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In the paper by Mocanu (1980), Mocanu has obtained sufficient conditions for a function in the classes 𝐶
1
(𝑈), respectively, and

𝐶
2
(𝑈) to be univalent and to map 𝑈 onto a domain which is starlike (with respect to origin), respectively, and convex. Those

conditions are similar to those in the analytic case. In the paper by Mocanu (1981), Mocanu has obtained sufficient conditions
of univalency for complex functions in the class 𝐶

1 which are also similar to those in the analytic case. Having those papers as
inspiration, we try to introduce the notion of subordination for nonanalytic functions of classes 𝐶

1 and 𝐶
2 following the classical

theory of differential subordination for analytic functions introduced by Miller and Mocanu in their papers (1978 and 1981) and
developed in their book (2000). LetΩ be any set in the complex planeC, let𝑝 be a nonanalytic function in the unit disc𝑈,𝑝 ∈ 𝐶

2
(𝑈),

and let 𝜓(𝑟, 𝑠, 𝑡; 𝑧) : C3 × 𝑈 → C. In this paper, we consider the problem of determining properties of the function 𝑝, nonanalytic
in the unit disc 𝑈, such that 𝑝 satisfies the differential subordination 𝜓(𝑝(𝑧), 𝐷𝑝(𝑧), 𝐷

2
𝑝(𝑧) − 𝐷𝑝(𝑧); 𝑧) ⊂ Ω ⇒ 𝑝(𝑈) ⊂ Δ.

1. Introduction and Preliminaries

Let 𝑈 = {𝑧 ∈ C : |𝑧| < 1} be the unit disc of the complex
plane with 𝑈 = {𝑧 ∈ C : |𝑧| ≤ 1} and 𝜕𝑈 = {𝑧 ∈ C : |𝑧| = 1},
and let 𝐻(𝑈) be the class of analytic functions on 𝑈. We also
consider the class of nonanalytic functions of classes 𝐶

1 and
𝐶
2, respectively.

Definition 1 (see [1, 2]). Let 𝑓 be a complex function defined
in the unit disc 𝑈.

For 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝑈, we put

𝑓 (𝑧) = 𝑢 (𝑥, 𝑦) + 𝑖V (𝑥, 𝑦) . (1)

We say that the function 𝑓 belongs to the class 𝐶
1
(𝑈) or

𝐶
2
(𝑈), if the functions 𝑢 = Re𝑓 and V = Im𝑓 of the real

variables𝑥 and𝑦 have continuous first-order or second-order
partial derivatives in 𝑈, respectively.

For 𝑓 ∈ 𝐶
1
(𝑈), we denote

𝐷𝑓 = 𝑧 ⋅
𝜕𝑓

𝜕𝑧
− 𝑧 ⋅

𝜕𝑓

𝜕𝑧
,

D𝑓 = 𝑧 ⋅
𝜕𝑓

𝜕𝑧
+ 𝑧 ⋅

𝜕𝑓

𝜕𝑧
,

(2)

where

𝜕𝑓

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
) ,

𝜕𝑓

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
) .

(3)

Remark 2. (1) It is obvious that the linear differential oper-
ators 𝐷 and D verify the usual rules of differential calculus.
For instance,

𝐷 (𝑓𝑔) = 𝑓𝐷𝑔 + 𝑔𝐷𝑓,

D (𝑓𝑔) = 𝑓D𝑔 + 𝑔D𝑓,

𝐷 (
𝑓

𝑔
) =

𝑔𝐷𝑓 − 𝑓𝐷𝑔

𝑔2
,

D(
𝑓

𝑔
) =

𝑔D𝑓 − 𝑓D𝑔

𝑔2
,

𝐷 (𝑓 ∘ 𝑔) =
𝜕𝑓

𝜕𝑔
𝐷𝑔 +

𝜕𝑓

𝜕𝑔
𝐷𝑔,
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D (𝑓 ∘ 𝑔) =
𝜕𝑓

𝜕𝑔
D𝑔 +

𝜕𝑓

𝜕𝑔
D𝑔,

𝐷 (𝐷𝑓) = 𝐷
2
𝑓, D (D𝑓) = D

2
𝑓.

(4)

(2) We also have the following useful formulas:

𝐷𝑓 = −𝐷𝑓, D𝑓 = 𝐷𝑓,

𝐷Re 𝑓 = 𝑖 Im 𝐷𝑓, DRe 𝑓 = Re 𝐷𝑓,

𝐷 Im 𝑓 = −𝑖Re 𝐷𝑓, D Im 𝑓 = Im D𝑓,

𝐷
𝑓

 = 𝑖
𝑓

 Im
𝐷𝑓

𝑓
, D

𝑓
 =

𝑓
Re

D𝑓

𝑓
,

𝐷 arg𝑓 = −Re
𝐷𝑓

𝑓
, 𝑓 (𝑧) ̸= 0,

D arg𝑓 = Im
D𝑓

𝑓
, 𝑓 (𝑧) ̸= 0.

(5)

(3) If ℎ ∈ 𝐶
1
(R), then 𝐷ℎ(𝑧𝑧) = 0 andDℎ(arg 𝑧) = 0.

Hence the constant functions for the operators 𝐷 andD
are the functions of the forms ℎ(𝑧𝑧) and ℎ(arg 𝑧), respectively.

(4) If 𝑧 = 𝑟𝑒
𝑖𝜃, we have

(𝑎)
𝜕𝑓

𝜕𝜃
= 𝑖𝐷𝑓,

𝜕𝑓

𝜕𝑟
=

1

𝑟
D𝑓. (6)

Therefore,

(𝑏)
𝜕

𝑓


𝜕𝜃
= −

𝑓
 Im

𝐷𝑓

𝑓
,

𝜕
𝑓



𝜕𝑟
=

𝑓


𝑟
Re

D𝑓

𝑓
,

(𝑐)
𝜕

𝜕𝜃
arg𝑓 = Re

𝐷𝑓

𝑓
,

𝜕

𝜕𝜃
arg𝑓 =

1

𝑟
Im

D𝑓

𝑓
.

(7)

(5) The Jacobian of the function 𝑓 ∈ 𝐶
1
(𝑈) is given by

𝐽𝑓 =



𝜕𝑓

𝜕𝑧



2

−



𝜕𝑓

𝜕𝑧



2

. (8)

If 𝐽𝑓(𝑧) > 0, for 𝑧 ∈ 𝑈, then it is well-known that𝑓 is a locally
homeomorphic function preserving the orientation.

(6) Consider

Re [𝐷𝑓D𝑓] = |𝑧|
2
𝐽𝑓. (9)

Let

𝑀
1

(𝑈) = {𝑓 : 𝑈 → C, nonanalytic in 𝑈, 𝑓 ∈ 𝐶
1

(𝑈)} ,

𝑀
2

(𝑈) = {𝑓 : 𝑈 → C, nonanalytic in 𝑈, 𝑓 ∈ 𝐶
2

(𝑈)} ,

(10)

and letH(𝑈) denote the class of analytic functions in 𝑈.

2. Main Results

We will give the definition of subordination for nonanalytic
functions of classes 𝐶

1 and 𝐶
2 following the classical theory

of differential subordination introduced by S. S. Miller and P.
T. Mocanu in papers [3, 4] and developed in their book [5].

