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We apply the generalized projective Riccati equationsmethod to find the exact traveling wave solutions of some nonlinear evolution
equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation
and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other
nonlinear evolution equations in mathematical physics.

1. Introduction

In the recent years, investigations of exact solutions to
nonlinear partial differential equations (NPDEs) play an
important role in the study of nonlinear physical phenomena.
Nonlinear wave phenomena appear in various scientific and
engineering fields, such as fluid mechanics, plasma physics,
optical fibers, biology, solid state physics, chemical kinemat-
ics, chemical physics, and geochemistry. To obtain traveling
wave solutions,many powerfulmethods have been presented,
such as the inverse scattering method [1], the tanh-function
method [2–8], the Hirota bilinear transform method [9], the
truncated Painleve expansion method [10–13], the Backlund
transformmethod [14, 15], the Exp-functionmethod [16–20],
the Jacobi elliptic function expansion method [21–23], the
generalized Riccati equations method [24–26], the (𝐺󸀠/𝐺)-
expansion method [27–33], and the (𝐺󸀠/𝐺, 1/𝐺)-expansion
method [34–36]. Conte and Musette [37] presented an
indirect method to seekmore solitary wave solutions of some
NPDEs that can be expressed as polynomials in two ele-
mentary functions which satisfy a projective Riccati equation
[38]. Using this method, many solitary wave solutions of
manyNPDEs are found [38, 39]. Recently, Yan [40] developed
further Conte and Musette’s method by introducing more
generalized projective Riccati equations.

In this paper, we will use the generalized projective
Riccati equations method to construct exact solutions for the
following three nonlinear evolution equations with higher-
order nonlinear terms:

(i) the nonlinear Pochhammer-Chree equation [41]:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥𝑡𝑡

− (𝛼𝑢 + 𝛽𝑢
𝑛+1

+ 𝛾𝑢
2𝑛+1

)
𝑥𝑥
= 0,

𝑛 ≥ 1,

(1)

where 𝛼, 𝛽, and 𝛾 are constants and 𝛾 < 0,
(ii) the nonlinear Burgers equation [42]:

𝑢
𝑡
+ 𝑎(𝑢
𝑛
)
𝑥
+ 𝑏𝑢
𝑥𝑥
= 0, 𝑛 > 1, (2)

where 𝑎 and 𝑏 are constants;
(iii) the nonlinear generalized Zakharov-Kuznetsov

equation [43]:

𝑢
𝑡
+ (𝐴𝑢

𝑝
+ 𝐵𝑢
2𝑝
) 𝑢
𝑥
+ 𝐶 (𝑢

𝑥𝑥𝑥
+ 𝑢
𝑥𝑦𝑦
) = 0, 𝑝 > 0, (3)

where 𝐴, 𝐵, and 𝐶 are nonzero real constants.
Zuo [32] has applied the extended (𝐺󸀠/𝐺)-expansion

method and determined the exact solutions of (1), andHayek
[33] has found the exact solutions of (2) using another form
of the extended (𝐺󸀠/𝐺)-expansion method, while Zhang [44]
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has discussed (3) using an algebraicmethod to find someof its
exact solutions. The rest of this paper is organized as follows.
In Section 2, we give the description of the generalized pro-
jective Riccati equations method. In Section 3, we apply this
method to solve (1)–(3). In Section 4, physical explanations
of some obtained results are obtained. In Section 5, some
conclusions are given.

2. Description of the Generalized Projective
Riccati Equations Method

Consider we have the following NPDE:

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (4)

where 𝐹 is a polynomial in 𝑢(𝑥, 𝑡) and its partial derivatives,
in which the highest-order derivatives and nonlinear terms
are involved. In the following, we give the main steps of this
method.

Step 1. We use the wave transformation

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑥 − 𝑐𝑡, (5)

where 𝑐 is a constant, to reduce (4) to the following ODE:

𝑃 (𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, . . .) = 0, (6)

where 𝑃 is a polynomial in 𝑢(𝜉) and its total derivatives, such
that 󸀠 = 𝑑/𝑑𝜉.

Step 2. We assume that (6) has the formal solution

𝑢 (𝜉) = 𝐴
0
+

𝑚

∑
𝑖=1

𝜎
𝑖−1

(𝜉) [𝐴
𝑖
𝜎 (𝜉) + 𝐵

𝑖
𝜏 (𝜉)] , (7)

where𝐴
0
,𝐴
𝑖
, and𝐵

𝑖
are constants to be determined later.The

functions 𝜎(𝜉) and 𝜏(𝜉) satisfy the ODEs

𝜎
󸀠

(𝜉) = 𝜀𝜎 (𝜉) 𝜏 (𝜉) ,

𝜏
󸀠

(𝜉) = 𝑅 + 𝜀𝜏
2

(𝜉) − 𝜇𝜎 (𝜉) , 𝜀 = ±1,

(8)

where

𝜏
2

(𝜉) = −𝜀(𝑅 − 2𝜇𝜎 (𝜉) +
𝜇2 − 1

𝑅
𝜎
2

(𝜉)) , (9)

where 𝑅 and 𝜇 are nonzero constants.
If 𝑅 = 𝜇 = 0, (6) has the formal solution

𝑢 (𝜉) =

𝑚

∑
𝑖=0

𝐴
𝑖
𝜏
𝑖

(𝜉) , (10)

where 𝜏(𝜉) satisfies the ODE

𝜏
󸀠

(𝜉) = 𝜏
2

(𝜉) . (11)

Step 3. We determine the positive integer 𝑚 in (7) by
using the homogeneous balance between the highest-order

derivatives and the nonlinear terms in (6). In some nonlinear
equations the balance number 𝑚 is not a positive integer. In
this case, we make the following transformations.

