𝑘
can only take a

finite quantity of integer numbers, in the interval [2,𝑁 + 1].
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Therefore, there exist subsequences of {𝑥
𝑛(𝑘)

} and {𝑥
𝑚(𝑘)

} (also
verifying (34) and (35)) such that 𝜇

𝑘
is constant (it does not

depend on 𝑘). In order not to complicate the notation, we will
suppose that

𝑛 (𝑘) + 𝜇 = 𝑚 (𝑘) + 𝑁𝜇
𝑘
+ 1,

1 < 𝜂 ≤ 𝑁 + 1,

(38)

where 𝜂 ∈ 2, [𝑁 + 1] is constant.
Let define 𝑚

󸀠

(𝑘) = 𝑛(𝑘) + 𝜇 = 𝑚(𝑘) + 𝑁𝜇
𝑘
+ 1 for all

𝑘 ∈ N. Taking into account item (2) of Remark 5, (24), and
(i), we obtain

𝛼 (𝑥
𝑚(𝑘)

, 𝑥
𝑚
󸀠
(𝑘)

) = 𝛼 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+𝜇

𝑘
𝑁+1

) ≤ 1,

𝛽 (𝑥
𝑚(𝑘)

, 𝑥
𝑚
󸀠
(𝑘)

) = 𝛽 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+𝜇

𝑘
𝑁+1

) ≥ 1

(39)

for all 𝑘 ∈ N. Furthermore, by (35),

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚
󸀠
(𝑘)

) = lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝜇

) = 𝜀
0
,

lim
𝑘→∞

𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑥
𝑚(𝑘)

) = lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)+𝜇−1

) = 𝜀
0
.

(40)

Following the same technique as in Lemma 13, we also deduce
that

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)

) = 𝜀
0
. (41)

Apply the contractivity condition (19) to 𝑥 = 𝑥
𝑚(𝑘)−1

and 𝑦 =

𝑥
𝑚
󸀠
(𝑘)−1

, and we get

𝜓 (𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑚
󸀠
(𝑘)−1

))

≤ 𝛼 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)

× 𝜓 (𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

))

− 𝛽 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)

× 𝜑 (𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)) .

(42)

Now, using (39), we get

𝜓 (𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚
󸀠
(𝑘)

))

≤ (𝜓 − 𝜑) (𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)) ,

(43)

where, by (22), for all 𝑘 ∈ N,

𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)

= max (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

) , 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

) ,

𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑇𝑥
𝑚
󸀠
(𝑘)−1

) ,

(𝑑 (𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑚
󸀠
(𝑘)−1

)

+𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

)) (2)
−1

)

= max (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

) , 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) ,

𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)

) ,

(𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)

)

+𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑥
𝑚(𝑘)

)) (2)
−1

)

> 0.

(44)

Lemma 12 shows that𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑚
󸀠
(𝑘)

) < 𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

).
Furthermore, by (22), (35), and (41),

lim
𝑘→∞

𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)

= lim
𝑘→∞

max (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

) , 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

× 𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)

) ,

(𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)

)

+𝑑 (𝑥
𝑚
󸀠
(𝑘)−1

, 𝑥
𝑚(𝑘)

)) (2)
−1

)

= max (𝜀
0
, 0, 0,

𝜀
0
+ 𝜀
0

2

) = 𝜀
0
.

(45)

Taking limit as 𝑘 → ∞ in

𝜓 (𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚
󸀠
(𝑘)

)) ≤ 𝜓 (𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

))

− 𝜑 (𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

))

≤ 𝜓 (𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)) ,

(46)

we deduce that lim
𝑘→∞

𝜑(𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

)) = 0. By (a3),
lim
𝑘→∞

𝑀
1
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚
󸀠
(𝑘)−1

) = 0, which contradicts (45)
and the fact that 𝜀

0
> 0. This contradiction implies that {𝑥

𝑛
}

is a Cauchy sequence.
Since (𝑋, 𝑑) is a complete metric space, then there exists

𝑥
∗

∈ 𝑋 such that {𝑥
𝑛
} → 𝑥

∗ as 𝑛 → ∞. From the continuity
of 𝑇, it follows that {𝑥

𝑛+1
= 𝑇𝑥
𝑛
} → 𝑇𝑥

∗ as 𝑛 → ∞. Due to
the uniqueness of the limit, we derive that 𝑇𝑥

∗

= 𝑥
∗; that is,

𝑥
∗ is a fixed point of 𝑇.

Theorem 17. In Theorem 16, if we replace the continuity of
𝑇 by the (R

1
,R
2
)-regularity of 𝑋, then the conclusion of

Theorem 16 holds.
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Proof. Following the lines of the proof of Theorem 16, we get
that {𝑥

𝑛
} is a Cauchy sequence. Since (𝑋, 𝑑) is a complete

metric space, then there exists 𝑥
∗

∈ 𝑋 such that {𝑥
𝑛
} →

𝑥
∗as 𝑛 → ∞. Furthermore, the sequence {𝑥

𝑛
} satisfies (24);

that is,

𝑥
𝑛
R
1
𝑥
𝑛+1

, 𝑥
𝑛
R
2
𝑥
𝑛+1

∀𝑛 ∈ N. (47)

Now, since (𝑋, 𝑑) is (R
1
,R
2
)-regular, then there exists a

subsequence {𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝑥

𝑛(𝑘)
R
1
𝑥
∗, that is,

𝛼(𝑥
𝑛(𝑘)

, 𝑥
∗

) ≤ 1, and 𝑥
𝑛(𝑘)

R
2
𝑥
∗, that is, 𝛽(𝑥

𝑛(𝑘)
, 𝑥
∗

) ≥ 1, for
all 𝑘 ∈ N. By setting 𝑥 = 𝑥

𝑛(𝑘)
and 𝑦 = 𝑥

∗ in (19), we obtain,
for all 𝑘 ∈ N,

𝜓 (𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
∗

)) ≤ 𝛼 (𝑥
𝑛(𝑘)

, 𝑥
∗

) 𝜓 (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

))

− 𝛽 (𝑥
𝑛(𝑘)

, 𝑥
∗

) 𝜑 (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)) ,

(48)

that is,

𝜓 (𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
∗

)) ≤ (𝜓 − 𝜑) (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)) ∀𝑘 ∈ N,

(49)

where

𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)

= max(𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗

) , 𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑇𝑥
𝑛(𝑘)

)

2

)

= max(𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗

) , 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑇𝑥
𝑛(𝑘)+1

)

2

) .

