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We study the bifurcations of nonlinear waves for the generalized Drinfeld-Sokolov system u,+(v") . = 0, v, +a(v")

e FOUVHCUY, =

0 called D(m, n) system. We reveal some interesting bifurcation phenomena as follows. (1) For D(2, 1) system, the fractional solitary
waves can be bifurcated from the trigonometric periodic waves and the elliptic periodic waves, and the kink waves can be bifurcated
from the solitary waves and the singular waves. (2) For D(1, 2) system, the compactons can be bifurcated from the solitary waves,
and the peakons can be bifurcated from the solitary waves and the singular cusp waves. (3) For D(2, 2) system, the solitary waves
can be bifurcated from the smooth periodic waves and the singular periodic waves.

1. Introduction

The D(m, n) system [1, 2] is read as

u + ("), =0,

@

v +a(v'), , +buv+cuv, =0,

where a, b, ¢, m, and n are constants. Through some transfor-

mations, Xie and Yan [3] got some compacton and solitary
pattern solutions of system (1) with m = n — 1, including

v () = [Zn()t - CdO)C0s2 < (n— 1)\/@5)]1/@11)
LR O Dac,, m >
n—1 (2)
w =",
_[2nledy-A) o ((n-1) e, 1/(n-1)
vy () = [msmh (TQ] ’
-1 (3)
w®= " g,
where A 0, d,, are constants,
E=x—At, o bm+c @

m= al(m+1)

Deng et al. [4], by using the Weierstrass elliptic function
method, presented many solutions of system (1) with n =
m + 1. It also includes the above solutions (2) and (3). Zhang
et al. [5] showed some solutions of system (1) under the
special parameters via employing the bifurcation method. By
means of the complete discrimination system for polynomial
method, many solutions of system (1) were acquired in [6].
In [2], the system

U, + V) =0,
(%), .

Vit AV, +bu v +cuv, =0

XXX
was introduced. Wang [7] gave recursion, Hamiltonian,
symplectic and cosymplectic operator, roots of symmetries,
and scaling symmetry for system (5). Wazwaz [8], by using
the tanh method and the sine-cosine method, obtained many
solutions with compact and noncompact structures of system
(5), including

Ve (E) =A\/_2b6+cseCh<\]%E>’ U (g) = %Vi (E)’
A
(a0)
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tanh<\]—%§>, uy (&) = %Vi ©,
A
(5<0):
v, (§) = A\/_2b3+ c coth ( \/‘%f) s u ()= %i @),

(% <0>.
(6)

Biazar and Ayati [9] obtained some solutions of system (5)
through Exp-function method and modification of Exp-
function method. Zhang et al. [10], by employing the complex
method, gained all meromorphic exact solutions of system
(5). Applying the auxiliary equation method, some exact
solutions of system (5) were given in [11]. El-Wakil and Abdou
[12] got some new exact solutions of system (5) by means of
modified extended tanh-function method.
The other generalized Drinfeld-Sokolov system [13]

3
va (&) = A\/_2b+c

U + ayuu, +bju, +¢(07), =0, -
=0

Ve +auv, + by,

is considered in [14-22]. In [23-31], many exact solutions of
system (7) were obtained. Clearly, system (1) and system (7)
are two different systems.

In this paper, we are interested in system (1). We study the
bifurcations of nonlinear waves for system (1).

Under the transformations

E=x-A, ult)=vy(@), vixt)=9@&, ©)
system (1) is reduced to
MW - (") o,
n (9)
20" +a(e")" +by'¢ +cyg' = 0.
Integrating the first equation of system (9) once, we have
1

- So"+d, 10
y=q9" (10)

where d is an integral constant. Substituting (10) into the
second equation of system (9) and integrating it once yield
the following equation:
bm+c
gred=-Ne+———3¢
Alm+1) an

+a [n (n-1) (p"_z((p')z + n(p”_lgo”] =0,

where g is another integral constant. Letting ¢'(£) = y, we
obtain the planar system

de
P
(12)
dy  n(n- 1) ¢"*y* +a,,¢"" + Bo+y
dE - ne1 >
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where «,, is given in (4) and

cd-A
p=—
(13)
-9
v=
Letting ng™ 'dr = d&, system (12) becomes
d‘P n—1
o=hne Y
d
' (14)
dy n-2 2

i G VL e R R 2

which is called P(m, n) system. Clearly, systems (12) and (14)
possess the same first integral

(xm m+1 ﬁ y)
~)=h (15
m+n+1(P +n+l(P+n 15)

(Pn <g¢n—2y2 +

Employing (14) and (15), we reveal some interesting
bifurcation phenomena listed in the above abstract.