(a) When 𝑚 = 𝑞/𝑝, where 𝑞/𝑝 is a fraction in the lowest
terms, we let

𝑢 (𝜉) = V𝑞/𝑝 (𝜉) , (12)

and then we substitute (12) into (6) to get a new equation in
the new function V(𝜉)with a positive integer balance number.

(b) When𝑚 is a negative number, we let

𝑢 (𝜉) = V𝑚 (𝜉) , (13)

and then we substitute (13) into (6) to get a new equation in
the new function V(𝜉)with a positive integer balance number.

Step 4. Substitute (7) along with (8)-(9) into (6) or (10) along
with (11) into (6). Collect all terms of the same order of
𝜎
𝑗(𝜉)𝜏𝑖(𝜉) (𝑗 = 0, 1, . . . , 𝑖 = 0, 1) (or 𝜏𝑗(𝜉), 𝑗 = 0, 1, . . .).

Setting each coefficient to zero yields a set of algebraic
equations which can be solved to find the values of 𝐴

0
, 𝐴
𝑖
,

𝐵
𝑖
, 𝑐, 𝜇, and 𝑅.

Step 5. It is well known [24] that (8) admits the following
solutions.

(i) If 𝜀 = −1, 𝑅 ̸= 0,

𝜎
1
(𝜉) =

𝑅 sech (√𝑅𝜉)

𝜇 sech (√𝑅𝜉) + 1
, 𝜏

1
(𝜉) =

√𝑅 tanh (√𝑅𝜉)

𝜇 sech (√𝑅𝜉) + 1
,

𝜎
2
(𝜉) =

𝑅 csch (√𝑅𝜉)

𝜇 csch (√𝑅𝜉) + 1
, 𝜏

2
(𝜉) =

√𝑅 coth (√𝑅𝜉)

𝜇 csch (√𝑅𝜉) + 1
.

(14)

(ii) If 𝜀 = 1, 𝑅 ̸= 0,

𝜎
3
(𝜉) =

𝑅 sec (√𝑅𝜉)

𝜇 sec (√𝑅𝜉) + 1
, 𝜏

3
(𝜉) =

√𝑅 tan (√𝑅𝜉)

𝜇 sec (√𝑅𝜉) + 1
,

𝜎
4
(𝜉) =

𝑅 csc (√𝑅𝜉)

𝜇 csc (√𝑅𝜉) + 1
, 𝜏

4
(𝜉) = −

√𝑅 cot (√𝑅𝜉)

𝜇 csc (√𝑅𝜉) + 1
.

(15)

(iii) If 𝑅 = 𝜇 = 0,

𝜎
5
(𝜉) =

𝐶

𝜉
, 𝜏

5
(𝜉) =

1

𝜀𝜉
, (16)

where 𝐶 is nonzero constant.

Step 6. Substituting the values of 𝐴
0
, 𝐴
𝑖
, 𝐵
𝑖
, 𝑐, 𝜇, and 𝑅 as

well as the solutions (14)–(16) into (7), we obtain the exact
solutions of (4).

We close this section with the remark that without loss of
generality we take 𝜀 = −1 (similarly the case 𝜀 = 1 can be
done which is omitted here for simplicity).
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3. Applications

In this section, we will apply the proposed method described
in Section 2 to find the exact traveling wave solutions of the
nonlinear equations (1)–(3).

Example 1 (the nonlinear Pochhammer-Chree equation (1)).
In this example, we find the exact solutions of (1). To this
end, we see that the traveling wave variable (5) permits us to
convert (1) into the following ODE:

𝑐
2
𝑢
󸀠󸀠
− 𝑐
2
𝑢
󸀠󸀠󸀠󸀠
− (𝛼𝑢 + 𝛽𝑢

𝑛+1
+ 𝛾𝑢
2𝑛+1

)
󸀠󸀠

= 0. (17)

Integrating (17) twice with respect to 𝜉 and vanishing the
constants of integration, we get

(𝑐
2
− 𝛼) 𝑢 − 𝑐

2
𝑢
󸀠󸀠
− 𝛽𝑢
𝑛+1

− 𝛾𝑢
2𝑛+1

= 0. (18)

By balancing 𝑢󸀠󸀠 with 𝑢2𝑛+1 in (18) we get𝑚 = 1/𝑛. According
to Step 3, we use the transformation

𝑢 (𝜉) = V1/𝑛 (𝜉) , (19)

where V(𝜉) is a new function of 𝜉. Substituting (19) into (18),
we get the new ODE

(𝑐
2
− 𝛼) 𝑛

2V2 − 𝑐2𝑛VV󸀠󸀠

− 𝑐
2

(1 − 𝑛) (V󸀠)
2

− 𝛽𝑛
2V3 − 𝛾𝑛2V4 = 0.

(20)

Balancing VV󸀠󸀠 with V4 in (20), we get 𝑚 = 1. Consequently,
we get

V (𝜉) = 𝐴
0
+ 𝐴
1
𝜎 (𝜉) + 𝐵

1
𝜏 (𝜉) , (21)

where 𝐴
0
, 𝐴
1
, and 𝐵

1
are constants to be determined later.