Definition 3. Let 𝑓 and 𝑔 be two nonanalytic functions with
𝑓 ∈ 𝐶

1
(𝑈) and 𝑔 ∈ 𝐶

1
(𝑈). One says that the function

𝑓 is subordinated to the function 𝑔, denoted by 𝑓 ≺ 𝑔 or
𝑓(𝑧) ≺ 𝑔(𝑧), if there exists a function 𝑤 nonanalytic in 𝑈,
𝑤 ∈ 𝐶

1
(𝑈) with 𝑤(0) = 0 and |𝑤(𝑧)| < 1, 𝑧 ∈ 𝑈, such that

𝑓(𝑧) = 𝑔(𝑤(𝑧)), 𝑧 ∈ 𝑈.

Property 1. If 𝑓 ≺ 𝑔, then 𝑓(0) = 𝑔(0) and 𝑓(𝑈) ⊆ 𝑔(𝑈).

Proof. From Definition 3 we have 𝑤(0) = 0 and |𝑤(𝑧)| < 1

and using Lemma C (Section 4) we have |𝑤(𝑧)| ≤ |𝑧|, 𝑧 ∈ 𝑈.
Then

𝑓 (𝑈) = {𝑔 (𝑤 (𝑧)) : 𝑧 ∈ 𝑈}

= {𝑔 (𝜁) :
𝜁

 ≤ |𝑧| , 𝑧 ∈ 𝑈} ⊆ 𝑔 (𝑈) .

(11)

For the case when the function 𝑔 is nonanalytic and
injective with 𝑔 ∈ 𝐶

1
(𝑈) the following theorem holds.

Theorem 4. Let 𝑓 and 𝑔 be two nonanalytic functions in 𝑈

with 𝑓 ∈ 𝐶
1
(𝑈) and 𝑔 ∈ 𝐶

1
(𝑈) and 𝑔 injective in 𝑈.

Then 𝑓 ≺ 𝑔 if and only if 𝑓(0) = 𝑔(0) and 𝑓(𝑈) ⊂ 𝑔(𝑈).

Proof. The first part of Theorem 4 is given by Property 1.
Let us assume 𝑓(0) = 𝑔(0) and 𝑓(𝑈) ⊆ 𝑔(𝑈).
We let 𝑔(𝑈) = Δ and since 𝑔 is injective, there exists

the inverse function 𝑔
−1

: Δ → 𝑈. Then function 𝑤(𝑧) =

𝑔
−1

[𝑓(𝑧)] is a nonanalytic function in 𝑈 with 𝑤 ∈ 𝐶
1
(𝑈) and

verifies evidently the conditions 𝑤(0) = 0, |𝑤(𝑧)| < 1, 𝑧 ∈ 𝑈.
From 𝑤(𝑧) = 𝑔

−1
[𝑓(𝑧)], we obtain

𝑔 (𝑤 (𝑧)) = 𝑔 [𝑔
−1

(𝑓 (𝑧))] = 𝑓 (𝑧) (12)

which gives that 𝑓 ≺ 𝑔.
We next present the general form of the method of

differential subordinations (or the method of admissible
functions) for nonanalytic functions.

Let Ω and Δ be any sets in C, let 𝑝 be nonanalytic in the
unit disc 𝑈, 𝑝 ∈ 𝐶

2
(𝑈), 𝑝(0) = 𝑎, 𝑎 ∈ C, and let 𝜓(𝑟, 𝑠, 𝑡; 𝑧) :

C3 × 𝑈 → C, 𝜓 ∈ 𝐶
1
(𝑈).

This theory deals with generalizations of the following
implication:

(𝛼) {𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧)) : 𝑧 ∈ 𝑈} ⊂ Ω

⇒ 𝑝 (𝑈) ⊂ Δ.

(13)

Remark 5. If 𝑝 ∈ H(𝑈), then relation (𝛼) is equivalent to

{𝜓 (𝑝 (𝑧) , 𝑧𝑝

(𝑧) , 𝑧

2
𝑝


(𝑧)) : 𝑧 ∈ 𝑈} ⊂ Ω ⇒ 𝑝 (𝑈) ⊂ Δ

(14)



Abstract and Applied Analysis 3

which is the general form of the implications from the
classical theory of subordinations.

Related to condition (𝛼), we state three problems that
characterize the theory of differential subordinations for
nonanalytic functions in the unit disc.

Problem 1. GivenΩ andΔ, find conditions on𝜓 such that (𝛼)

holds. We call such a 𝜓 an admissible function.

Problem 2. Given 𝜓 and Ω, find Δ such that (𝛼) holds.
Furthermore, find the “smallest” such Δ.

Problem 3. Given 𝜓 and Δ, find Ω such that (𝛼) holds.
Furthermore, find the “largest” such Ω.

If either Ω or Δ in (𝛼) is a simply connected domain, then
(𝛼) can be rewritten in terms of subordination.

Let Δ be a simply connected domain containing the point
𝑎 and Δ ̸=C. Let 𝑞, 𝑞 ∈ 𝐶

2
(𝑈), be a nonanalytic function

which is a conformalmapping of𝑈 ontoΔ such that 𝑞(0) = 𝑎.
In this case, (𝛼) can be rewritten as

(𝛼

) {𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷

2
𝑝 (𝑧) − 𝐷𝑝 (𝑧)) : 𝑧 ∈ 𝑈} ⊂ Ω

⇒ 𝑝 (𝑧) ≺ 𝑞 (𝑧) .

(15)

If Ω is also a simply connected domain and Ω ̸=C, then
there is a function ℎ, ℎ ∈ 𝐶

2
(𝑈), nonanalytic, which is a con-

formal mapping of 𝑈 onto Ω, such that ℎ(0) = 𝜓(𝑎, 0, 0; 0).
If, in addition, the function 𝜓(𝑝(𝑧), 𝐷𝑝(𝑧), 𝐷

2
𝑝(𝑧) − 𝐷𝑝(𝑧))

is a nonanalytic function in 𝑈, 𝜓 ∈ 𝐶
1
(𝑈), then (𝛼) can be

rewritten as

(𝛼


) 𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧) ; 𝑧) ≺ ℎ (𝑧)

⇒ 𝑝 (𝑧) ≺ 𝑞 (𝑧) .

(16)

This last result leads us to some important definitions.

Definition 6. Let 𝜓 : C3 × 𝑈 → C be a nonanalytic function
in 𝑈, 𝜓 ∈ 𝐶

1
(𝑈), and let ℎ be a nonanalytic function in 𝑈,

ℎ ∈ 𝐶
1
(𝑈).

If 𝑝 is a nonanalytic function in 𝑈, 𝑝 ∈ 𝐶
2
(𝑈), and

satisfies the (second-order) differential subordination

(𝛽) 𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧) ; 𝑧) ≺ ℎ (𝑧) , (17)

then 𝑝 is called a solution of the differential subordination.
The nonanalytic function 𝑔 ∈ 𝐶

2
(𝑈) is called a dominant

of the solutions of the differential subordination or more
simply a dominant, if 𝑝 ≺ 𝑞 for all 𝑝 satisfying (𝛽). A
dominant 𝑞 that satisfies 𝑞 ≺ 𝑞 for all dominants 𝑞 of (𝛽)

is said to be the best dominant of (𝛽). Note that the best
dominant is unique up to a rotation of 𝑈.

Let Ω be a set in C and suppose that (𝛽) is replaced by

(𝛽

) 𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷

2
𝑝 (𝑧) − 𝐷𝑝 (𝑧) ; 𝑧) ∈ Ω,

for 𝑧 ∈ 𝑈.

(18)

Although this is a differential inclusion, we will also refer
to (𝛽

) as a (second-order) differential subordination and

use the same definitions of solution, dominant, and best
dominant as given above.