In Section 2, we will consider D(2, 1) system. Firstly, we
will show that the fractional solitary waves can be bifurcated
from the trigonometric periodic waves and the elliptic peri-
odic waves. Secondly, we will demonstrate that the kink waves
can be bifurcated from the smooth solitary waves and the
singular waves. In Section 3, we will consider D(1, 2) system.
Firstly, we will confirm that the compactons can be bifurcated
from the smooth solitary waves. Secondly, we will clarify
that the peakons can be bifurcated from the solitary waves
and the singular cusp waves. In Section 4, D(2, 2) system will
be considered. We will verify that the solitary waves can be
bifurcated from the smooth periodic waves and the periodic
singular waves. A short conclusion will be given in Section 5.

2. The Bifurcations of Solitary Waves and
Kink Waves for D(2, 1) System

When m = 2 and n = 1, system (1) becomes D(2, 1) system:

u, + (vz)x =0,
(16)
Vp+ AV + by + cuv, = 0.

We will reveal two kinds of interesting bifurcation
phenomena to system (16). The first phenomenon is that
fractional solitary waves can be bifurcated from two types
of smooth periodic waves: trigonometric periodic waves and
elliptic periodic waves. The second phenomenon is that the
kink waves can be bifurcated from the smooth solitary waves
and the singular waves. We state these results and give proof
as follows.

Note that P(2, 1) system is read as

de
i

d
== —ap' - Bo-1,

17)
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where

_2b+c

2T a0 (18)
and B, y are given in (13). When 27a,)” > —43°, let
170\ 2\
o= oo(is) #a)
LA\ 14430\
w =805 () ()
L\ 1-Ei 0\
= 1 3' - _ 8a ,
905 = B( +f1)<120) o (18)
Q= \/W—%éy,
1/2
2 B
WA (20)
n®- (-2

Proposition 1. For givena, > 0and 3 < 0, if —y,(f) <y <0,
then @y, Qo> and @y, are real and system (16) has two types
of special periodic wave solutions which become the fractional
solitary wave solution

A 2
vk<£>=J 3F 9+ 258 w®= i@ +d @

a9 - 68

wheny — —y,(B)+0. These two types of special periodic wave
solutions are as follows.

(1) Trigonometric periodic wave solution:

24,

\/A_lcos (mé) - B, ’

@ = 21O +d

V1 (§) = @p3 +
(22)

where

A= (?’1 - ‘P03) (P03 = ¢2)»
By = ¢1 + 9, — 293,

A, =B +4A,,

Ao,
m= \/ >

3
2
P1= —Po3 t+ \j__ﬁ - 2955,
%)
2B
P= ~Po3 ~ \j_“_z - 2‘P§3'
(23)
(2) Elliptic periodic wave solution:
93 (P4 = 96) + 96 (93 = pa) s1° (26 K1)
VZ (E) - 2 >
(ps = 96) + (@3 — @u) 51 (128, Ky) (24)

W @)= TR +d

where

M = \/% (¢35 — 95) (‘P4 ~ P6)s

2= (95— 94) (95— 96)
' (¢35 = 95) (94 — ‘Ps)’

| =

(“Ps — Pt \j_Socﬁ ~ 393 — 29506 — 39"2) >
2

1 B
Py = 5 <_‘P5 ~—Ps — \j‘g_ - 3‘P§ — 20596 — 3?’2) >
2%}

1/3
P5 = _§¢6+<2ﬁ+§“2¢2><ﬁ> (1+i\/§) 25)

(%) -08).