(50)

We prove that 𝑇𝑥
∗

= 𝑥
∗ reasoning by contradiction. If

𝑑(𝑥
∗

, 𝑇𝑥
∗

) > 0, then 𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

) ≥ 𝑑(𝑥
∗

, 𝑇𝑥
∗

) > 0, for
all 𝑘 ∈ N. By Lemma 12,

𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
∗

)

< 𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)

= max(𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗

) , 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

)

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑥
𝑛(𝑘)+1

)

2

) .

(51)

Futhermore,

lim
𝑘→∞

𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)

= lim
𝑘→∞

max(𝑑 (𝑥
𝑛(𝑘)

, 𝑥
∗

) , 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) ,

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑥
𝑛(𝑘)+1

)

2

)

= max(𝑑 (𝑥
∗

, 𝑥
∗

) , 𝑑 (𝑥
∗

, 𝑥
∗

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) + 𝑑 (𝑥
∗

, 𝑥
∗

)

2

)

= 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) .

(52)

By (49), for all 𝑘 ∈ N,

𝜓 (𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑥
∗

)) ≤ 𝜓 (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

))

− 𝜑 (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

))

≤ 𝜓 (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)) .

(53)

Using the continuity of 𝜓 and letting 𝑘 → ∞ in the above
inequality, we get

lim
𝑘→∞

𝜑 (𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

)) = 0. (54)

By (a3) and (52),

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) = lim
𝑘→∞

𝑀
1
(𝑥
𝑛(𝑘)

, 𝑥
∗

) = 0, (55)

which contradicts that 𝑑(𝑥
∗

, 𝑇𝑥
∗

) > 0. This contradiction
concludes that 𝑥∗ is a fixed point of 𝑇.

Taking into account that

𝑀
5
(𝑥, 𝑦) ≤ 𝑀

4
(𝑥, 𝑦) ≤ 𝑀

3
(𝑥, 𝑦) ≤ 𝑀

1
(𝑥, 𝑦) ,

𝑀
2
(𝑥, 𝑦) ≤ 𝑀

1
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋,

𝑀
𝑖
(𝑥, 𝑦) > 0, if 𝑥 ̸= 𝑦 (𝑖 ∈ {1, 2, 3, 4, 5}) ,

(56)

the same proofs of the above theorems can be followed point
by point to demonstrate the next result.

Corollary 18. Theorems 16 and 17 also hold if 𝑇 is a general-
ized (𝛼𝜓, 𝛽𝜑)-contractive mapping of type I, II, III, IV, or V.

2.2. Uniqueness. The uniqueness of the fixed point is studied
in the following result.

Theorem 19. Adding to the hypotheses of Theorem 16 (resp.,
Theorem 17) that 𝑋 is (R

1
,R
2
)-directed and 𝑇 is of type III,

IV, or V, we obtain unicity of the fixed point of 𝑇.
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Proof. Assume that𝑇 is of type III; that is,𝑀 = 𝑀
3
(the other

cases are similar). Suppose that 𝑥∗ and 𝑦
∗ are any two fixed

points of 𝑇. Since𝑋 is (R
1
,R
2
)-directed, there exists 𝑧

0
∈ 𝑋

such that 𝑥∗R
1
𝑧
0
, 𝑦∗R

1
𝑧
0
, 𝑥∗R

2
𝑧
0
, and 𝑥

∗R
1
𝑧
0
; that is,

𝛼 (𝑥
∗

, 𝑧
0
) ≤ 1, 𝛼 (𝑦

∗

, 𝑧
0
) ≤ 1,

𝛽 (𝑥
∗

, 𝑧
0
) ≥ 1, 𝛽 (𝑦

∗

, 𝑧
0
) ≥ 1.

(57)

Define 𝑧
𝑛

= 𝑇
𝑛

𝑧
0
for all 𝑛 ∈ N. We claim that {𝑧

𝑛
} → 𝑥

∗

and {𝑧
𝑛
} → 𝑦

∗. Hence, by the unicity of the limit, we will
conclude that 𝑥∗ = 𝑦

∗.Therefore, it is only necessary to prove
that {𝑧

𝑛
} → 𝑥

∗.
Indeed, since 𝑇 is R

𝑖
-preserving for 𝑖 = 1, 2, from (57),

we get that

𝑥
∗

R
1
𝑧
0
󳨐⇒ 𝑇𝑥

∗

R
1
𝑇𝑧
0
󳨐⇒ 𝑥
∗

R
1
𝑧
1
󳨐⇒ 𝛼 (𝑥

∗

, 𝑧
1
) ≤ 1,

𝑥
∗

R
2
𝑧
0
󳨐⇒ 𝑇𝑥

∗

R
2
𝑇𝑧
0
󳨐⇒ 𝑥
∗

R
2
𝑧
1
󳨐⇒ 𝛽 (𝑥

∗

, 𝑧
1
) ≥ 1,

(58)

and, proceeding by induction, we have

𝛼 (𝑥
∗

, 𝑧
𝑛
) ≤ 1, 𝛽 (𝑥

∗

, 𝑧
𝑛
) ≥ 1 ∀𝑛 ∈ N. (59)

Using (59) and (19), we deduce that

𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛+1

)) = 𝜓 (𝑑 (𝑇𝑥
∗

, 𝑇𝑧
𝑛
))

≤ 𝛼 (𝑥
∗

, 𝑧
𝑛
) 𝜓 (𝑀

3
(𝑥
∗

, 𝑧
𝑛
))

− 𝛽 (𝑥
∗

, 𝑧
𝑛
) 𝜑 (𝑀

3
(𝑥
∗

, 𝑧
𝑛
))

(60)