Substituting (21) into (20) and using (8)-(9) with 𝜀 = −1,
the left-hand side of (20) becomes a polynomial in 𝜎 and 𝜏.
Setting the coefficients of this polynomial to be zero yields the
following system of algebraic equations:

𝜎
4
: − 𝑛
2
𝛾𝐴
4

1
𝑅
2

+ 𝑅 (𝑐
2
𝑛𝐴
2

1
− 𝑐
2
𝑛𝜇
2
𝐴
2

1
− 𝑐
2
𝜇
2
𝐴
2

1

+ 𝑐
2
𝐴
2

1
− 6𝛾𝑛

2
𝜇
2
𝐴
2

1
𝐵
2

1
+ 6𝛾𝑛

2
𝐴
2

1
𝐵
2

1
)

+ 2𝑐
2
𝑛𝜇
2
𝐵
2

1
− 𝑐
2
𝑛𝜇
4
𝐵
2

1
− 𝑐
2
𝑛𝐵
2

1
− 𝑐
2
𝜇
4
𝐵
2

1

+ 2𝑐
2
𝜇
2
𝐵
2

1
− 𝑐
2
𝐵
2

1
− 𝛾𝑛
2
𝜇
4
𝐵
4

1

+ 2𝛾𝑛
2
𝜇
2
𝐵
4

1
− 𝛾𝑛
2
𝐵
4

1
= 0,

𝜎
3
: 2𝑐
2
𝜇
3
𝐵
2

1
− 2𝑐
2
𝜇𝐵
2

1
+ 2𝑐
2
𝑛𝐴
0
𝐴
1

+ 4𝑛
2
𝛾𝜇
3
𝐵
4

1
+ 2𝑅𝑐

2
𝜇𝐴
2

1
− 𝑅𝑛
2
𝛽𝐴
3

1

− 3𝑐
2
𝑛𝜇𝐵
2

1
− 4𝑛
2
𝛾𝜇𝐵
4

1
+ 3𝑛
2
𝛽𝐴
1
𝐵
2

1
+ 3𝑐
2
𝑛𝜇
3
𝐵
2

1

+ 12𝑛
2
𝛾𝐴
0
𝐴
1
𝐵
2

1
− 3𝑛
2
𝛽𝜇
2
𝐴
1
𝐵
2

1
+ 𝑅𝑐
2
𝑛𝜇𝐴
2

1

− 4𝑅𝑛
2
𝛾𝐴
0
𝐴
3

1
− 2𝑐
2
𝑛𝜇
2
𝐴
0
𝐴
1

+ 12𝑅𝑛
2
𝛾𝜇𝐴
2

1
𝐵
2

1
− 12𝑛

2
𝛾𝜇
2
𝐴
0
𝐴
1
𝐵
2

1
= 0,

𝜎
3
𝜏 : − 2𝑐

2
𝑛𝜇
2
𝐴
1
𝐵
1
+ 2𝑐
2
𝑛𝐴
1
𝐵
1
− 2𝑐
2
𝜇
2
𝐴
1
𝐵
1

+ 2𝑐
2
𝐴
1
𝐵
1
− 4𝛾𝑛

2
𝜇
2
𝐴
1
𝐵
3

1
− 4𝑅𝛾𝑛

2
𝐴
3

1
𝐵
1

+ 4𝛾𝑛
2
𝐴
1
𝐵
3

1
= 0,

𝜎
2
: 𝑅
2
(−𝑐
2
𝐴
2

1
− 6𝛾𝑛

2
𝐴
2

1
𝐵
2

1
)

+ 𝑅 (3𝑐
2
𝑛𝜇𝐴
0
𝐴
1
+ 2𝑐
2
𝑛𝐵
2

1
− 𝑐
2
𝜇
2
𝐵
2

1

− 6𝛾𝑛
2
𝜇
2
𝐵
4

1
+ 24𝛾𝑛

2
𝜇𝐴
0
A
1
𝐵
2

1

+ 6𝛽𝑛
2
𝜇𝐴
1
𝐵
2

1
− 6𝛾𝑛

2
𝐴
2

0
𝐴
2

1
− 3𝛽𝑛

2
𝐴
0
𝐴
2

1

− 𝛼𝑛
2
𝐴
2

1
+ 2𝛾𝑛

2
𝐵
4

1
+ 𝑐
2
𝑛
2
𝐴
2

1
− 3𝑐
2
𝑛𝜇
2
𝐵
2

1
)