*

Poz < Ps < Po3>

¥ 2B
Pos = ~Po2 — \j__ - Z‘Péz’
2%}

0, = — 1085y — 360 Bps — 20095,

0, = 6, + \4(60,8 + 2022)" + 2.

For the varying process, see Figure 1.

Proposition 2. For given a, > 0 and 3 < 0, if0 < y < y,(8),
then @q;, @gy> and @y; are real and system (16) has two types
of special periodic wave solutions which become a fractional
solitary wave solution:

YRy
(€)= \/_3,82ﬁ£ +9

_1p
(X_26ﬁ52 _ 9’ I/ly (5) = Avy (E) + d> (26)

wheny — y,(fB) — 0. These two types of special periodic wave
solutions are as follows.



Abstract and Applied Analysis

14
v, () (&) vi(&)
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FIGURE 1: The solitary wave is bifurcated from two types of p
B <0,andy — —y,(B) +0wherea, =4and § = -9.

(1) Trigonometric periodic wave solution:
24,

VA, cos (158)’

w @) = 2RO +d

V3(5)=§001+B -
2

where
Ay = (9= 001) (9o — s) s

B, = 2941 — 97 — g5

A, = B} +4A,,
A,
M3 =\~ 5

2
P7= —Po1 + \/__ﬁ _Z(Pgl’
@,

28, 5

Pg = _‘P01_\/_“_ P

= 2¢5,-
2

(2) Elliptic periodic wave solution:

@12 (P9 = @11) + @9 (P11 — P12) sn’ (1,8, k)

(e y=-n+10" ) y=-n@ +10°

eriodic waves. The varying process for the figures of v, (§) and v, (§) when at, > 0,

Vy & = (§09 — (Pll) + (‘Pll — (plz)snz (774€> kz)

0§ = 2RO +d

where
o
(27) Ny = \/E2 (9o = @11) (P10 — P12);
K2 = (‘P9 - 9010) (‘Pn - (Plz)
2 - bl
(P9 = o11) (@10 = 912)
* 2f3
Po1 = ~Po2 t \]—_ - 290(2)2>
2%}
Po1 < P9 < Poy>
0, = —20vy0; — 36v,05 3 — 10805y,
2.2 3 2
0, = 0, + V421202 + 6a,8)° + €2,
) 2\'* 1
Pr0= ~ ?9 - <§‘P§‘X2 + 2ﬁ> (0_4> + %
(28) 1
P11 = 5 ~P9 = Pro + \|=395 — 209919 — 397, — 8“
_ 1 2 2 B
P12 = 5 P9 = P10 = \| 7395 — 2909910 — 391, —8— |.
5 az
(29)

For the varying process, see Figure 2.
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Proposition 3. For given o, < 0 and 3 > 0, if —=p,(B) < y <
Y1(B), then system (16) has four nonlinear wave solutions which
become two kink wave solutions:

v () = i\j—aﬁtanh<\/§£>, us €)= 173 @) +d.

2
31)

when y — 0. These four nonlinear wave solutions are as
follows:

4A; (‘P01 - 56—1755) - %1(5‘3_’756 - B3)2

V5 (E) = 4 B (66—?155 _ B3)2 5
1
us (§) = XV? &) +d,
2
4A, (‘P01 - 53”55) - ‘Pm(‘senﬁE - B3)
V6 (E) = 2 >
~ (et — By)
1
g (§) = V2 )+,
(32)
6k 6k 2
4A, (‘Pos —ue ) - %3(#‘3 - 34)
V7 (E) = 2 >
Ay — (ue's — B,)
1
&) = v, ©) +d,
_ _ 2
v (€) = 4A, (‘P03 —ue %E) - ‘P03(!4e st — B4)
' 44, — (pest — B4)2 ,
1
ug(§) = 3 @) +d,
where
5 Jﬁ
453
2p
Az = 6‘/’;1 + 0‘_2’
_ _A30‘2
s = \/ B
B; = 49, (33)
[/{ = - S\I_E)
2%}
2B
Ay = 6?53 + “_2>
_ _A40‘2
s = \/ 2’

These four nomlinear wave solutions possess the following
properties.