≤ (𝜓 − 𝜑) (𝑀
3
(𝑥
∗

, 𝑧
𝑛
)) , (61)

where

𝑀
3
(𝑥
∗

, 𝑧
𝑛
)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) ,

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) + 𝑑 (𝑧
𝑛
, 𝑇𝑧
𝑛
)

2

,

𝑑 (𝑥
∗

, 𝑇𝑧
𝑛
) + 𝑑 (𝑧

𝑛
, 𝑇𝑥
∗

)

2

)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) ,

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)

2

,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑥
∗

)

2

)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) ,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑥
∗

)

2

)

(62)

(the last equality holds because 𝑑(𝑧
𝑛
, 𝑧
𝑛+1

) ≤ 𝑑(𝑥
∗

, 𝑧
𝑛+1

) +

𝑑(𝑧
𝑛
, 𝑥
∗

)). By Lemma 12, either 𝑑(𝑥
∗

, 𝑧
𝑛+1

) < 𝑀
3
(𝑥
∗

, 𝑧
𝑛
) or

𝑀
3
(𝑥
∗

, 𝑧
𝑛
) = 0. If 𝑑(𝑥

∗

, 𝑧
𝑛+1

) < 𝑀
3
(𝑥
∗

, 𝑧
𝑛
), then 𝑑(𝑥

∗

,

𝑧
𝑛+1

) < 𝑑(𝑥
∗

, 𝑧
𝑛
). The second case yields to 𝑥

∗

= 𝑧
𝑛

= 𝑧
𝑛+1

.
In any case, we deduce that

𝑀
3
(𝑥
∗

, 𝑧
𝑛
) = 𝑑 (𝑥

∗

, 𝑧
𝑛
) ,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) ≤ 𝑑 (𝑥
∗

, 𝑧
𝑛
) , ∀𝑛 ∈ N.

(63)

Since {𝑑(𝑥
∗

, 𝑧
𝑛
)} is a bounded below, nonincreasing seque-

nce, there exists 𝑟 ≥ 0 such that {𝑑(𝑥∗, 𝑧
𝑛
)} → 𝑟. By (61),

𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛+1

)) ≤ (𝜓 − 𝜑) (𝑀
3
(𝑥
∗

, 𝑧
𝑛
))

= 𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛
)) − 𝜑 (𝑑 (𝑥

∗

, 𝑧
𝑛
))

≤ 𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛
))

(64)

for all 𝑛 ∈ N. By the continuity of 𝜓 and taking limit as 𝑛 →

∞, we deduce that lim
𝑘→∞

𝜑(𝑑(𝑥
∗

, 𝑧
𝑛
)) = 0. Using (a3), we

have 𝑟 = lim
𝑘→∞

𝑑(𝑥
∗

, 𝑧
𝑛
) = 0; that is, {𝑧

𝑛
} → 𝑥

∗. This
finishes the proof.

Now, we derive a particular condition which ensures the
uniqueness of the fixed point for the mappings 𝑇 of type I, II,
III, IV, or V as follows:

(C): if 𝑟, 𝑠 ∈ [0, +∞) are such that 𝜓(𝑟) ≤ (𝜓 − 𝜑)(𝑠), then
either 𝑟 < 1/2 𝑠 or 𝑠 = 0.

For instance, if 𝑘 ∈ (1/2, 1) and we consider 𝜓(𝑡) = 𝑡 and
𝜑(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0, then 𝜓 and 𝜑 verify condition (C).

Theorem 20. Adding to the hypotheses of Theorem 16 (resp.,
Theorem 17) that 𝑋 is (R

1
,R
2
)-directed and 𝑇 is of type I,

II, III, IV, or V, we obtain the unicity of the fixed point of 𝑇
whenever condition (C) is satisfied.

Proof. Following the lines of the proof ofTheorem 19, we will
prove that {𝑧

𝑛
} → 𝑥

∗. Since 𝑋 is (R
1
,R
2
)-directed with

respect to 𝑇, there exists 𝑧
0

∈ 𝑋 such that the sequence
{𝑧
𝑛
= 𝑇
𝑛

𝑧
0
}
𝑛∈N converges (to some 𝑧∗ ∈ 𝑋) and also 𝑥

∗R
1
𝑧
0
,

𝑦
∗R
1
𝑧
0
, 𝑥∗R

2
𝑧
0
, and 𝑥

∗R
1
𝑧
0
; that is,

𝛼 (𝑥
∗

, 𝑧
0
) ≤ 1, 𝛼 (𝑦

∗

, 𝑧
0
) ≤ 1,

𝛽 (𝑥
∗

, 𝑧
0
) ≥ 1, 𝛽 (𝑦

∗

, 𝑧
0
) ≥ 1.

(65)

Now we will prove that 𝑧∗ = 𝑥
∗. By induction, we have that

𝛼(𝑥
∗

, 𝑧
𝑛
) ≤ 1 and 𝛽(𝑥

∗

, 𝑧
𝑛
) ≥ 1 for all 𝑛 ∈ N. Substituting

𝑥 = 𝑥
∗ and 𝑦 = 𝑧

𝑛
in (19), we get

𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛+1

)) = 𝜓 (𝑑 (𝑇𝑥
∗

, 𝑇𝑧
𝑛
))

≤ 𝛼 (𝑥
∗

, 𝑧
𝑛
) 𝜓 (𝑀

1
(𝑥
∗

, 𝑧
𝑛
))

− 𝛽 (𝑥
∗

, 𝑧
𝑛
) 𝜑 (𝑀

1
(𝑥
∗

, 𝑧
𝑛
)) ,

(66)

that is,

𝜓 (𝑑 (𝑇𝑥
∗

, 𝑇𝑧
𝑛
)) ≤ (𝜓 − 𝜑) (𝑀

1
(𝑥
∗

, 𝑧
𝑛
)) , (67)

where

𝑀
1
(𝑥
∗

, 𝑧
𝑛
)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑥

∗

, 𝑇𝑥
∗

) , 𝑑 (𝑧
𝑛
, 𝑇𝑧
𝑛
) ,
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𝑑 (𝑥
∗

, 𝑇𝑧
𝑛
) + 𝑑 (𝑧

𝑛
, 𝑇𝑥
∗

)

2

)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

) ,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑥
∗

)

2

)

≤ 2max (𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑥

∗

, 𝑧
𝑛+1

)) .