In the case when Ω and Δ in (𝛼) are simply connected
domains, we have seen that (𝛼) can be rewritten in terms
of subordinations, such as given in (𝛼


). Using this and

Definition 6, we can restate Problems 1–3 as follows.

Problem 1. Given ℎ and 𝑞 two nonanalytic and injective
functions in 𝑈, ℎ, 𝑞 ∈ 𝐶

1
(𝑈), find a class of admissible

functions 𝜓[ℎ, 𝑞] such that (𝛼


) holds.

Problem 2. Given the differential subordination (𝛼


), find a
dominant 𝑞. Moreover, find the best dominant.

Problem 3. Given 𝜓, 𝜓 ∈ 𝐶
1
(𝑈), nonanalytic function in 𝑈,

and dominant 𝑞, 𝑞 ∈ 𝐶
1
(𝑈), nonanalytic function in 𝑈, find

the largest class of nonanalytic and injective functions ℎ in 𝑈,
ℎ ∈ 𝐶

1
(𝑈), such that (𝛼


) holds.

Definition 7. One lets 𝑄 denote the set of functions

𝑞 (𝑧) = 𝑢 (𝑥, 𝑦) + 𝑖V (𝑥, 𝑦) , (19)

nonanalytic and injective on 𝑈 \ 𝐸(𝑞) with 𝑞 ∈ 𝐶
1
(𝑈), where

𝐸 (𝑞) = {𝜁 ∈ 𝜕𝑈 : lim
𝑧→𝜁

𝑞 (𝑧) = ∞} . (20)

Moreover, we assume that 𝐷𝑞(𝜁) ̸= 0, for 𝜁 ∈ 𝜕𝑈 \ 𝐸(𝑞).
The set 𝐸(𝑞) is called exception set.
The functions 𝑞

1
(𝑧) = 𝑧, 𝑞

2
(𝑧) = 1 + 𝑧, and 𝑞

3
(𝑧) =

(1 + 𝑧)/(1 − 𝑧) are in 𝑄; hence, 𝑄 is a nonempty set.

3. The Class of Admissible Functions for
Nonanalytic Functions

Definition 8. Let Ω ⊂ C, let 𝑞 be a nonanalytic function, 𝑞 ∈

𝑄, 𝑞 ∈ 𝐶
2
(𝑈), and let 𝑛 be a natural number, 𝑛 ≥ 1. One lets

Ψ
𝑛
[Ω, 𝑞] denote the class of functions𝜓 : C3×𝑈 → Cwhich

satisfy the condition

(𝐴) 𝜓 (𝑟, 𝑠, 𝑡; 𝑧) ∉ Ω, when 𝑟 = 𝑞 (𝜁) , 𝑠 = 𝑚𝐷 (𝜁) ,

Re(
𝑡

𝑠
+ 1) ≥ 𝑚Re

𝐷
2
𝑞 (𝜁)

𝐷𝑞 (𝜁)
,

(21)

where 𝑧 ∈ 𝑈, 𝜁 ∈ 𝜕𝑈 \ 𝐸(𝑞), and 𝑚 ≥ 𝑛 ≥ 1.
The set Ψ

𝑛
[Ω, 𝑞] is called the class of admissible functions

and condition (𝐴) is called admissibility condition.

Remark 9. (1) If𝜓 : C2×𝑈 → 𝑈, the admissibility condition
becomes

(𝐴

) 𝜓 (𝑟, 𝑠; 𝑧) ∉ Ω, when 𝑟 = 𝑞 (𝜁) , 𝑠 = 𝑚𝐷 (𝜁) ,

(22)

where 𝑧 ∈ 𝑈, 𝜁 ∈ 𝜕𝑈 \ 𝐸(𝑞), and 𝑚 ≥ 𝑛 ≥ 1.
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(2) If 𝜓 : C × 𝑈 → C, the admissibility condition
becomes

(𝐴


) 𝜓 (𝑟; 𝑧) ∉ Ω, when 𝑟 = 𝑞 (𝜁) , (23)

where 𝑧 ∈ 𝑈, 𝜁 ∈ 𝜕𝑈 \ 𝐸(𝑞), and 𝑚 ≥ 𝑛 ≥ 1.
(3) We let Ψ

1
[Ω, 𝑞] = Ψ[Ω, 𝑞].

Remark 10. If𝑔 ∈ H(𝑈), then the admissibility condition (𝐴)

becomes the well-known admissibility condition for analytic
functions 𝜓(𝑟, 𝑠, 𝑡; 𝑧) ∉ Ω, when 𝑟 = 𝑞(𝜁), 𝑠 = 𝑚𝐷𝑞(𝜁) =

𝑚𝜁𝑞

(𝜁), and

Re(
𝑡

𝑠
+ 1) ≥ 𝑚Re

𝐷
2
𝑞 (𝜁)

𝐷𝑞 (𝜁)

= 𝑚Re
𝜁
2
𝑞


(𝜁) + 𝜁𝑞

(𝜁)

𝜁𝑞 (𝜁)

= 𝑚Re[
𝜁𝑞


(𝜁)

𝑞 (𝜁)
+ 1] .

(24)

4. Fundamental Lemmas

In order to prove the fundamental theorems, we must first
prove some auxiliary theorems.

Lemma A. Let 𝑓 be a nonconstant continuous injective
function inside a circle of center 𝑧

0
and arbitrary radius, with

𝑓(𝑧
0
) ̸= 0. Then, inside this circle, there exist points 𝑧

 and 𝑧


such that

𝑓 (𝑧

)


<
𝑓 (𝑧
0
)
 <


𝑓 (𝑧


)

. (25)

Proof. If function 𝑓 is continuous inside the circle 𝐶(𝑧
0
, 𝑟),

then function |𝑓| is also continuous inside this circle. Then
there exists a neighbourhood 𝐶(𝑧

0
, 𝜀) such that |𝑓| is a

bounded function. Then there exist two points 𝑧
 and 𝑧



inside 𝐶(𝑧
0
, 𝜀) where function |𝑓| has a smallest value and

a highest value, 𝑚 and 𝑀, respectively, 𝑚 = 𝑓(𝑧

) and 𝑀 =

𝑓(𝑧


). Then, for any 𝑧 ∈ 𝐶(𝑧
0
, 𝜀), we have


𝑓 (𝑧

)


<
𝑓 (𝑧)

 <

𝑓 (𝑧


)

. (26)

Lemma B (maximum of modulus). Let 𝑓 be a nonconstant,
continuous, injective function inside a circle 𝐶(𝑧

0
, 𝑅) = {𝑧 ∈

C : |𝑧 − 𝑧
0
| ≤ 𝑅}. Then |𝑓| cannot attain its maximum value

inside the circle, meaning

max
𝑧∈𝐶(𝑧0 ,𝑅)

𝑓 (𝑧)
 = max
𝑧∈𝜕𝐶(𝑧0,𝑅)

𝑓 (𝑧)
 . (27)

Proof. Assume that there exists a point 𝑧
1
inside𝐶(𝑧

0
, 𝑅) such

that max
𝑧∈𝐶(𝑧0,𝑅)

|𝑓(𝑧)| = |𝑓(𝑧
1
)|. We have 𝑓(𝑧

1
) ̸= 0 since

if |𝑓(𝑧)| = 0 the function would be constant 𝑓(𝑧) ≡ 0. If
function |𝑓| is continuous inside 𝐶(𝑧

0
, 𝑅), then from Lemma

Awe have that there exists a point 𝑧
 inside𝐶(𝑧

0
, 𝑅) such that

|𝑓(𝑧


)| > |𝑓(𝑧

)|. This is impossible since we have assumed

that |𝑓(𝑧
1
)| is the maximum value. Hence, 𝑧

 belongs to the
border of the circle.