+ 𝑐
2
𝑛
2
𝜇
2
𝐵
2

1
− 𝑐
2
𝑛
2
𝐵
2

1
− 6𝛾𝑛

2
𝜇
2
𝐴
2

0
𝐵
2

1

− 3𝛽𝑛
2
𝜇
2
𝐴
0
𝐵
2

1
− 𝛼𝑛
2
𝜇
2
𝐵
2

1
+ 6𝛾𝑛

2
𝐴
2

0
𝐵
2

1

+ 3𝛽𝑛
2
𝐴
0
𝐵
2

1
+ 𝛼𝑛
2
𝐵
2

1
= 0,

𝜎
2
𝜏 : 𝑛
2
𝛽𝐵
3

1
+ 2𝑐
2
𝑛𝐴
0
𝐵
1
− 𝑛
2
𝛽𝜇
2
𝐵
3

1

+ 4𝑛
2
𝛾𝐴
0
𝐵
3

1
+ 2𝑅𝑐

2
𝜇𝐴
1
𝐵
1
− 4𝑛
2
𝛾𝜇
2
𝐴
0
𝐵
3

1

− 3𝑅𝑛
2
𝛽𝐴
2

1
𝐵
1
− 2𝑐
2
𝑛𝜇
2
𝐴
0
𝐵
1
− 12𝑅𝑛

2
𝛾𝐴
0
𝐴
2

1
𝐵
1

+ 2𝑅𝑐
2
𝑛𝜇𝐴
1
𝐵
1
+ 8𝑅𝑛

2
𝛾𝜇𝐴
1
𝐵
3

1
= 0,

𝜎 : 2𝑐
2
𝑛
2
𝐴
0
𝐴
1
− 2𝑛
2
𝛼𝐴
0
𝐴
1
+ 2𝑛
2
𝛼𝜇𝐵
2

1

− 3𝑛
2
𝛽𝐴
2

0
𝐴
1
− 4𝑛
2
𝛾𝐴
3

0
𝐴
1
− 2𝑐
2
𝑛
2
𝜇𝐵
2

1

− 𝑅𝑐
2
𝑛𝐴
0
𝐴
1
+ 12𝑛

2
𝛾𝜇𝐴
2

0
𝐵
2

1
+ 𝑅𝑐
2
𝑛𝜇𝐵
2

1

+ 4𝑅𝑛
2
𝛾𝜇𝐵
4

1
− 3𝑅𝑛

2
𝛽𝐴
1
𝐵
2

1
+ 6𝑛
2
𝛽𝜇𝐴
0
𝐵
2

1

− 12𝑅𝑛
2
𝛾𝐴
0
𝐴
1
𝐵
2

1
= 0,

𝜎𝜏 : 2𝑐
2
𝑛
2
𝐴
1
𝐵
1
− 2𝑛
2
𝛼𝐴
1
𝐵
1
+ 2𝑛
2
𝛽𝜇𝐵
3

1

− 12𝑛
2
𝛾𝐴
2

0
𝐴
1
𝐵
1
− 𝑅𝑐
2
𝑛𝐴
1
𝐵
1
+ 𝑐
2
𝑛𝜇𝐴
0
𝐵
1

− 6𝑛
2
𝛽𝐴
0
𝐴
1
𝐵
1
− 4𝑅𝑛

2
𝛾𝐴
1
𝐵
3

1
+ 8𝑛
2
𝛾𝜇𝐴
0
𝐵
3

1
= 0,

𝜏 : 2𝑐
2
𝑛
2
𝐴
0
𝐵
1
− 4𝛾𝑛

2
𝐴
3

0
𝐵
1
− 3𝛽𝑛

2
𝐴
2

0
𝐵
1

− 4𝑅𝛾𝑛
2
𝐴
0
𝐵
3

1
− 2𝛼𝑛

2
𝐴
0
𝐵
1
− 𝑅𝛽𝑛

2
𝐵
3

1
= 0,

𝜎
0
: 𝑐
2
𝑛
2
𝐴
2

0
− 𝑛
2
𝛼𝐴
2

0
− 𝑛
2
𝛽𝐴
3

0
− 𝑛
2
𝛾𝐴
4

0

− 𝑅𝑛
2
𝛼𝐵
2

1
+ 𝑅𝑐
2
𝑛
2
𝐵
2

1
− 𝑅
2
𝑛
2
𝛾𝐵
4

1

− 6𝑅𝑛
2
𝛾𝐴
2

0
𝐵
2

1
− 3𝑅𝑛

2
𝛽𝐴
0
𝐵
2

1
= 0.

(22)
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On solving the above algebraic equations using the Maple or
Mathematica, we get the following results.

Case 1. We have

𝐴
0
= 0, 𝐴

1
= −

𝛽 (𝑛 + 1) (𝜇
2 − 1)

𝜇𝛾𝑅 (𝑛 + 2)
,

𝐵
1
= 0, 𝑐 = ±

𝛽𝑛

𝜇 (𝑛 + 2)
√−

(𝑛 + 1) (𝜇
2 − 1)

𝛾𝑅
,

𝜇 = 𝜇, 𝛼 =
(𝑅 − 𝑛2) (𝑛 + 1) (𝜇

2 − 1)

𝜇2𝛾𝑅(𝑛 + 2)
2

.

(23)

From (14), (19), (21), and (23), we deduce the following exact
solutions:

𝑢
11
= [−

𝛽(𝑛 + 1)(𝜇2 − 1)

𝜇𝛾(𝑛 + 2)
(

sech (√𝑅𝜉)

𝜇sech (√𝑅𝜉) + 1
)]

1/𝑛

, (24)

𝑢
12
= [−

𝛽(𝑛 + 1)(𝜇2 − 1)

𝜇𝛾(𝑛 + 2)
(

csch (√𝑅𝜉)

𝜇csch (√𝑅𝜉) + 1
)]

1/𝑛

, (25)

where 𝜉 = 𝑥 ± (𝛽𝑛/𝜇(𝑛 + 2))√−((𝑛 + 1)(𝜇2 − 1)/𝛾𝑅)𝑡.