(@) If0 < y < p,(P), then v5(§) and v¢(&) represent two
solitary waves which tend to two kink waves v§(§) (see
Figure 3) wheny — 0+0.

(b) If -y, (B) < y < 0, then v5(§) and v4(&) represent two
singular waves which tend to two kink waves v§ (&) (see
Figure 4) wheny — 0—0.

(© If0 <y < y,(B), then v;(&) and vg(&) represent two
singular waves which tend to two kink waves vg (&) (see
Figure 5) wheny — 0+ 0.

() If =y, (B) < y < O, then v,(§) and vg(&) represent two
solitary waves which tend to two kink waves vf;(f) (see
Figure 6) wheny — 0—0.

The Derivations of Propositions 1-3. According to the qual-
itative theory, we obtain the bifurcation phase portraits of
system (17) as in Figure 7. Employing some orbits in Figure 7,
we derive the results of Propositions 1-3 as follows.

(1) Whena; > 0, 8 < 0, and —y,(8) < y < 0 (as in
Figure 7(a)), the closed curves I; and [, possess the following
expressions:

Ly = %(‘P— 90) (91— 9) (9~ )
(Pos <@ <@ <o),
. (34)
Ly =2 (05— 9)(¢-9s) (9= 95) (@ - 96)

2

(Ps <95 <Py <P <3).
Substituting (34) into d¢/d& = y and integrating them along
I, and I,, respectively, it follows that
\/7|£| (along 1),

J'q’l ds
? (s —p3) (‘Pl_s) S—¢
P3 ds @
=5 4]
L V(s = 3) (s = @) (s = 95) (s - 95) Jz
(along ).

(35)

Completing the integrals above and solving the equations for
@, we obtain the solutions v, (£), u; (&) (see (22)) and v,(§),
(&) (see (24)).

(2) Whena, > 0,5 < 0,and 0 < y < () (as in
Figure 7(a)), the closed curves [; and [, possess the following
expressions:

iy = Slon —9) (92— 90) (- 95)

(ps <P <9, <9p1)>
(36)

ly:y* = % (95— 9) (910 = 9) (911 — 9) (9 — p15)

(Po<P <@ <o <)
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v3(§) v3(§)

= n(p-107"

VT

v

V4 5)/\ 4

®) y=n(p-10" (@ y=

n(p -10"

v4() v4(§)

I

NV

dy=n

B -10" (e)

y=n(p)-10"

®) y=pn(p-10"°

FIGURE 2: The solitary wave is bifurcated from two types of periodic waves. The varying process for the figures of v;(£) and v,(§) when ar, > 0,
B <0,andy — y;(B) —0wherea, =4and 8 = -

v v
vs(©) vs(§) vs(€) vs(§)
v6(&) vs(§) j
/\/\ ; d ; / ;
®) o)
(@) y=1x107" (b) y=1x10"* () y=1x10"°

FIGURE 3: Two kink waves are bifurcated from two peak-solitary waves. The varying process for the figures of v5(£) and v4() when «, < 0,
B>0,andy — 0+0wherea, =—-2and §=9.

Substituting (36) into d¢/d& = y and integrating them along
I; and I, respectively, it follows that

® ds
L’s (901 —5) (9, —5) (s — )

= \/% €] (along I3),

ds

Ln V(g5 =5) (910 - 5) (11 = 9) (s — ¢

- |5k

(along 1) .
(37)

Completing the integrals above and solving the equations for
¢, we obtain the solutions v5(&), u5(&) (see (27)) and v,(&),
uy(§) (see (29)).

Wheny — —y,(f) + 0, it follows that ¢,, ¢, and @y,
tend to ¢, = —+/—f3/3, and @,, @5 tend to ¢; = /-3f/a,.