Lemma C (the first part of Schwarz’s lemma). Let 𝑓 be a
continuous function in 𝑈 = {𝑧 ∈ C : |𝑧| < 1} and let the
following conditions hold: 𝑓(0) = 0 and |𝑓(𝑧)| < 1; then
|𝑓(𝑧)| ≤ |𝑧|, for all 𝑧 ∈ 𝑈.

Proof. Let the function

𝑔 (𝑧) =

{{{

{{{

{

𝑓 (𝑧)

𝑧
if 𝑧 ∈ 𝑈 − {0} ,

lim
𝑧→0

𝑓 (𝑧)

𝑧
if 𝑧 = 0.

(28)

Since functions 𝑓(𝑧) and ℎ(𝑧) = 𝑧 are continuous in 𝑈, we
have that 𝑓(𝑧)/𝑧 is continuous in 𝑈 − {0}.

From 𝑔(0) = lim
𝑧→0

𝑓(𝑧)/𝑧, we obtain that 𝑔(𝑧) is
continuous in 𝑈.

Let 𝑧 ∈ 𝑈 with |𝑧| = 𝑟 < 1. Then function 𝑔(𝑧) is
continuous in 𝐶(0, 𝑟). Using Lemma B, we have

max
𝑧∈𝐶(0,𝑟)

𝑔 (𝑧)
 = max
𝑧∈𝜕𝐶(0,𝑟)

𝑔 (𝑧)
 = max
𝑧∈𝜕𝐶(0,𝑟)



𝑓 (𝑧)

𝑧



= max
𝑧∈𝜕𝐶(0,𝑟)

𝑓 (𝑧)


|𝑧|
≤

1

𝑟
∀𝑧 ∈ 𝐶 (0, 𝑟) .

(29)

If we let 𝑟 → 1, we obtain |𝑞(𝑧)| ≤ 1 which implies
|𝑓(𝑧)| ≤ |𝑧|.

Remark 11. Lemmas A, B, and C hold also for some continu-
ous, nonanalytic functions.

We assume that Lemma A and Lemma B also hold
without the condition that function 𝑓 is injective, but this
condition helped in giving the strict inequalities.

Lemma 12 (I. S. Jack, S. S. Miller, and P. T. Mocanu). Let 𝑧
0

=

𝑟
0
𝑒
𝑖𝜃0 with 0 < 𝑟

0
< 1 and let 𝑓 be a nonanalytic function in 𝑈,

𝑓 (𝑧) = 𝑢 (𝑥, 𝑦) + 𝑖V (𝑥, 𝑦) , (30)

continuous on 𝑈(0, 𝑟
0
) with 𝑓(𝑧) ̸≡ 0 and 𝑓 ∈ 𝐶

2
(𝑈) (or

𝑓 ∈ 𝐶
1
(𝑈)).

If

𝑓 (𝑧
0
)
 = max {

𝑓 (𝑧)
 : 𝑧 ∈ 𝑈 (0, 𝑟

0
)} (31)

then there exists a number 𝑚 ∈ R, 𝑚 ≥ 𝑛 ≥ 1, such that

(i) Re𝐷𝑓(𝑧
0
)/𝑓(𝑧
0
) = 𝑚,

(ii) Re𝐷
2
𝑓(𝑧
0
)/𝐷𝑓(𝑧

0
) ≥ 𝑚.

Proof. Let 𝑧 = 𝑟𝑒
𝑖𝜃, 0 < 𝑟 < 1 and 𝜃 ∈ [0, 2𝜋). Then

𝑓 (𝑧) = 𝑅 (𝜃) 𝑒
𝑖𝜙(𝜃)

. (32)

By differentiating (32) with respect to 𝜃, we obtain

𝜕𝑓 (𝑧) /𝜕𝜃

𝑓 (𝑧)
=

𝜕𝑅 (𝜃)

𝜕𝜃
+ 𝑖

𝜕𝜙 (𝜃)

𝜕𝜃
. (33)
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In [1], the author proved that if 𝑧 = 𝑟𝑒
𝑖𝜙, then

𝜕𝑓 (𝑧)

𝜕𝜃
= 𝑖𝐷𝑓 (𝑧) . (34)

Using (34) in (33), we obtain

𝑖𝐷𝑓 (𝑧)

𝑓 (𝑧)
=

𝑅

(𝜃)

𝑅 (𝜃)
+ 𝑖𝜙

(𝜃) . (35)

For 𝑧 = 𝑧
0
, (35) becomes

𝑖𝐷𝑓 (𝑧
0
)

𝑓 (𝑧
0
)

=
𝑅

(𝜃
0
)

𝑅 (𝜃
0
)

+ 𝑖𝜙

(𝜃
0
) . (36)

Since 𝑓(𝑧) ̸≡ 0 and 𝜃
0
is a point of maximum for 𝑅(𝜃), we

have 𝑅

(𝜃
0
) = 0 and 𝑅


(𝜃
0
) ≤ 0.

From (36), we have

𝑖
𝐷𝑓 (𝑧

0
)

𝑓 (𝑧
0
)

= 𝑖𝜙

(𝜃
0
) (37)

and we deduce

𝐷𝑓 (𝑧
0
)

𝑓 (𝑧
0
)

= 𝜙

(𝜃
0
) = 𝑚, 𝑚 ∈ R. (38)

We show that 𝑚 > 0. In order to prove this, we define the
function

𝑔 (𝑧) =

{{{{

{{{{

{

lim
𝑧→𝑧0

𝑓 (𝑧
0
𝑧)

𝑓 (𝑧
0
)

⋅
1

𝑧𝑛−1
if 𝑧 = 0

𝑓 (𝑧
0
𝑧)

𝑓 (𝑧
0
)

⋅
1

𝑧𝑛−1
if 𝑧 ∈ 𝑈 (0, 1) \ {0} , 𝑛 ≥ 1.

(39)

Since functions 𝑓(𝑧) and ℎ(𝑧) = 𝑧 are continuous in 𝑈,
function 𝑓(𝑧)/𝑧 is continuous in 𝑈(0, 1) − {0}. From the
definition of function 𝑔,

𝑔 (0) = lim
𝑧→𝑧0

𝑓 (𝑧
0
𝑧)

𝑓 (𝑧
0
)

⋅
1

𝑧𝑛−1
, (40)

and hence function 𝑔 is continuous in 𝑈.
Using Lemma B, we deduce

𝑔 (𝑧)
 ≤ max{



𝑓 (𝑧
0
𝑧)

𝑓 (𝑧
0
) 𝑧𝑛−1



: |𝑧| = 1} = 1, ∀𝑧 ∈ 𝑈.

(41)

Using Lemma C, we have |𝑔(𝑧)| ≤ 𝑧, 𝑧 ∈ 𝑈, since


𝑓 (𝑧
0
𝑧)

𝑓 (𝑧
0
)



≤ |𝑧|
𝑛
. (42)

If we take 𝑧 = 𝑟, 0 ≤ 𝑟 < 1, in (42), we obtain


𝑓 (𝑧
0
𝑧)

𝑓 (𝑧
0
)



≤ 𝑟
𝑛 (43)

and, from this,

Re
𝑓 (𝑧
0
𝑟)

𝑓 (𝑧
0
)

≤ 𝑟
𝑛
. (44)

We calculate
𝑑

𝑑𝑟
(

𝑓 (𝑧
0
𝑟)

𝑓 (𝑧
0
)

) = lim
𝑟→1

𝑟<1

𝑓 (𝑧
0
𝑟) − 𝑓 (𝑧

0
)

(𝑟 − 1) 𝑓 (𝑧
0
)

= lim
𝑟→1

𝑟<1

[(1 −
𝑓 (𝑧
0
𝑟)

𝑓 (𝑧
0
)

)
1

1 − 𝑟
] .