Case 2. We have

𝐴
0
= −

𝛽 (𝑛 + 1)

2𝛾 (𝑛 + 2)
, 𝐴

1
= 0,

𝐵
1
= ±

𝛽 (𝑛 + 1)

2𝛾 (𝑛 + 2)√𝑅
, 𝑐 = ±

𝛽𝑛

2 (𝑛 + 2)
√−

(𝑛 + 1)

𝛾𝑅
,

𝜇 = 0, 𝛼 =
𝛽2 (4𝑅 − 𝑛2) (𝑛 + 1)

4𝛾𝑅(𝑛 + 2)
2

.

(26)

In this case, we deduce the following exact solutions:

𝑢
21
= [

𝛽(𝑛 + 1)

2𝛾(𝑛 + 2)
(−1 ± tanh (√𝑅𝜉))]

1/𝑛

, (27)

𝑢
22
= [

𝛽(𝑛 + 1)

2𝛾(𝑛 + 2)
(−1 ± coth (√𝑅𝜉))]

1/𝑛

, (28)

where 𝜉 = 𝑥 ± (𝛽𝑛/2(𝑛 + 2))√−((𝑛 + 1)/𝛾𝑅)𝑡.

Case 3. We have

𝐴
0
= −

𝛽 (𝑛 + 1)

2𝛾 (𝑛 + 2)
, 𝐴

1
= ±

𝛽 (𝑛 + 1)√𝜇2 − 1

2𝛾𝑅 (𝑛 + 2)
,

𝐵
1
= ±

𝛽 (𝑛 + 1)

2𝛾 (𝑛 + 2)√𝑅
, 𝜇 = 𝜇,

𝑐 = ±
𝛽𝑛

(𝑛 + 2)
√−

(𝑛 + 1)

𝛾𝑅
, 𝛼 =

𝛽2 (𝑅 − 𝑛2) (𝑛 + 1)

𝛾𝑅(𝑛 + 2)
2

.

(29)

In this case, we deduce the following exact solutions:

𝑢
31
=
[
[

[

𝛽 (𝑛 + 1)

2𝛾 (𝑛 + 2)

×(−1 ±
√𝜇2 − 1 sech (√𝑅𝜉) + tanh (√𝑅𝜉)

𝜇 sech (√𝑅𝜉) + 1
)
]
]

]

1/𝑛

,

(30)

𝑢
32

=
[
[

[

𝛽 (𝑛 + 1)

2𝛾 (𝑛 + 2)

×(−1 ±
√𝜇2 − 1 csch (√𝑅𝜉) + coth (√𝑅𝜉)

𝜇 csch (√𝑅𝜉) + 1
)
]
]

]

1/𝑛

,

(31)

where 𝜉 = 𝑥 ± (𝛽𝑛/(𝑛 + 2))√−((𝑛 + 1)/𝛾𝑅)𝑡.

Example 2 (the nonlinear Burgers equation (2)). In this
example, we study the Burgers equation with power-law
nonlinearity (2). To this end, we see that the traveling wave
variable (4) permits us to convert (2) into the following ODE:

−𝑐𝑢
󸀠
+ 𝑎(𝑢
𝑛
)
󸀠

+ 𝑏𝑢
󸀠󸀠
= 0. (32)

Integrating (32) once with respect 𝜉 and setting the constant
of integration to be zero yield

−𝑐𝑢 + 𝑎𝑢
𝑛
+ 𝑏𝑢
󸀠
= 0. (33)

By balancing 𝑢󸀠 with 𝑢𝑛 in (33) we get 𝑚 = 1/(𝑛 − 1).
According to Step 3, we use the transformation

𝑢 (𝜉) = V1/(𝑛−1) (𝜉) , (34)

where V(𝜉) is a new function of 𝜉. Substituting (34) into (33),
we get the new ODE

−𝑐 (𝑛 − 1) V + 𝑎 (𝑛 − 1) V2 + 𝑏V󸀠 = 0. (35)

Balancing V󸀠 with V2 in (35), we get𝑚 = 1. Consequently, we
get

V (𝜉) = 𝐴
0
+ 𝐴
1
𝜎 (𝜉) + 𝐵

1
𝜏 (𝜉) , (36)

where 𝐴
0
, 𝐴
1
, and 𝐵

1
are constants to be determined later.

Substituting (36) into (35) and using (8)-(9) with 𝜀 = −1,
the left-hand side of (35) becomes a polynomial in 𝜎 and 𝜏.
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Setting the coefficients of this polynomial to be zero yields the
following system of algebraic equations:

𝜎
2
: 𝑏𝐵
1
+ 𝑎𝐵
2

1
− 𝑎𝜇
2
𝐵
2

1
− 𝑅𝑎𝐴

2

1

− 𝑎𝑛𝐵
2

1
− 𝑏𝜇
2
𝐵
1
+ 𝑎𝑛𝜇

2
𝐵
2

1
+ 𝑅𝑎𝑛𝐴

2

1
= 0,

𝜎 : 𝑏𝜇𝐵
1
− (𝑛 − 1) 𝑐𝐴

1
+ 2 (𝑛 − 1) 𝑎𝐴

0
𝐴
1

− 2 (𝑛 − 1) 𝑎𝜇𝐵
2

1
= 0,

𝜎𝜏 : 2 (𝑛 − 1) 𝑎𝐴
1
𝐵
1
− 𝑏𝐴
1
= 0,

𝜏 : 2 (𝑛 − 1) 𝑎𝐴
0
𝐵
1
− (𝑛 − 1) 𝑐𝐵

1
= 0,

𝜎
0
: (𝑛 − 1) 𝑎𝐴

2

0
− (𝑛 − 1) 𝑐𝐴

0
+ (𝑛 − 1) 𝑅𝑎𝐵

2

1
= 0.