(68)

Now from inequality (67) and the condition (C), it follows
that, for all 𝑛 ∈ N,

either 𝑑 (𝑥
∗

, 𝑧
𝑛+1

) <

1

2

𝑀
1
(𝑥
∗

, 𝑧
𝑛
) or 𝑀

1
(𝑥
∗

, 𝑧
𝑛
) = 0.

(69)

If there is some 𝑛
0

∈ N such that 𝑀
1
(𝑥
∗

, 𝑧
𝑛
0

) = 0, the
proof is finished (because 𝑑(𝑧

𝑛
0

, 𝑇𝑧
𝑛
0

) = 0). On the contrary,
assume that 𝑑(𝑥∗, 𝑧

𝑛+1
) < (1/2)𝑀

1
(𝑥
∗

, 𝑧
𝑛
) for all 𝑛 ∈ N. If

𝑀
1
(𝑥
∗

, 𝑧
𝑛
) ≤ 2𝑑(𝑥

∗

, 𝑧
𝑛+1

), then

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) <

1

2

𝑀
1
(𝑥
∗

, 𝑧
𝑛
)

≤

1

2

2𝑑 (𝑥
∗

, 𝑧
𝑛+1

) = 𝑑 (𝑥
∗

, 𝑧
𝑛+1

) ,

(70)

which is a contradiction. Hence, necessarily, 𝑀
1
(𝑥
∗

, 𝑧
𝑛
) ≤

2𝑑(𝑥
∗

, 𝑧
𝑛
) for all 𝑛 ∈ N, and then

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) <

1

2

𝑀
1
(𝑥
∗

, 𝑧
𝑛
)

≤

1

2

2𝑑 (𝑥
∗

, 𝑧
𝑛
) = 𝑑 (𝑥

∗

, 𝑧
𝑛
) ∀𝑛 ∈ N.

(71)

Thus, we deduce that {𝑑(𝑥∗, 𝑧
𝑛
)} is a nonincreasing, bounded

below sequence, so there exists 𝑟 ≥ 0 such that {𝑑(𝑥∗, 𝑧
𝑛
)} →

𝑟. Therefore,
lim
𝑛→∞

𝑀
1
(𝑥
∗

, 𝑧
𝑛
)

= lim
𝑛→∞

max(𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

) ,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑥
∗

)

2

)

= max (𝑟, 0,

𝑟 + 𝑟

2

) = 𝑟.

(72)

By (67),

𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛+1

)) ≤ (𝜓 − 𝜑) (𝑀
1
(𝑥
∗

, 𝑧
𝑛
))

= 𝜓 (𝑀
1
(𝑥
∗

, 𝑧
𝑛
)) − 𝜑 (𝑀

1
(𝑥
∗

, 𝑧
𝑛
))

≤ 𝜓 (𝑀
1
(𝑥
∗

, 𝑧
𝑛
))

(73)

for all 𝑛 ∈ N. By the continuity of 𝜓 and taking limit as 𝑛 →

∞, we deduce that lim
𝑘→∞

𝜑(𝑀
1
(𝑥
∗

, 𝑧
𝑛
)) = 0. Using (a3),

we have 𝑟 = lim
𝑘→∞

𝑀
1
(𝑥
∗

, 𝑧
𝑛
) = 0; that is, {𝑧

𝑛
} → 𝑥

∗. This
completes the proof.

Theorem 21. Adding to the hypotheses of Theorem 16 (resp.,
Theorem 17) that𝑋 is (R

1
,R
2
)-directed with respect to 𝑇 and

𝑇 is of type I, II, III, IV, or V, we obtain the unicity of the fixed
point of 𝑇.

Proof. Following the lines of the proof ofTheorem 19, we will
prove that {𝑧

𝑛
} → 𝑥

∗. Since 𝑋 is (R
1
,R
2
)-directed with

respect to 𝑇, there exists 𝑧
0

∈ 𝑋 such that the sequence
{𝑧
𝑛
= 𝑇
𝑛

𝑧
0
}
𝑛∈N converges (to some 𝑧∗ ∈ 𝑋) and also 𝑥

∗R
1
𝑧
0
,

𝑦
∗R
1
𝑧
0
, 𝑥∗R

2
𝑧
0
, and 𝑥

∗R
1
𝑧
0
; that is,

𝛼 (𝑥
∗

, 𝑧
0
) ≤ 1, 𝛼 (𝑦

∗

, 𝑧
0
) ≤ 1,

𝛽 (𝑥
∗

, 𝑧
0
) ≥ 1, 𝛽 (𝑦

∗

, 𝑧
0
) ≥ 1.

(74)

Now we will prove that 𝑧
∗

= 𝑥
∗. By induction, we have

𝛼(𝑥
∗

, 𝑧
𝑛
) ≤ 1 and 𝛽(𝑥

∗

, 𝑧
𝑛
) ≥ 1, for all 𝑛 ∈ N. Substituting

𝑥 = 𝑥
∗ and 𝑦 = 𝑧

𝑛
in (19), we get

𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛+1

)) = 𝜓 (𝑑 (𝑇𝑥
∗

, 𝑇𝑧
𝑛
))

≤ 𝛼 (𝑥
∗

, 𝑧
𝑛
) 𝜓 (𝑀

1
(𝑥
∗

, 𝑧
𝑛
))

− 𝛽 (𝑥
∗

, 𝑧
𝑛
) 𝜑 (𝑀

1
(𝑥
∗

, 𝑧
𝑛
))

≤ (𝜓 − 𝜑) (𝑀
1
(𝑥
∗

, 𝑧
𝑛
)) ,

(75)

where

𝑀
1
(𝑥
∗

, 𝑧
𝑛
)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑥

∗

, 𝑇𝑥
∗

) , 𝑑 (𝑧
𝑛
, 𝑇𝑧
𝑛
) ,

𝑑 (𝑥
∗

, 𝑇𝑧
𝑛
) + 𝑑 (𝑧

𝑛
, 𝑇𝑥
∗

)

2

)

= max(𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

) ,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑥
∗

)

2

) .