Further, we have

Py — ¢35 Ps — @5, Ps — @3
Ay = (91— 903) (P03 —92) — 0,
By = @1+ ¢, = 2003 — ¢ — ¢,
= —% — 0,

o
My = \/Ez (93 = 95) (94 = 95) — O,

2A
1
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S A

vs(§)

v (&)

v5(§)

(a) y=-1x 107!

v6(&)

O,
vs(§)

(b) y=-1x10""

(©y=-1x10"°

v6(§)

FIGURE 4: Two kink waves are bifurcated from two singular waves. The varying process for the figures of v5(£) and v¢(&) when «, < 0, 8 > 0,
andy — 0-0wherea, =—2and f=9.

vg(€) v7(&) vg(&) v7(8)

v
/ v7() vg(&)
3 § 3

@@ y=1x10" (b) y=1x10""* () p=1x107°
FI1GURE 5: Two kink waves are bifurcated from two singular waves. The varying process for the figures of v,(£) and v4(&) when «, < 0, 8> 0,

andy — 0+0wherea, =—2and f=9.

2 4 — )
COS(’hf)= 1— (7115) + (I/IIE) T _ _%39*'2!352
2! 4! a, 9—6p&
£ 3
sn (1,6, k) = & - (1 + kf) (1123') e =v. (&) (see(21)),
(38) lim v, (&)
Y= -n+0
Thus, we have
- lim @3 (94— 96) + 96 (93 — p4) sn’ (128, k)
y—l»ifnyﬁovl © v=ont0 (@4 = @) + (93 — @q) 50 (126, ky)
= lim + 24,
y— 0?0 VA cos (,€) - B, = y—1>i£ny1+0 <<‘P3 (91— 95) + 96 (93 — 94)
= 1'
yﬁlfnwo%s

X [\/% (95 = 95) (91 — 96)&

+0 (s — 95) ]2>

+ 2(A1 +0(A21))

X ((B1 + % +0(A21)>

1

2 -1
x<l+#+o(A21))—Bl)

2A, + o(Azl)
2A,/B;) + (x,A,B,&%/4) + 0 (A7)

x ( (ps = 96) + (93 — @)

= lim ¢u+
03
y— -y, 40 (

x [\/% (93 = 5) (94 — 96)&
\ 8 (g1 - 93) N
=@, +
§ “2((Pf_¢;)2€2+8 +0(¢4_¢6)]> >
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c_

v

S

Vi
®

vz

v7(&)

V7(£) Vg ©

\__ J

vg(&)

(a) y=-1x 107!

(b) y=-1x10""

(©y=-1x10"°

FIGURE 6: Two kink waves are bifurcated from two valley-solitary waves. The varying process for the figures of v, (&) and vg(§) when a, < 0,

B>0,andy — 0-0wherea, =—-2and f=9.

= lim
y— =y +0

( (895 (94— 96) + 96 (93— 1) (95 — 95)
% (94— 96 a8 + 0 (94— 05)"*))
% (8(p4=96) + (93 = 91) (93— )
x (0= g6 @ +o((pa—90))) )

* % % *\2
_ 8¢+, (o7 —93) “252
- 5 %)2

8+ (pf — ;) 82

[ 3p9+2pe
~\ «9-6p8

Vi ()

(see(21)).
(39)

Similarly, we can prove the limit property of v;(§) and
v4(§) wheny — y,(8) - 0.

(3) When o, < 0, 8 > 0, and —y,(8) <y < () (as in
Figure 7(b)), the curve connecting with (¢, 0) embraces the
expression

28

2 07
x;

22 (- ‘P01)2

Y= (svz + 200,90 + 305, + > (40)

Substituting (40) into dg/d& = y and integrating it, we have

J‘P ds B \/Es
» \/ ~ 2., 2 SN 27
(s = @01)" (8% + 29,5 + 393, + (2B/;))
(41)
where
3 240,02, +8
P =0 — \/—ﬁ 5 %9 + 8P . (42)
% 095, — 8¢ V- + 9P

Completing the integral above and solving the equation for
@, we obtain

4A; (‘Pm - 5‘37”55) - ‘P01(‘S‘37’1SE - B3)2

> (43)
4A5 - (8e75 - By)