(37)

On solving the above algebraic equations using the Maple or
Mathematica, we get the following results.

Case 1. We have

𝐴
0
= ±

𝑏√𝑅

2𝑎 (𝑛 − 1)
, 𝐴

1
= ±

𝑏

2𝑎 (𝑛 − 1)
√𝜇
2 − 1

𝑅
,

𝐵
1
=

𝑏

2𝑎 (𝑛 − 1)
, 𝑐 = ±

𝑏√𝑅

𝑛 − 1
.

(38)

From (14), (34), (36), and (38), we deduce the following exact
solutions:

𝑢
11
=
[
[

[

𝑏√𝑅

2𝑎 (𝑛 − 1)

×(±1 +
tanh (√𝑅𝜉) ± √𝜇2 − 1sech (√𝑅𝜉)

𝜇 sech (√𝑅𝜉) + 1
)
]
]

]

1/(𝑛−1)

,

(39)

𝑢
12
=
[
[

[

𝑏√𝑅

2𝑎 (𝑛 − 1)

×(±1 +
coth (√𝑅𝜉) ± √𝜇2 − 1csch (√𝑅𝜉)

𝜇 csch (√𝑅𝜉) + 1
)
]
]

]

1/(𝑛−1)

,

(40)

where 𝜉 = 𝑥 ± (𝑏√𝑅/(𝑛 − 1))𝑡.

Case 2. We have

𝐴
0
= ±

𝑏√𝑅

𝑎 (𝑛 − 1)
, 𝐴

1
= 0,

𝐵
1
=

𝑏

𝑎 (𝑛 − 1)
, 𝑐 = ±

2𝑏√𝑅

𝑛 − 1
, 𝜇 = 0.

(41)

In this case, we deduce the following exact solutions:

𝑢
21
= [

𝑏√𝑅

𝑎(𝑛 − 1)
(tanh(√𝑅𝜉) ± 1)]

1/(𝑛−1)

, (42)

𝑢
22
= [

𝑏√𝑅

𝑎(𝑛 − 1)
(coth(√𝑅𝜉) ± 1)]

1/(𝑛−1)

, (43)

where 𝜉 = 𝑥 ± (2𝑏√𝑅/(𝑛 − 1))𝑡.

Example 3 (the nonlinear generalized Zakharov-Kuznetsov
equation (3)). In this example, we study the generalized
Zakharov-Kuznetsov equation with power-law nonlinearity
(3). To this end, we use the traveling wave variable

𝑢 (𝑥, 𝑦, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑥 + 𝑘𝑦 + 𝑠𝑡, (44)

where 𝑘 and 𝑠 are nonzero constants, to reduce (3) to the
following ODE:

𝑠𝑢
󸀠
+ (𝐴𝑢

𝑝
+ 𝐵𝑢
2𝑝
) 𝑢
󸀠
+ 𝐶 (1 + 𝑘

2
) 𝑢
󸀠󸀠󸀠
= 0. (45)

By balancing 𝑢󸀠󸀠󸀠 with 𝑢2𝑝𝑢󸀠 in (45) we get 𝑚 = 1/𝑝.
According to Step 3, we use the transformation

𝑢 (𝜉) = V1/𝑝 (𝜉) , (46)

where V(𝜉) is a new function of 𝜉. Substituting (46) into (45),
we get the new ODE

𝐶𝑝
2
(1 + 𝑘

2
) V2V󸀠󸀠󸀠 + 3𝐶 (−𝑝2 + 𝑝 − 𝑘2𝑝2 + 𝑘2𝑝) VV󸀠V󸀠󸀠

+ 𝐶 (1 − 3𝑝 − 3𝑘
2
𝑝 + 2𝑝

2
+ 𝑘
2
+ 2𝑘
2
𝑝
2
) (V󸀠)

3

+ (𝐴V + 𝑠 + 𝐵V2) 𝑝2V2V󸀠 = 0.
(47)

Balancing V2V󸀠󸀠󸀠with V4V󸀠 in (47), we get𝑚 = 1. Consequently,
we get

V (𝜉) = 𝐴
0
+ 𝐴
1
𝜎 (𝜉) + 𝐵

1
𝜏 (𝜉) , (48)

where 𝐴
0
, 𝐴
1
, and 𝐵

1
are constants to be determined later.

Substituting (48) into (47) and using (8)-(9) with 𝜀 = −1,
the left-hand side of (47) becomes a polynomial in 𝜎 and 𝜏.
Setting the coefficients of this polynomial to be zero yields a
system of algebraic equations in 𝐴

0
, 𝐴
1
, 𝐵
1
, 𝜇, and 𝑐, which

can be solved using the Maple or Mathematica; we get the
following results.

Case 1. We have

𝐴
0
= 0, 𝐴

1
= −

𝐴 (2𝑝 + 1) (𝜇2 − 1)

𝜇𝐵𝑅 (𝑝 + 2)
,

𝐵
1
= 0, 𝜇 = 𝜇, 𝑠 =

𝐴2 (2𝑝 + 1) (𝜇2 − 1)

𝜇2𝐵(𝑝 + 2)
2

(𝑝 + 1)
,

𝑘 = ±√−
𝐴2𝑝2 (2𝑝 + 1) (𝜇2 − 1)

𝜇2𝑅𝐵𝐶(𝑝 + 2)
2

(𝑝 + 1)
− 1.