(76)

Notice that

lim
𝑛→∞

𝑀
1
(𝑥
∗

, 𝑧
𝑛
)

= lim
𝑛→∞

max(𝑑 (𝑥
∗

, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1

) ,

𝑑 (𝑥
∗

, 𝑧
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑥
∗

)

2

)

= max(𝑑 (𝑥
∗

, 𝑧
∗

) , 0,

𝑑 (𝑥
∗

, 𝑧
∗

) + 𝑑 (𝑥
∗

, 𝑧
∗

)

2

)

= 𝑑 (𝑥
∗

, 𝑧
∗

) .

(77)

Taking into account that, for all 𝑛 ∈ N,

𝜓 (𝑑 (𝑥
∗

, 𝑧
𝑛+1

)) ≤ 𝜓 (𝑀
1
(𝑥
∗

, 𝑧
𝑛
)) − 𝜑 (𝑀

1
(𝑥
∗

, 𝑧
𝑛
))

≤ 𝜓 (𝑀
1
(𝑥
∗

, 𝑧
𝑛
)) ,

(78)
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and taking limit as 𝑛 → ∞, we deduce that the sequence
{𝜑(𝑀
1
(𝑥
∗

, 𝑧
𝑛
))}
𝑛∈N has finite limit and

𝜓 (𝑑 (𝑥
∗

, 𝑧
∗

)) ≤ 𝜓 (𝑑 (𝑥
∗

, 𝑧
∗

)) − lim
𝑛→∞

𝜑 (𝑀
1
(𝑥
∗

, 𝑧
𝑛
))

≤ 𝜓 (𝑑 (𝑥
∗

, 𝑧
∗

)) ,

(79)

so lim
𝑛→∞

𝜑(𝑀
1
(𝑥
∗

, 𝑧
𝑛
)) = 0. By (a3), we conclude that

𝑑(𝑥
∗

, 𝑧
∗

) = lim
𝑛→∞

𝑀
1
(𝑥
∗

, 𝑧
𝑛
) = 0; that is, 𝑥∗ = 𝑧

∗.

3. Applications

Very recently, a mapping satisfying contraction on metric
spaces endowed with a binary relation has been introduced
by Samet and Turinici in [17]; therefore, this work has been
extended and improved in [14, 18]. In this section, using
our main results, we derive some consequences on metric
spaces endowed with 𝑁-transitive binary relation, as on
metric spaces endowed with a partial order. Furthermore, we
establish a fixed point results for cyclic mappings.

3.1. Fixed Point Results on Metric Spaces Endowed with N-
Transitive Binary Relation. In this section, we establish a fixed
point theorem on metric space endowed with 𝑁-transitive
binary relation S. Therefore, we denote by 𝑥S𝑦 if 𝑥 is S-
related to 𝑦.

Definition 22. We say that (𝑋, 𝑑) is S-regular if for every
sequence {𝑥

𝑛
} in 𝑋 such that 𝑥

𝑛
→ 𝑥 ∈ 𝑋, and

𝑥
𝑛
S𝑥
𝑛+1

∀𝑛 ∈ N, (80)

there exists a subsequence {𝑥
𝑛(𝑘)

} such that

𝑥
𝑛(𝑘)

S𝑥 ∀𝑘 ∈ N. (81)

Definition 23. We say that a subset𝐷 of𝑋 isS-directed if for
every 𝑥, 𝑦 ∈ 𝐷, there exists 𝑧 ∈ 𝑋 such that 𝑥S𝑧 and 𝑦S𝑧.

Corollary 24. Let𝑋 be a nonempty set endowedwith a binary
relation S. Suppose that there is a metric 𝑑 on 𝑋 such that
(𝑋, 𝑑) is complete. Let𝑇 : 𝑋 → 𝑋 satisfy theS-weakly (𝜓, 𝜑)-
contractive conditions; that is,

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦))

− 𝜑 (𝑀 (𝑥, 𝑦)) ∀𝑥S𝑦,

(82)

where 𝜓, 𝜑 are altering distance functions and 𝑀 is given by
Definition 14. Suppose also that the following conditions hold:

(i) S is 𝑁-transitive (𝑁 > 0);
(ii) 𝑇 is a S-preserving mapping;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
S𝑇𝑥
0
;

(iv) 𝑇 is continuous or (𝑋, 𝑑) is S-regular.

Then 𝑇 has a fixed point. Moreover, if we suppose that 𝑋 is S-
directed with respect to 𝐼

𝑋
or 𝑇, then we have the uniqueness of

the fixed point.

Proof. In view to link this theorem to the main result, we
define the mapping 𝛼 : 𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1, if 𝑥S𝑦 or 𝑥M
𝑖
𝑦;

1 +

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

𝜓 (𝑀 (𝑥, 𝑦))

+

𝜑 (𝑀 (𝑥, 𝑦))

𝜑 (𝑀 (𝑥, 𝑦)) + 𝜓 (𝑀(𝑥, 𝑦))

,

otherwise;

(83)

and we define the mapping 𝛽 : 𝑋 × 𝑋 → [0, +∞) by

𝛽 (𝑥, 𝑦) =

{
{
{
{

{
{
{
{

{

1, if 𝑥S𝑦 or 𝑥M
𝑖
𝑦;

𝜓 (𝑀 (𝑥, 𝑦))

𝜑 (𝑀 (𝑥, 𝑦)) + 𝜓 (𝑀(𝑥, 𝑦))

,

otherwise,

(84)

where 𝑥M
𝑖
𝑦 for 𝑖 = 1, . . . , 5 are defined by

(a) 𝑥M
1
𝑦 if (𝑥 = 𝑦) ∧ (𝑥 = 𝑇𝑥) ∧ (𝑦 = 𝑇𝑦) ∧ (𝑥 =

𝑇𝑦) ∧ (𝑦 = 𝑇𝑥);
(b) 𝑥M

2
𝑦 if (𝑥 = 𝑦) ∧ (𝑥 = 𝑇𝑥) ∧ (𝑦 = 𝑇𝑦);

(c) 𝑥M
3
𝑦 if (𝑥 = 𝑦) ∧ (𝑥 = 𝑇𝑥) ∧ (𝑦 = 𝑇𝑦) ∧ (𝑥 =

𝑇𝑦) ∧ (𝑦 = 𝑇𝑥);
(d) 𝑥M

4
𝑦 if (𝑥 = 𝑦) ∧ (𝑥 = 𝑇𝑥) ∧ (𝑦 = 𝑇𝑦);

(e) 𝑥M
5
𝑦 if (𝑥 = 𝑦).