(45)

Since 𝑚 ∈ R, we deduce that

𝑚 = lim
𝑟→1

𝑟<1

[(1 − Re
𝑓 (𝑧
0
𝑟)

𝑓 (𝑧
0
)

)
1

1 − 𝑟
]

≥ lim
𝑟→1

𝑟<1

(1 − 𝑟
𝑛
)

1

1 − 𝑟

= lim
𝑟→1

𝑟<1

(1 − 𝑟) (1 + 𝑟 + ⋅ ⋅ ⋅ + 𝑟
𝑛−1

)

1 − 𝑟
= 𝑛,

(46)

and hence 𝑚 ≥ 𝑛 ≥ 1. In order to prove inequality (ii), we
differentiate relation (35) with respect to 𝜃 and we obtain

𝑓 (𝜕/𝜕𝜃) (𝐷𝑓) − 𝐷𝑓 (𝜕/𝜕𝜃) (𝑓)

𝑓2

= −𝑖
𝑅


(𝜃) 𝑅 (𝜃) − 𝑅

(𝜃) 𝑅

(𝜃)

𝑅2 (𝜃)
+ 𝜙


(𝜃) .

(47)

Using 𝜕𝑓/𝜕𝜃 = 𝑖𝐷𝑓 and 𝐷(𝐷𝑓) = 𝐷
2
𝑓, (47) becomes

𝑖𝑓 ⋅ 𝐷
2
𝑓 − 𝑖(𝐷𝑓)

2

𝑓2

= −𝑖

𝑅


(𝜃) 𝑅 (𝜃) − [𝑅

(𝜃)]
2

𝑅2 (𝜃)
+ 𝜙


(𝜃) .

(48)

For 𝑧 = 𝑧
0
, (48) becomes

𝑖𝑓 (𝑧
0
) 𝐷
2
𝑓 (𝑧
0
) − 𝑖[𝐷𝑓 (𝑧

0
)]
2

𝑓2 (𝑧
0
)

= −𝑖

𝑅


(𝜃
0
) 𝑅 (𝜃) − [𝑅


(𝜃
0
)]
2

𝑅2 (𝜃
0
)

+ 𝜙


(𝜃) .

(49)

Since 𝑓(𝑧) ̸≡ 0 and 𝜃
0
is a point of maximum for 𝑅(𝜃), we

have 𝑅

(𝜃
0
) = 0 and 𝑅


(𝜃
0
) < 0, and from (49) we have

𝑖
𝑓 (𝑧
0
) 𝐷
2
𝑓 (𝑧
0
) − [𝐷𝑓 (𝑧

0
)]
2

𝑓2 (𝑧
0
)

= −𝑖
𝑅


(𝜃
0
)

𝑅 (𝜃
0
)

+ 𝜙


(𝜃
0
) (50)

and we get

𝑖{
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

⋅
𝐷𝑓 (𝑧

0
)

𝑓 (𝑧
0
)

− [
𝐷𝑓 (𝑧

0
)

𝑓 (𝑧
0
)

]}

2

= −𝑖
𝑅


(𝜃
0
)

𝑅 (𝜃
0
)

+ 𝜙


(𝜃
0
) .

(51)
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Since 𝐷𝑓(𝑧
0
)/𝑓(𝑧
0
) = 𝑚, (51) becomes

𝑖 [
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

𝑚 − 𝑚
2
] = −𝑖

𝑅


(𝜃
0
)

𝑅 (𝜃
0
)

+ 𝜙


(𝜃
0
) . (52)

Relation (52) can be written in the form

𝑖𝑚 [Re
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

− 𝑚 + 𝑖 Im
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

]

= −𝑖
𝑅


(𝜃
0
)

𝑅 (𝜃
0
)

+ 𝜙


(𝜃
0
)

(53)

and we deduce

𝑚 [Re
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

− 𝑚] = −
𝑅


(𝜃
0
)

𝑅 (𝜃
0
)

≥ 0, (54)

and hence

Re
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

− 𝑚 ≥ 0. (55)

Remark 13. If 𝑓 ∈ H(𝑈) then we have

(i) 𝑧
0
𝑓

(𝑧
0
)/𝑓(𝑧
0
) = 𝑚;

(ii) Re[(𝑧
0
𝑓


(𝑧
0
)/𝑓(𝑧
0
)) + 1] ≥ 𝑚.

Lemma 14 (S. S. Miller and P. T. Mocanu). Let 𝑞 ∈ 𝑄 with
𝑞(0) = 𝑎, and let 𝑝 be a nonanalytic function 𝑝 ∈ 𝐶(𝑈) or
𝑝 ∈ 𝐶

2
(𝑈) with 𝑝(𝑧) ̸≡ 𝑎, 𝑛 ≥ 1.

If there exist points 𝑧
0

∈ 𝑈 and 𝜁
0

∈ 𝜕𝑈 \ 𝐸(𝑞) such that
𝑝(𝑧
0
) = 𝑞(𝜁

0
) and 𝑝(𝑈(0, 𝑟

0
)) ⊂ 𝑞(𝑈) \ 𝐸(𝑞), where 𝑟

0
= |𝑧
0
|,

then there exists a real number 𝑚, 𝑚 ≥ 𝑛, such that

Re
𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

≥ 𝑚Re
𝐷
2
𝑞 (𝜁
0
)

𝐷𝑞 (𝜁
0
)

. (56)

Proof. Let the function

𝑓 (𝑧) = 𝑞
−1

(𝑝 (𝑧)) , 𝑧 ∈ 𝑈 (0, 𝑟
0
) . (57)

For 𝑧 = 𝑧
0
, we have

𝑓 (𝑧
0
) = 𝑞
−1

(𝑝 (𝑧
0
)) . (58)

From the hypothesis, we have that 𝑝(𝑧
0
) = 𝑞(𝜁

0
) and, using

this in (58), we obtain

𝑓 (𝑧
0
) = 𝑞
−1

(𝑝 (𝑧
0
)) = 𝑞

−1
(𝑞 (𝜁
0
)) = 𝜁

0
. (59)

Using relation (59), we get
𝑓 (𝑧
0
)
 =

𝜁0
 = 1. (60)

From the maximum of modulus theorem, we have that
𝑓 (𝑧)

 ≤ 1, 𝑧 ∈ 𝑈 (0, 𝑟
0
) . (61)

On the other hand, 𝑓(0) = 𝑞
−1

(𝑝(0)) = 𝑞
−1

(𝑎) = 𝑞
−1

(𝑞(0)) =

𝑎, since 𝑞(0) = 𝑎. Using Lemma 12, we have

𝐷𝑓 (𝑧
0
)

𝑓 (𝑧
0
)

= 𝑚, (62)

Re
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

≥ 𝑚. (63)

Using (57), we obtain

𝑞 (𝑓 (𝑧)) = 𝑞 (𝑞
−1

(𝑝 (𝑧))) = 𝑝 (𝑧) , 𝑧 ∈ 𝑈 (0, 𝑟
0
) (64)

and we have

𝑝 (𝑧) = 𝑞 (𝑓 (𝑧)) , 𝑧 ∈ 𝑈 (0, 𝑟
0
) . (65)