(49)
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From (14), (46), (48), and (49), we deduce the following exact
solutions:

𝑢
11
= [−

𝐴(2𝑝 + 1)(𝜇2 − 1)

𝜇𝐵(𝑝 + 2)
(

sech (√𝑅𝜉)

𝜇 sech (√𝑅𝜉) + 1
)]

1/𝑝

,

(50)

𝑢
12
= [−

𝐴(2𝑝 + 1)(𝜇2 − 1)

𝜇𝐵(𝑝 + 2)
(

csch (√𝑅𝜉)

𝜇 csch (√𝑅𝜉) + 1
)]

1/𝑝

,

(51)

where 𝜉 = 𝑥 + 𝑘𝑦 + 𝑠𝑡, 𝑘 =

±√−(𝐴2𝑝2(2𝑝 + 1)(𝜇2 − 1)/𝜇2𝑅𝐵𝐶(𝑝 + 2)
2
(𝑝 + 1)) − 1,

𝑠 = (𝐴2(2𝑝 + 1)(𝜇2 − 1)/𝜇2𝐵(𝑝 + 2)2(𝑝 + 1)).

Case 2. We have

𝐴
0
= −

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)
, 𝐴

1
= 0,

𝐵
1
= ±

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)√𝑅
, 𝜇 = 1,

𝑠 =
𝐴2 (2𝑝 + 1)

𝐵(𝑝 + 2)
2

(𝑝 + 1)

𝑘 = ±√−
𝐴2𝑝2 (2𝑝 + 1)

𝑅𝐵𝐶(𝑝 + 2)
2

(𝑝 + 1)
− 1.

(52)

In this case, we have the exact solutions

𝑢
21
= [

𝐴(2𝑝 + 1)

2𝐵(𝑝 + 2)
(−1 ±

tanh (√𝑅𝜉)

sech (√𝑅𝜉) + 1
)]

1/𝑝

, (53)

𝑢
22
= [

𝐴(2𝑝 + 1)

2𝐵(𝑝 + 2)
(−1 ±

coth (√𝑅𝜉)

csch (√𝑅𝜉) + 1
)]

1/𝑝

, (54)

where 𝜉 = 𝑥 + 𝑘𝑦 + 𝑠𝑡, 𝑘 =

±√−(𝐴2𝑝2(2𝑝 + 1)/𝑅𝐵𝐶(𝑝 + 2)
2
(𝑝 + 1)) − 1, 𝑠 =

(𝐴2(2𝑝 + 1)/𝐵(𝑝 + 2)2(𝑝 + 1)).

Case 3. We have

𝐴
0
= −

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)
, 𝐴

1
= 0,

𝐵
1
= ±

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)√𝑅
,

𝜇 = −1, 𝑠 =
𝐴2 (2𝑝 + 1)

𝐵(𝑝 + 2)
2

(𝑝 + 1)
,

𝑘 = ±√−
𝐴
2
𝑝
2
(2𝑝 + 1)

𝑅𝐵𝐶(𝑝 + 2)
2

(𝑝 + 1)
− 1.

(55)

In this case, we have the exact solutions

𝑢
31
= [

𝐴(2𝑝 + 1)

2𝐵(𝑝 + 2)
(−1 ±

tanh (√𝑅𝜉)

1 − sech (√𝑅𝜉)
)]

1/𝑝

, (56)

𝑢
32
= [

𝐴(2𝑝 + 1)

2𝐵(𝑝 + 2)
(−1 ±

coth (√𝑅𝜉)

1 − csch (√𝑅𝜉)
)]

1/𝑝

, (57)

where 𝜉 = 𝑥 + 𝑘𝑦 + 𝑠𝑡, 𝑘 =

±√−(𝐴2𝑝2(2𝑝 + 1)/𝑅𝐵𝐶(𝑝 + 2)
2
(𝑝 + 1)) − 1, 𝑠 =

(𝐴2(2𝑝 + 1)/𝐵(𝑝 + 2)2(𝑝 + 1)).

Case 4. We have

𝐴
0
= −

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)
, 𝐴

1
= 0,

𝐵
1
= ±

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)√𝑅
,

𝜇 = 0, 𝑠 =
𝐴2 (2𝑝 + 1)

𝐵(𝑝 + 2)
2

(𝑝 + 1)

𝑘 = ±√−
𝐴2𝑝2 (2𝑝 + 1)

4𝑅𝐵𝐶(𝑝 + 2)
2

(𝑝 + 1)
− 1.

(58)

In this case, we have the exact solutions

𝑢
41
= [

𝐴(2𝑝 + 1)

2𝐵(𝑝 + 2)
(−1 ± tanh (√𝑅𝜉))]

1/𝑝

, (59)

𝑢
42
= [

𝐴(2𝑝 + 1)

2𝐵(𝑝 + 2)
(−1 ± coth (√𝑅𝜉))]

1/𝑝

, (60)

where 𝜉 = 𝑥 + 𝑘𝑦 + 𝑠𝑡, 𝑘 =

±√−(𝐴2𝑝2(2𝑝 + 1)/4𝑅𝐵𝐶(𝑝 + 2)
2
(𝑝 + 1)) − 1, 𝑠 =

(𝐴2(2𝑝 + 1)/𝐵(𝑝 + 2)2(𝑝 + 1)).