In case 𝑥 is neither S-related nor M
𝑖
-related to 𝑦, the

functions 𝛼 and 𝛽 are well defined, since 𝜑(𝑀(𝑥, 𝑦)) ̸= 0 and
𝜓(𝑀(𝑥, 𝑦)) ̸= 0.

We can verify easily thatR
1
andR

2
are 𝑁-transitive.

Next, we claim that 𝑇 is a (𝛼𝜓, 𝛽𝜑)-contractive mapping.
Indeed, in case 𝑥S𝑦, we get easily

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (𝑥, 𝑦) 𝜓 (𝑀 (𝑥, 𝑦))

− 𝛽 (𝑥, 𝑦) 𝜑 (𝑀 (𝑥, 𝑦)) ,

(85)

and in case𝑥 is neitherS-related norM
𝑖
-related to𝑦, we have

𝛼 (𝑥, 𝑦) 𝜓 (𝑀 (𝑥, 𝑦)) − 𝛽 (𝑥, 𝑦) 𝜑 (𝑀 (𝑥, 𝑦))

= 𝜓 (𝑀(𝑥, 𝑦)) + 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

≥ 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ,

(86)

hence, our claim holds.
Moreover, since 𝑇 is S-preserving, we get

𝑥, 𝑦 ∈ 𝑋, 𝑥R
1
𝑦 󳨐⇒ 𝛼 (𝑥, 𝑦) ≤ 1

󳨐⇒ 𝑥S𝑦 󳨐⇒ 𝑇𝑥S𝑇𝑦 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≤ 1

󳨐⇒ 𝑇𝑥R
1
𝑇𝑦,

(87)

and similarly, we have

𝑥, 𝑦 ∈ 𝑋, 𝑥R
2
𝑦 󳨐⇒ 𝛽 (𝑥, 𝑦) ≥ 1

󳨐⇒ 𝑥S𝑦 󳨐⇒ 𝑇𝑥S𝑇𝑦 󳨐⇒ 𝛽 (𝑇𝑥, 𝑇𝑦) ≥ 1

󳨐⇒ 𝑇𝑥R
2
𝑇𝑦.

(88)
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Thus, 𝑇 is R
𝑖
-preserving for 𝑖 = 1, 2. Now, if condition (iii)

is satisfied; that is, 𝑇 is continuous, the existence of a fixed
point follows fromTheorem 16. Suppose now that the (𝑋, 𝑑)

isS-regular; hence, let {𝑥
𝑛
} be a nondecreasing sequence in𝑋

such that 𝑥
𝑛
S𝑥
𝑛+1

; that is, 𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 1 and 𝛽(𝑥
𝑛
, 𝑥
𝑛+1

) ≥

1, for all 𝑛. Suppose also that 𝑥
𝑛

→ 𝑥 ∈ 𝑋 as 𝑛 → ∞.
Since (𝑋, 𝑑) is S-regular, there exists a subsequence {𝑥

𝑛(𝑘)
}

such that 𝑥
𝑛(𝑘)

S𝑥 for all 𝑘. This implies from the definition
of 𝛼 and 𝛽 that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≤ 1 and 𝛽(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1, for all 𝑘,

which implies that 𝑥
𝑛(𝑘)

R
𝑖
𝑥 for 𝑖 = 1, 2 and for all 𝑘. In this

case, the existence of a fixed point follows fromTheorem 17.
To show the uniqueness, suppose that 𝑋 is S-directed

with respect to 𝐼
𝑋
(resp., 𝑇); that is, for all 𝑥, 𝑦 ∈ 𝑋, there

exists a 𝑧 ∈ 𝑋 such that 𝑥S𝑧 and𝑦S𝑧 (resp., with {𝑇
𝑛

𝑧} being
a convergent sequence), which implies from the definition of
𝛼 and 𝛽 that (𝛼(𝑥, 𝑧) ≤ 1) ∧ (𝛼(𝑦, 𝑧) ≤ 1) and (𝛽(𝑥, 𝑧) ≥

1)∧(𝛽(𝑦, 𝑧) ≥ 1)); that is,𝑋 is (R
1
,R
2
)-directedwith respect

to 𝐼
𝑋
(resp., 𝑇). Hence, Theorem 20 or 19 (resp., Theorem 21)

gives us the uniqueness of this fixed point.

3.2. Fixed Point Results in PartiallyOrderedMetric Spaces. We
start by defining the binary relations R

𝑖
for 𝑖 = 1, 2 and the

concept of ≤-directed.

Definition 25. Let (𝑋, ≤) be a partially ordered set.

(1) We define two binary relationsR
1
andR

2
on 𝑋 by

𝑥, 𝑦 ∈ 𝑋 : 𝑥R
𝑖
𝑦 ⇐⇒ 𝑥 ≤ 𝑦 for 𝑖 = 1, 2. (89)

(2) We say that 𝑋 is ≤-directed if every 𝑥, 𝑦 ∈ 𝑋 have a
common upper bound; that is, there exists 𝑧 ∈ 𝑋 such
that 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧.

The following definition is useful later.

Definition 26. Let (𝑋, ≤) be a partially ordered set and 𝑑 be
a metric on 𝑋. We say that (𝑋, 𝑑) is ≤-regular if for every
nondecreasing sequence {𝑥

𝑛
} in 𝑋 such that {𝑥

𝑛
} → 𝑥 ∈ 𝑋,

there exists a subsequence {𝑥
𝑛(𝑘)

} such that 𝑥
𝑛(𝑘)

≤ 𝑥 for all
𝑘 ≥ 0.