If 𝑧 = 𝑟𝑒
𝑖𝜃, 0 ≤ 𝑟 ≤ 1 and 𝜃 ∈ [0, 2𝜋], then (65) becomes

𝑝 (𝑟𝑒
𝑖𝜃

) = 𝑞 (𝑓 (𝑟𝑒
𝑖𝜃

)) , 𝜃 ∈ [0, 2𝜋] . (66)

By differentiating relation (66) with respect to 𝜃, we obtain

𝜕

𝜕𝜃
𝑝 (𝑟𝑒
𝑖𝜃

) =
𝜕

𝜕𝜃
𝑞 (𝑓 (𝑟𝑒

𝑖𝜃
)) ⋅

𝜕

𝜕𝜃
𝑓 (𝑟𝑒
𝑖𝜃

) . (67)

Using (𝑎), we have

𝜕

𝜕𝜃
𝑝 (𝑧) = 𝑖𝐷𝑝 (𝑧) ,

𝜕

𝜕𝜃
𝑞 (𝑓 (𝑧)) = 𝑖𝐷𝑞 (𝑓 (𝑧)) ,

𝜕

𝜕𝜃
𝑓 (𝑧) = 𝑖𝐷𝑓 (𝑧) .

(68)

Using (68) in (67), we have

𝐷𝑝 (𝑧) = 𝑖𝐷𝑞 (𝑓 (𝑧)) 𝐷𝑓 (𝑧) . (69)

Let

𝑓 (𝑧) = 𝜁. (70)

Using (70) in (69), we obtain

𝐷𝑝 (𝑧) = 𝑖𝐷𝑞 (𝜁) ⋅ 𝜁 ⋅
𝐷𝑓 (𝑧)

𝑓 (𝑧)
. (71)

For 𝑧 = 𝑧
0
, (71) becomes

𝐷𝑝 (𝑧
0
) = 𝑖𝜁
0

⋅ 𝐷𝑞 (𝜁
0
) ⋅

𝐷𝑓 (𝑧
0
)

𝑓 (𝑧
0
)

. (72)

Using (62) in (72), we obtain

𝐷𝑝 (𝑧
0
) = 𝑖𝑚𝜁

0
𝐷𝑞 (𝜁
0
) . (73)

By differentiating relation (69), with respect to 𝜃, we obtain

𝜕

𝜕𝜃
𝐷𝑝 (𝑧)

= 𝑖 [
𝜕

𝜕𝜃
𝐷𝑞 (𝑓 (𝑧)) 𝐷𝑓 (𝑧) + 𝐷𝑞 (𝑓 (𝑧))

𝜕

𝜕𝜃
𝐷𝑓 (𝑧)] .

(74)
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Using (𝛼), we have

𝐷
2
𝑝 (𝑧) = 𝑖 [𝐷

2
𝑞 (𝑓 (𝑧)) 𝐷𝑓 (𝑧) + 𝐷𝑞 (𝑓 (𝑧)) 𝐷

2
𝑓 (𝑧)]

(75)

which is equivalent to

𝐷
2
𝑝 (𝑧)

𝐷𝑝 (𝑧)
= −𝑖 ⋅

𝐷
2
𝑞 (𝑓 (𝑧)) 𝐷𝑓 (𝑧) + 𝐷𝑞 (𝑓 (𝑧)) 𝐷

2
𝑓 (𝑧)

𝐷𝑝 (𝑧)
.

(76)

From (72), for 𝑚 = 1 and 𝐷𝑝(𝑧
0
) = 𝑖𝜁
0
𝐷𝑞(𝜁
0
), we have

𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

=
𝐷
2
𝑞 (𝑓 (𝑧

0
)) 𝐷𝑓 (𝑧

0
) + 𝐷𝑞 (𝑓 (𝑧

0
)) 𝐷
2
𝑓 (𝑧
0
)

𝜁
0
𝐷𝑞 (𝜁
0
)

.

(77)

From (59), we have 𝜁
0

= 𝑓(𝑧
0
) and we obtain

𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

=
𝐷
2
𝑞 (𝑓 (𝑧

0
)) 𝐷𝑓 (𝑧

0
)

𝐷𝑞 (𝑓 (𝑧
0
)) 𝑓 (𝑧

0
)

+
𝐷𝑞 (𝑓 (𝑧

0
)) 𝐷
2
𝑓 (𝑧
0
)

𝐷𝑞 (𝑓 (𝑧
0
)) 𝑓 (𝑧

0
)

(78)

which is equivalent to

𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

=
𝐷
2
𝑞 (𝑓 (𝑧

0
))

𝐷𝑞 (𝑓 (𝑧
0
))

⋅
𝐷𝑓 (𝑧

0
)

𝑓 (𝑧
0
)

+
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

⋅
𝐷𝑓 (𝑧

0
)

𝑓 (𝑧
0
)

.

(79)

Using (62), we have

𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

= 𝑚 ⋅
𝐷
2
𝑞𝑓 (𝑧
0
)

𝐷𝑞 (𝑓 (𝑧
0
))

+ 𝑚 ⋅
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

.

(80)

Using (63), we obtain

Re
𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

= 𝑚 [Re
𝐷
2
𝑞 (𝑓 (𝑧

0
))

𝐷𝑞 (𝑓 (𝑧
0
))

+ Re
𝐷
2
𝑓 (𝑧
0
)

𝐷𝑓 (𝑧
0
)

]

≥ 𝑚 [Re
𝐷
2
𝑞 (𝑓
2

(𝑧
0
))

𝐷𝑞 (𝑓 (𝑧
0
))

+ 𝑚] ≥ 𝑚Re
𝐷
2
𝑞 (𝑓 (𝑧

0
))

𝐷𝑞 (𝑓 (𝑧
0
))

.

(81)

Since 𝑓(𝑧
0
) = 𝜁
0
, from (71), we obtain

Re
𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

≥ 𝑚Re
𝐷
2
𝑞 (𝜁
0
)

𝐷𝑞 (𝜁
0
)

. (82)

Remark 15. If 𝑓 ∈ H(𝑈), then Re((𝑧
0
𝑝


(𝑧
0
)/𝑝

(𝑧
0
)) + 1) ≥

𝑚Re((𝜁
0
𝑞


(𝜁
0
)/𝑞

(𝜁
0
)) + 1).

Lemma 16 (S. S. Miller and P. T. Mocanu). Let 𝑞 be a
nonanalytic function, 𝑞 ∈ 𝑄, with 𝑞(0) = 𝑎, let 𝑝 be a
nonanalytic function with 𝑝(𝑧) ̸≡ 𝑎 and 𝑝 ∈ 𝐶

1
(𝑈), and let 𝑛

be a natural number with 𝑛 ≥ 1. If 𝑝(𝑧) is not subordinate to
𝑞(𝑧), written as 𝑝(𝑧) ⊀ 𝑞(𝑧), then there exist points 𝑧

0
= 𝑟
0
𝑒
𝑖𝜃0

and 𝜁
0

∈ 𝜕𝑈 \ 𝐸(𝑞) and a number 𝑚 ≥ 𝑛 ≥ 1 such that
𝑝(𝑈(0, 𝑟

0
)) ⊂ 𝑞(𝑈) and

(i) 𝑝(𝑧
0
) = 𝑞(𝜁

0
);

(ii) Re𝐷
2
𝑝(𝑧
0
)/𝐷𝑝(𝑧

0
) ≥ 𝑚Re(𝐷2𝑞(𝜁

0
)/𝐷𝑞(𝜁

0
)).