Case 5. We have

𝐴
0
= −

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)
, 𝐴

1
= ±

𝐴 (2𝑝 + 1)√𝜇2 − 1

2𝐵𝑅 (𝑝 + 2)
,

𝐵
1
= ±

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)√𝑅
, 𝜇 = 𝜇,

𝑠 =
𝐴2 (2𝑝 + 1)

𝐵(𝑝 + 2)
2

(𝑝 + 1)
,

𝑘 = ±√−
𝐴
2
𝑝
2
(2𝑝 + 1)

𝑅𝐵𝐶(𝑝 + 2)
2

(𝑝 + 1)
− 1.

(61)



Abstract and Applied Analysis 7

0.6

0.5

0.4

0.3

0.2

0.1

4

4

2

2
0 0

−2

−2

−4

−4

x t

Figure 1: The plot of solution (24) with 𝛽 = 𝑅 = 1, 𝜇 = 𝑛 = 2, and
𝛾 = −1.
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Figure 2: The plot of solution (27) with 𝛽 = 𝑅 = 𝑛 = 1, and 𝛾 = −1.

In this case, we have the exact solutions

𝑢
51
=
[
[

[

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)

×(−1 ±
√𝜇2 − 1sech (√𝑅𝜉) + tanh (√𝑅𝜉)

𝜇 sech (√𝑅𝜉) + 1
)
]
]

]

1/𝑝

,

(62)
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Figure 3: The plot of solution (30) with 𝛽 = 𝑅 = 1, 𝜇 = 𝑛 = 2, and
𝛾 = −1.

𝑢
52
=
[
[

[

𝐴 (2𝑝 + 1)

2𝐵 (𝑝 + 2)

× (−1 ±
√𝜇2 − 1csch (√𝑅𝜉) + coth (√𝑅𝜉)

𝜇 csch (√𝑅𝜉) + 1
)
]
]

]

1/𝑝

,

(63)

where 𝜉 = 𝑥 + 𝑘𝑦 + 𝑠𝑡, 𝑘 =

±√−(𝐴2𝑝2(2𝑝 + 1)/𝑅𝐵𝐶(𝑝 + 2)
2
(𝑝 + 1)) − 1, 𝑠 =

(𝐴2(2𝑝 + 1)/𝐵(𝑝 + 2)
2
(𝑝 + 1)).

4. Physical Explanations of Some
Obtained Solutions

In this section, we have presented some graphs of the
obtained solutions constructed by taking suitable values of
involved unknown parameters to visualize the underlying
mechanism of the original equation. Using mathematical
software Maple, three-dimensional plots of some obtained
exact solutions have been shown in Figures 1, 2, 3, 4, 5, 6, 7,
and 8.

4.1. The Nonlinear Pochhammer-Chree Equation (1). The
obtained solutions for this equation are hyperbolic. From
these explicit results it is easy to say that the solution (24) is
a bell shaped soliton solution; (25) is a singular bell shaped
soliton solution; (27) is a kink shaped soliton solution; (28)
is a singular kink shaped soliton solution; (30) is a bell-kink
shaped soliton solution; and (31) is a singular bell-kink shaped
soliton solution.

4.2. The Nonlinear Burgers Equation (2). From the obtained
solutions for the nonlinear Burgers equation (2) we observe
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Figure 4:The plot of solution (31) with 𝛽 = 𝑅 = 2, 𝜇 = 3, 𝑛 = 1, and
𝛾 = −1.
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Figure 5: The plot of solution (39) with 𝑎 = 𝑛 = 𝜇 = 2, 𝑏 = 𝑅 = 1.

that the solution (39) is a bell-kink shaped soliton solution;
(40) is a singular bell-kink shaped soliton solution; (42) is
a kink shaped soliton solution; and (43) is a singular kink
shaped soliton solution.

4.3.The Generalized Nonlinear Zakharov-Kuznetsov Equation
(3). From the obtained solutions for the generalized nonlin-
ear Zakharov-Kuznetsov equation (3) we can easily conclude
that the solution (50) is a bell shaped soliton solution; (51)
is a singular bell shaped soliton solution; (53), (56), and (62)
are bell-kink shaped solitons solutions; (54), (57), and (63)
are singular bell-kink shaped solitons solutions; (59) is a kink
shaped soliton solution; and (60) is a singular kink shaped
soliton solution.
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Figure 6: The plot of solution (42) with 𝑎 = 𝑏 = 1, 𝑅 = 𝑛 = 2.
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Figure 7:The plot of solution (51) with 𝑝 = 1,𝐴 = 𝑅 = 2, 𝐵 = 𝜇 = 3,
and 𝑘 = 0.

5. Conclusions

The generalized projective Riccati equations method is used
in this paper to obtain some new exact solutions of some non-
linear evolution equations with any-order nonlinear terms,
namely, the nonlinear Pochhammer-Chree equation, the
nonlinear Burgers equation, and the generalized Zakharov-
Kuznetsov equation. On comparing our results in this paper
with the well-known results obtained in [32, 33, 41–44] we
deduce that our results are different and new and are not
published elsewhere. The proposed method of this paper
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Figure 8:The plot of solution (60) with 𝑝 = 1,𝐴 = 6√2, 𝑅 = 𝐵 = 3,
and 𝑘 = 0.

is effective and can be applied to many other nonlinear
equations in mathematical physics.
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