Notice that, by the transitivity condition of ≤, in such a
case, we have 𝑥

𝑛
≤ 𝑥 for all 𝑛 ≥ 0.

Corollary 27. Let (𝑋, ≤) be a partially ordered set and 𝑑 be
a metric on 𝑋 such that (𝑋, 𝑑) is complete. Suppose that the
mapping 𝑇 : 𝑋 → 𝑋 is weakly contractive; that is,

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) , ∀𝑥 ≤ 𝑦,

(90)

where𝜓 and𝜑 are altering distance functions and𝑀 is given by
Definition 14. Suppose also that the following conditions hold:

(i) 𝑇 is a nondecreasing mapping;
(ii) there exists 𝑥

0
∈ 𝑋 with 𝑥

0
≤ 𝑇𝑥
0
;

(iii) 𝑇 is continuous or (𝑋, 𝑑) is ≤-regular.

Then 𝑇 has a fixed point. Moreover, if 𝑋 is ≤-directed with
respect to 𝐼

𝑋
or 𝑇, we have the uniqueness of the fixed point.

Proof. The proof follows immediately from the previous
proof, since ≤ is a binary, 1-transitive relation.

3.3. Fixed Point Results for Cyclic Contractive Mappings. The
main result of Kirk et al. in [19] is as follows.

Theorem 28 (see [19]). For 𝑖 ∈ {1, . . . , 𝑁}, let 𝐴
𝑖
be a non-

empty closed subset of a complete metric space (𝑋, 𝑑) and let
𝑇 : 𝑋 → 𝑋 be a given mapping. Suppose that the following
conditions hold:

(i) 𝑇(𝐴
𝑖
) ⊆ 𝐴

𝑖+1
for all 𝑖 ∈ {1, . . . , 𝑁} with 𝐴

𝑁+1
:= 𝐴
1
;

(ii) there exists 𝑘 ∈ (0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) . (91)

Then 𝑇 has a unique fixed point in ∩
𝑁

𝑖=1
𝐴
𝑖
.

Let us define the binary relationsR
1
andR

2
as follows.

Definition 29. Let 𝑋 be a nonempty set and let 𝐴
𝑖
, 𝑖 ∈

{1, . . . , 𝑁} be nonempty closed subsets of 𝑋. We define two
binary relationsR

𝑘
for 𝑘 = 1, 2 by

𝑥, 𝑦 ∈ 𝑋 : 𝑥R
𝑘
𝑦 ⇐⇒ (𝑥, 𝑦) ∈ Γ

:= ∪
𝑁

𝑖=1
(𝐴
𝑖
× 𝐴
𝑖+1

) with 𝐴
𝑁+1

:= 𝐴
1
.

(92)

Now, based onTheorem 17 we will derive a more general
result for cyclic mappings.

Corollary 30. For 𝑖 ∈ {1, . . . , 𝑁}, let 𝐴
𝑖
be nonempty closed

subsets of a complete metric space (𝑋, 𝑑) and let 𝑇 : 𝑋 → 𝑋

be a givenmapping. Suppose that the following conditions hold:

(i) 𝑇(𝐴
𝑖
) ⊆ 𝐴

𝑖+1
for all 𝑖 ∈ {1, . . . , 𝑁} with 𝐴

𝑁+1
:= 𝐴
1
;

(ii) there exists two altering distance functions 𝜓 and 𝜑

such that

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) ,

∀ (𝑥, 𝑦) ∈ 𝐴
𝑖
× 𝐴
𝑖+1

∀𝑖 ∈ {1, . . . , 𝑁} .

(93)

Then 𝑇 has a unique fixed point in ∩
𝑁

𝑖=1
𝐴
𝑖
.

Proof. Let 𝑌 := ∪
𝑁

𝑖=1
𝐴
𝑖
. For all 𝑖 ∈ {1, . . . , 𝑁}, we have

by assumption that each 𝐴
𝑖
is nonempty closed subset of

the complete metric space 𝑋, which implies that (𝑌, 𝑑) is
complete.

Define the mapping 𝛼 : 𝑌 × 𝑌 → [0, +∞) by

𝛼 (𝑥, 𝑦) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1, if (𝑥, 𝑦) ∈ Γ or 𝑥M
𝑖
𝑦;

1 +

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

𝜓 (𝑀 (𝑥, 𝑦))

+

𝜑 (𝑀 (𝑥, 𝑦))

𝜑 (𝑀 (𝑥, 𝑦)) + 𝜓 (𝑀(𝑥, 𝑦))

,

otherwise,

(94)
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and define the mapping 𝛽 : 𝑌 × 𝑌 → [0, +∞) by

𝛽 (𝑥, 𝑦) =

{
{
{
{
{
{

{
{
{
{
{
{

{

1,

if (𝑥, 𝑦) ∈ Γ or 𝑥M
𝑖
𝑦;

𝜓 (𝑀 (𝑥, 𝑦))

𝜑 (𝑀 (𝑥, 𝑦)) + 𝜓 (𝑀(𝑥, 𝑦))

otherwise.

(95)

Hence, Definition 15 is equivalent to Definition 29.
We start by checking that R

1
and R

2
are 𝑁-transitive.