Proof. From the hypothesis, we have that𝑝(0) = 𝑞(0) = 𝑎 and
since 𝑝(𝑧) ⊀ 𝑞(𝑧), we have 𝑝(𝑈) ̸⊂ 𝑞(𝑈).

Let 𝑟
0

= sup{𝑟 : 𝑝(𝑈(0, 𝑟)) ⊂ 𝑞(𝑈)}.
Since 𝑝(𝑈) ̸⊂ 𝑞(𝑈), for 0 < 𝑟

0
< 1, we have 𝑝(𝑈(0, 𝑟

0
)) ⊂

𝑞(𝑈) and 𝑝(𝑈(0, 𝑟
0
)) ⊂ 𝑞(𝑈). We get that there exists a point

𝑧
0

∈ 𝜕𝑈(0, 𝑟
0
) such that 𝑝(𝑧

0
) ∈ 𝜕𝑞(𝑈). From this, we obtain

that there exists 𝜁
0

∈ 𝜕𝑈 \ 𝐸(𝑞) such that 𝑝(𝑧
0
) = 𝑞(𝜁

0
).

We conclude that there exist 𝑧
0

∈ 𝑈 and 𝜁
0

∈ 𝜕𝑈 \ 𝐸(𝑞)

such that 𝑝(𝑧
0
) = 𝑞(𝜁

0
) and 𝑝(𝑈(0, 𝑟

0
)) ⊂ 𝑞(𝑈). From

Lemma 14, we have

Re
𝐷
2
𝑝 (𝑧
0
)

𝐷𝑝 (𝑧
0
)

≥ 𝑚Re
𝐷
2
𝑞 (𝜁
0
)

𝐷𝑞 (𝜁
0
)

(83)

which concludes the proof.

5. Fundamental Theorems

Theorem 17. Let 𝜓 ∈ Ψ
𝑛
[Ω, 𝑞], 𝑞 a nonanalytic function,

𝑞 ∈ 𝐶
2
(𝑈) with 𝑞(0) = 𝑎 and 𝑞(𝑈) = Δ. If function 𝑝 is a

nonanalytic function, 𝑝 ∈ 𝐶
2
(𝑈) with 𝑝(0) = 𝑎, and verifies

the condition

𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧) ; 𝑧) ∈ Ω, 𝑧 ∈ 𝑈, (84)

then 𝑝(𝑧) ≺ 𝑞(𝑧).

Proof. We assume that 𝑝(𝑧) ⊀ 𝑞(𝑧). From Lemma 16, we have
that there exist points 𝑧

0
∈ 𝑈 and 𝜁

0
∈ 𝜕𝑈\𝐸(𝑞) and a number

𝑚 ≥ 𝑛 such that the following conditions are satisfied:
(i) 𝑝(𝑧

0
) = 𝑞(𝜁

0
);

(ii) Re(𝐷2𝑝(𝑧
0
)/𝐷𝑝(𝑧

0
)) ≥ 𝑚Re(𝐷2𝑞(𝜁

0
)/𝐷𝑞(𝜁

0
)).

Using these conditions with 𝑟 = 𝑝(𝑧
0
), 𝑠 = 𝐷𝑝(𝑧

0
), 𝑡 =

𝐷
2
𝑝(𝑧
0
) − 𝐷𝑝(𝑧

0
), and 𝑧 = 𝑧

0
in Definition 8, we obtain

𝜓 (𝑝 (𝑧
0
) , 𝐷𝑝 (𝑧

0
) , 𝐷
2
𝑝 (𝑧
0
) − 𝐷 (𝑝 (𝑧

0
)) ; 𝑧
0
) ∉ Ω. (85)

Since (85) contradicts (84), we have that the assumption
made is false; hence 𝑝(𝑧) ≺ 𝑞(𝑧), 𝑧 ∈ 𝑈.

Remark 18. Theorem 17 also holds if (84) is replaced by

𝜓 (𝑝 (𝑤 (𝑧)) , 𝐷 (𝑤 (𝑧)) , 𝐷
2

(𝑤 (𝑧)) − 𝐷 (𝑤 (𝑧)) ;

𝑤 (𝑧) ) ⊂ Ω, 𝑧 ∈ 𝑈,

(86)

for any nonanalytic function 𝑤 which maps 𝑈 onto 𝑈.
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Remark 19. In the hypothesis of Theorem 17, we have
assumed that the behaviour of 𝑞 is known on the border of
Δ. If we do not know the behaviour of 𝑞 on the border of Δ,
then we may also prove that 𝑝(𝑧) ≺ 𝑞(𝑧) using the following
limit procedure.

Theorem 20. Let Ω ⊂ C, let 𝑞 be a nonanalytic function, 𝑞 ∈

𝐶
2
(𝑈), injective in 𝑈, with 𝑞(0) = 𝑎, and let 𝜓 ∈ Ψ

𝑛
[Ω, 𝑞
𝜌
]

for some 𝜌 ∈ (0, 1), where 𝑞
𝜌
(𝑧) = 𝑞(𝜌𝑧). If 𝑝 is a nonanalytic

function, 𝑝 ∈ 𝐶
2
(𝑈) with 𝑝(0) = 𝑎, then

{𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧)) : 𝑧 ∈ 𝑈} ⊂ Ω (87)

implies that 𝑝(𝑧) ≺ 𝑞(𝑧).

Proof. Since 𝑞
𝜌
(𝑧) = 𝑞(𝜌𝑧), we have that the function 𝑞

𝜌
is

injective on 𝑈; hence 𝐸(𝑞
𝜌
) = 𝜙 and 𝑞

𝜌
∈ 𝑄. The function

𝜓 ∈ Ψ
𝑛
[Ω, 𝑞
𝜌
] is an admissible function and

{𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧)) : 𝑧 ∈ 𝑈} ⊂ Ω, (88)

so, fromTheorem 17, we have that

𝑝 (𝑧) ≺ 𝑞 (𝑧) . (89)

On the other hand, 𝑞
𝜌
(𝑧) = 𝑞(𝜌𝑧) implies that

𝑞
𝜌

(𝑧) ≺ 𝑞 (𝑧) . (90)

From (89) and (90), we obtain 𝑝(𝑧) ≺ 𝑞
𝜌
(𝑧) ≺ 𝑞(𝑧) which

gives 𝑝(𝑧) ≺ 𝑞(𝑧).

Remark 21. In the case when Ω ⊂ C, Ω ̸=C is a simply
connected domain and ℎ is a nonanalytic function, ℎ ∈

𝐶
1
(𝑈), and is injective in 𝑈; if we assume that ℎ(𝑈) = Ω,

then, by letting Ψ
𝑛
[ℎ, 𝑞] ≡ Ψ

𝑛
[ℎ(𝑈), 𝑞], fromTheorem 17, we

obtain the following result.

Theorem 22. Let ℎ be a nonanalytic function, injective in 𝑈,
ℎ ∈ 𝐶

1
(𝑈) and ℎ(0) = 𝑎 with ℎ(𝑈) = Ω; let 𝑞 be a nonanalytic

function, injective in 𝑈, 𝑞 ∈ 𝐶
2
(𝑈), 𝑞(0) = 𝑎, and 𝑞(𝑈) = Δ.

If 𝑝 is a nonanalytic function, injective in 𝑈, 𝑝 ∈ 𝐶
2
(𝑈) with

𝑝(0) = 𝑎, and function 𝜓(𝑝(𝑧), 𝐷𝑝(𝑧), 𝐷
2
𝑝(𝑧) − 𝐷𝑝(𝑧)) is a

nonanalytic function, 𝜓 ∈ 𝐶
1
(𝑈) and 𝜓(𝑎, 0, 0; 0) = ℎ(0) = 𝑎,

then

𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧)) ≺ ℎ (𝑧) (91)

implies that

𝑝 (𝑧) ≺ 𝑞 (𝑧) , 𝑧 ∈ 𝑈. (92)

This result can be extended for the case when the
behaviour of 𝑞 on 𝜕𝑈 is not known.