Vs ©) =

From v (&), we get

4A; (%1 - 567155) - %1(8‘3%5 - Bs)z
4A, - (8¢t — B,) ’

Vs (&) = v5 (=8)

(44)

(4) When «, < 0, 8 > 0,and —y;(8) <y < y,(B) (as in
Figure 7(b)), the curve connecting with (¢;, 0) embraces the
expression

2

[0 2
Y ==Hon-9) <<P2 + 20030 + 30 + — ) (45)
2

Substituting (45) into d¢/d& = y and integrating it, we have

¢ ds

T (9o 5)” (2 + 20055 + 392, + (2B/a))

(46)
where
0= ot \j__ 240424)33 +8p (47)
= Po3 .
%) 0y P55 + 8993\, B+ 9

Completing the integral above and solving the equation for
@, we obtain

_ o8 76& 2
v, (E) = 4A, (%3 ue ) ‘P03(1/“52 B4) . (48)
4A, — (pe's* - B,)
From v,(§), we get
vg (§) = v, (=§)
3 4A, (‘Pos - Me_%g) - §003(,ue_’7‘5E - B4)2 (49)

44, — (pe st — B4)2
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Y
YA (B)
y y y
l *
/%\ % Po1 0 y
P12 M‘Pu Pqy ¢
y
Y
NP N, s
N SN,
y
) y y y
L
o P
R TR ¢ L] 9 0
/z\j(p P3 o 1
Y =/v1(B)
)

<
-

3

9'8

E

(@) oy >0
Y -
Y =/1(B)
y 4 Y
\l \ / y
14 ¢
e N/
/‘ / /¢0 ®0 \ [
y
Y
4 ¢ B
‘ ° o o
Y
’ y \
V / 14
Nq’ ¢ /N
(b) oy <0
FIGURE 7: The bifurcation phase portraits of system (17).

Note that when y — 0, it follows that ¢y, — ¢, = ~ lim 8o e Y8 + (445 — 2, B;) et
—\/—ﬁ/ocz, A3 - —4[;/062, B3 - —4 —ﬂ/(xz, and N5 — y—0 6e’2’755 — 2B3e”75£
v/—23. Thus, we have ) SWe’mE _8p

47, (9y; — 8¢ — gy (07 - 33)2 Sa,e V2P — 8\~ B

limv = lim — _
y—0 S(E) y—0 4A3—(66_”55—B3)2 _ \j ﬁ e\/mg_e mzf

oty e VBT 4 o BI2E
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= J—%tanh(\jéf)
=v5 (&) (see(31)).

(50)

Similarly, we can also get v4(§) — vy (&), v;(§) — v5(&),
and vg(&) — v5(&) when y — 0. These complete the
derivations of Propositions 1-3.

3. The Bifurcations of Compactons and
Peakons for D(1,2) System

When m = 1 and n = 2, system (1) becomes

u, +v, =0,

2
Ve + a(v )
XXX

We will reveal two kinds of interesting bifurcation phe-
nomena to system (51). The first phenomenon is that the
smooth solitary waves can turn into the compactons. The
second phenomenon is that the peakons can be bifurcated
from the singular cusp waves and the solitary waves. The
concrete results are stated as follows.

Note that P(1, 2) system is read as

(51)
+bu,v+cuv, = 0.

de
- =29,
d
. (52)
Z = -2 -y’ - fo-y,
where
b+c
o ZQA, > ( )
and 3, y are given in (13).
For fixed «;, put
25
2 (B) = 90,
, (54)
B
Y5 (B) = s,

Proposition 4. For given oty > 0 and $+0, if0 <y < y;(p),
then system (51) has a family of solitary wave solutions which
become the compacton solution

4 S (N 21
o [B(F) e

5
0, € = \/—Z—l (55)

4o (§) = 37, (©) +d,

wheny — 0+ 0. The solitary wave solutions are as follows.