Indeed, let 𝑥
0
, . . . , 𝑥

𝑁+1
∈ 𝑌 such that 𝑥

𝑘
R
1
𝑥
𝑘+1

and
𝑥
𝑘
R
2
𝑥
𝑘+1

for all 𝑘 ∈ {0, . . . , 𝑁}; that is, 𝛼(𝑥
𝑘
, 𝑥
𝑘+1

) ≤ 1 and
𝛽(𝑥
𝑘
, 𝑥
𝑘+1

) ≥ 1 for all 𝑘 ∈ {0, . . . , 𝑁} such that

𝑥
0
∈ 𝐴
𝑖
, 𝑥
1
∈ 𝐴
𝑖+1

, . . . , 𝑥
𝑘
∈ 𝐴
𝑖+𝑘

, . . . ,

𝑥
𝑁+1

∈ 𝐴
𝑖+𝑁+1

= 𝐴
𝑖+1

,

(96)

which implies that (𝑥
0
, 𝑥
𝑁+1

) ∈ 𝐴
𝑖
× 𝐴
𝑖+1

⊆ 𝑌. Hence,
we obtain 𝛼(𝑥

0
, 𝑥
𝑁+1

) ≤ 1 and 𝛽(𝑥
0
, 𝑥
𝑁+1

) ≥ 1, that is,
𝑥
0
R
1
𝑥
𝑁+1

and 𝑥
0
R
2
𝑥
𝑁+1

, which implies thatR
1
andR

2
are

𝑁-transitive.
Next, from (ii) and the definition of 𝛼 and 𝛽, we can write

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (𝑥, 𝑦) 𝜓 (𝑀 (𝑥, 𝑦))

− 𝛽 (𝑥, 𝑦) 𝜑 (𝑀 (𝑥, 𝑦)) ,

(97)

for all 𝑥, 𝑦 ∈ 𝑌. Thus, 𝑇 is (𝛼𝜓, 𝛽𝜑)-contractive mapping.
We claim next that 𝑇 is R

1
-preserving and R

2
-

preserving. Indeed, let 𝑥, 𝑦 ∈ 𝑌 such that 𝑥R
1
𝑦 and 𝑥R

2
𝑦;

that is, 𝛼(𝑥, 𝑦) ≤ 1 and 𝛽(𝑥, 𝑦) ≥ 1; hence, there exists
𝑖 ∈ {1, . . . , 𝑁} such that 𝑥 ∈ 𝐴

𝑖
, 𝑦 ∈ 𝐴

𝑖+1
. Thus, (𝑇𝑥, 𝑇𝑦) ∈

𝐴
𝑖+1

× 𝐴
𝑖+2

⊆ Γ; then 𝛼(𝑇𝑥, 𝑇𝑦) ≤ 1 and 𝛽(𝑇𝑥, 𝑇𝑦) ≥ 1, that
is, 𝑇𝑥R

1
𝑇𝑦 and 𝑇𝑥R

2
𝑇𝑦. Hence, our claim holds.

Also, from (i), for any 𝑥
0

∈ 𝐴
𝑖
for all 𝑖 ∈ {1, . . . , 𝑁}, we

have (𝑥
0
, 𝑇𝑥
0
) ∈ 𝐴
𝑖
×𝐴
𝑖+1

, which implies that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≤ 1

and 𝛽(𝑥
0
, 𝑇𝑥
0
) ≥ 1, that is, 𝑥

0
R
1
𝑇𝑥
0
and 𝑥

0
R
2
𝑇𝑥
0
.

Now, we claim that 𝑌 is (R
1
,R
2
)-regular. Let {𝑥

𝑛
} be a

sequence in 𝑌 such that 𝑥
𝑛

→ 𝑥 ∈ 𝑌 as 𝑛 → ∞, and

𝑥
𝑛
R
1
𝑥
𝑛+1

, 𝑥
𝑛
R
2
𝑥
𝑛+1

∀𝑛, (98)

that is,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 1, 𝛽 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 ∀𝑛. (99)

It follows that there exist 𝑖, 𝑗 ∈ {1, . . . , 𝑁} such that

𝑥
𝑛
∈ 𝐴
𝑖+𝑛

∀𝑛 ∈ N, 𝑥 ∈ 𝐴
𝑗
, (100)

so

𝑥
(𝑗−𝑖−1+𝑁)+𝑘𝑁

∈ 𝐴
𝑗−1+(𝑘+1)𝑁

= 𝐴
𝑗−1

∀𝑘 ∈ N. (101)

By letting

𝑛 (𝑘) := (𝑗 − 𝑖 − 1 + 𝑁) + 𝑘𝑁 ∀𝑘 ∈ N, (102)

we conclude that the subsequence {𝑥
𝑛(𝑘)

} satisfies

(𝑥
𝑛(𝑘)

, 𝑥) ∈ 𝐴
𝑗−1

× 𝐴
𝑗
⊆ Γ ∀𝑘 ∈ N, (103)

hence 𝛼(𝑥
𝑛(𝑘)

, 𝑥) ≤ 1 and 𝛽(𝑥
𝑛(𝑘)

, 𝑥) ≥ 1 for all 𝑘, that is,
𝑥
𝑛(𝑘)

R
1
𝑥 and 𝑥

𝑛(𝑘)
R
2
𝑥, which proves our claim.

Hence, all the hypotheses of Theorem 17 are satisfied on
(𝑌, 𝑑), and we deduce that 𝑇 has a fixed point 𝑥∗ in 𝑌. Since
𝑥
∗

∈ 𝐴
𝑖
for some 𝑖 ∈ {1, . . . , 𝑁} and 𝑥

∗

= 𝑇𝑥
∗

∈ 𝐴
𝑖+1

for all
𝑖 ∈ {1, . . . , 𝑁}, then 𝑥

∗

∈ ∩
𝑁

𝑖=1
𝐴
𝑖
.

Moreover, it is easy to check that 𝑋 is (R
1
,R
2
)-directed

with respect to 𝐼
𝑋
(resp., 𝑇). Indeed, let 𝑥, 𝑦 ∈ 𝑌 with 𝑥 ∈ 𝐴

𝑖
,

𝑦 ∈ 𝐴
𝑗
, 𝑖, 𝑗 ∈ {1, . . . , 𝑁}. For 𝑧 = 𝑥

∗

∈ 𝑌, we have ((𝛼(𝑥, 𝑧) ≤

1) ∧ (𝛼(𝑦, 𝑧) ≤ 1)), ((𝛽(𝑥, 𝑧) ≥ 1) ∧ (𝛽(𝑦, 𝑧) ≥ 1)), and
{𝑇
𝑛

𝑧} is a convergent sequence.Thus,𝑋 is (R
1
,R
2
)-directed

with respect to 𝐼
𝑋
or 𝑇. Hence, the uniqueness follows by

Theorem 19 or Theorem 20 (resp., Theorem 21).
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