Theorem 23. Let 𝑓 and 𝑞 be nonanalytic functions, injective
in 𝑈, ℎ ∈ 𝐶

2
(𝑈) with ℎ(𝑈) = Ω and 𝑞 ∈ 𝐶

2
(𝑈) with 𝑞(0) = 𝑎,

𝑞(𝑈) = Δ.

We let ℎ
𝜌
(𝑧) = ℎ(𝜌𝑧) and 𝑞

𝜌
(𝑧) = 𝑞(𝜌𝑧). Let function

𝜓 : C3 × 𝑈 → 𝑈 be nonanalytic in 𝑈, 𝜓 ∈ 𝐶
1
(𝑈), with

𝜓(𝑎, 0, 0; 0) = 𝑎 and satisfying one of the following conditions:

(i) 𝜓 ∈ Ψ
𝑛
[ℎ, 𝑞
𝜌
] for some 𝜌 ∈ (0, 1) or

(ii) there exists a certain 𝜌
0

∈ (0, 1) such that 𝜓 ∈

Ψ
𝑛
[ℎ
𝜌
, 𝑞
𝜌
] for all 𝜌 ∈ (𝜌

0
, 1).

If function 𝑝 is nonanalytic in 𝑈, 𝑝 ∈ 𝐶
2
(𝑈), and function

𝜓(𝑝(𝑧), 𝐷𝑝(𝑧), 𝐷
2
𝑝(𝑧)−𝐷𝑝(𝑧); 𝑧) is nonanalytic and injective

in 𝑈, then

𝜓 (𝑝 (𝑧) , 𝐷𝑝 (𝑧) , 𝐷
2
𝑝 (𝑧) − 𝐷𝑝 (𝑧) ; 𝑧) ≺ ℎ (𝑧) (93)

implies 𝑝(𝑧) ≺ 𝑞(𝑧).

Proof. (i) From Theorem 17, we have 𝑝(𝑧) ≺ 𝑞
𝜌
(𝑧). On the

other hand, 𝑞
𝜌
(𝑧) ≺ 𝑞(𝑧) for 𝜌 ∈ (0, 1). From 𝑝(𝑧) ≺ 𝑞

𝜌
(𝑧) ≺

𝑞(𝑧), we have that 𝑝(𝑧) ≺ 𝑔(𝑧), 𝑧 ∈ 𝑈.
(ii) If we let 𝑝

𝜌
(𝑧) = 𝑝(𝜌𝑧), then

𝜓 (𝑝
𝜌

(𝑧) , 𝐷𝑝
𝜌

(𝑧) , 𝐷
2
𝑝
𝜌

(𝑧) − 𝐷𝑝
𝜌

(𝑧) ; 𝜌𝑧)

= 𝜓 (𝑝 (𝜌𝑧) , 𝐷𝑝 (𝜌𝑧) , 𝐷
2
𝑝 (𝜌𝑧) − 𝐷𝑝 (𝜌𝑧) ;

𝜌 (𝑧) ) ∈ ℎ
𝜌

(𝑈) .

(94)

By applying Theorem 17 and Remark 18 with 𝑤(𝑧) = 𝜌𝑧,
we obtain 𝑝

𝜌
(𝑧) ≺ 𝑞

𝜌
(𝑧) for all 𝜌 ∈ (𝜌

0
, 1).

By letting 𝜌 → 1, we obtain 𝑝(𝑧) ≺ 𝑞(𝑧).

Example 24. Let the function 𝑝 be nonanalytic in 𝑈; then

𝑝 (𝑧) + 𝐷
2
𝑝 (𝑧) ≺ 5𝑀

𝑧

𝑧
, 𝑀 > 0 ⇒ 𝑝 (𝑧) ≺ 𝑀

𝑧

𝑧
. (95)

Proof. Let the function 𝜓 : C3 × 𝑈 → C be a nonanalytic
function in 𝑈, 𝜓 ∈ 𝐶

2
(𝑈). In order to prove implication, it is

enough to prove that𝜓 ∈ Ψ
𝑛
[ℎ, 𝑞]. For that, it suffices to show

that 𝜓 satisfies the admissibility condition.
Let ℎ(𝑧) = 5𝑀(𝑧/𝑧), ℎ(𝑈) = 𝑈(0, 5𝑀), 𝑞(𝑧) = 𝑀(𝑧/𝑧),

and 𝜓(𝑟, 𝑠, 𝑡) = 𝑟 + 𝑠 + 𝑡.
In order to check the admissibility condition, we calculate

𝐷𝑞 (𝑧) = 𝑧
𝜕

𝜕𝑧
(𝑀

𝑧

𝑧
) − 𝑧 ⋅

𝜕

𝜕𝑧
(𝑚

𝑧

𝑧
)

= 𝑀
𝑧

𝑧
+ 𝑀𝑧𝑧 = 2𝑀

𝑧

𝑧
,

𝐷
2
𝑞 (𝑧) = 𝐷 (𝐷𝑞 (𝑧))

= 𝑧 ⋅
𝜕

𝜕𝑧
(2𝑀

𝑧

𝑧
) − 𝑧 ⋅

𝜕

𝜕𝑧
(2𝑀

𝑧

𝑧
)

= 2𝑀
𝑧

𝑧
+ 2𝑀

𝑧

𝑧
= 4𝑀

𝑧

𝑧
.

(96)
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For 𝑟 = 𝑞(𝜁) = 𝑀 ⋅ (𝜁/𝜁) = 𝑀 ⋅ (𝜁
2
/𝜁 ⋅ 𝜁) = 𝑀𝜁

2, since
𝜁 ⋅ 𝜁 = |𝜁| = 1,

𝑠 = 𝑚𝐷𝑞 (𝜁) = 𝑚 ⋅ 2𝑀 ⋅
𝜁

𝜁

= 2𝑚𝑀 ⋅
𝜁 ⋅ 𝜁

𝜁 ⋅ 𝜁

= 2𝑚𝑀𝜁
2
,

Re
𝐷
2
𝑞 (𝜁)

𝐷𝑞 (𝜁)
= 2.

(97)

We check the admissibility condition:

𝜓 (𝑟, 𝑠, 𝑡)
 = |𝑟 + 𝑠 + 𝑡| =


𝑀𝜁
2

+ 2𝑚𝑀𝜁
2

+ 𝑡


= 𝑀



1 + 2𝑚 +
𝑡

𝑀𝜁2



= 𝑀



1 + 2𝑚 +
2𝑚𝑡

2𝑚𝜁2𝑀



= 𝑀


1 + 2𝑚 (1 +

𝑡

𝑠
)


≥ 𝑀Re [1 + 2𝑚 (1 +

𝑡

𝑠
)]

≥ 𝑀 [1 + 2𝑚Re(1 +
𝑡

𝑠
)] ≥ 𝑀 [1 + 4𝑚

2
] ≥ 5𝑀,

(98)

since 𝑚 ≥ 1. Hence, 𝜓(𝑟, 𝑠, 𝑡) ∉ ℎ(𝑈) ⇒ 𝜓 ∈ Ψ
𝑛
[ℎ, 𝑞].

FromTheorem 17, we have 𝑝(𝑧) ≺ 𝑀 ⋅ (𝑧/𝑧).
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