Abstract and Applied Analysis

(1) When B < 0, the solitary wave solutions possess the

expressions vo(&) = @(&) and uy(&) = (1/A)vy(§) + d, and ¢(&)
is given by the implicit function

-7 -2
ﬂ = arcsin<r1 MRE (P> LT Y ||, (56)
2 =13 VAS
where
1
r=--— <3oc1r2 +2B-1/6a,Br, + 4/32>
3oc1
1 2
= 2_ <ﬁ+ B 4“1)’)
1y = b <3oclr2 +2B+1/6a,Br, + 4ﬁ2>
3a (57)
As= (ry=ry)(r,—13),

By =1, +1r; -2,
(r —13) (9 —15)
2\/A (ry—¢) (¢ —r3) +Bs (‘P"’z)+2A5

(2) When B > 0, the solitary wave solutions possess the

expressions v;o(&) = (&) and u,(§) = (1/A)vyo(&) + d, and
@(&) is given by the implicit function

T— A& +1,—2
Y arcsin<r6 h (P> + 2 In|®,|, (58)
2 Te— Ty VA
where
1
ry= —— <3¢x1r5 + 2B+ /6a, frs + 4[32)
30
1
rg = — — -4« ),
5 2“1 <.B 1Y
1
re = — — | 3ay75 + 23 — \[6c frs + 4[32>
30‘1 (59)

Ag

(rs —75) (rs —14),

By =2r5—rg—r1y

2\/A6 (rs =) (¢ —14) + B (rs — @) + 24,4
(rs —14) (rs — @)

2:

For the varying process, see Figure 8.

Proposition 5. For given oy < 0 and B#0, if y;(B) <
y < y5(P), then system (51) has two types of nonlinear wave
solutions which tend to the peakon solution

v, () = ;_ﬁ (e—\/WW.l _ 1)’

! (60)

Uy, (§) = V &) +d,
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11
v v v
12163
9 ve(§) vo(®)
z ¢ ¢
O o 6]
(@ B=-9,y=1x10" ) B=-9,y=1x10"" (© B=-9y=1x10"°
v v v
3 3 &
o ¢} o
vip(8) v10() v10(&)

(d) p=9y=1x10"

(&) f=9,y=1x10"*

() f=9,y=1x1078

FIGURE 8: The solitary waves turn into the compactons. The varying process for the figures of vy(§) and v,,(§) when o > 0, $#0, and

y — 0+ 0 wherea, =2.

v v Y
; d :
o) O 9
Vll(f) vi1(§)
V11(£)
@ y=7(p-10" ®) y=y(p)-107" © y=1(p)-10"
v v !
£ 4 :
- o)
& J vi2(8) v12(8)

(d) y=1(p)-107"

© y=n@-10"

) y=pP-10"°

FIGURE 9: The peakon is bifurcated from the singular cusp wave and the solitary wave. The varying process for the figures of v,, (§) and v,,(§)

when «; < 0,8 <0,andy — y,(f) —0wherea; = —2and § = -9.

when y — y,(pB) — 0. For the varying process, see Figures 9
and 10. These two types of nonlinear wave solutions are singular
cusp wave solutions and solitary wave solutions of the following
expressions.

(1) When f < 0, the singular cusp wave solutions possess

the expression
N I N I PRV
20 20,

B

30

B

3a,

v (§) = [(

x (T 1),

i ©) = 37 @+ 4,

(61)

and the solitary wave solutions possess the expressions v,, (&) =

(&) and uy(&) = (1/N)v,,(&) + d, and @(E) is given by the
implicit function
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v v v
v13(8) £ v13(8) £ VIS(E) £
@ y=pp-10" (b) y = y,(B) - 107" @ y=pn@-10"°
v v v
ﬁ j "14(©) v14(§)
H ¢ 3
d) y=p(p-107" (&) y =y (B) —107* € y=1,(p)-107°

FIGURE 10: The peakon is bifurcated from the singular cusp wave and the solitary wave. The varying process for the figures of v;5(&) and v,,()
whena; <0,8>0,andy — y,() —0wherea; = —2and f =9.

0 g (25

r; —Tg

and the solitary wave solutions possess the expressions v,,(&) =
&) and u (&) = (1/A)v,(§) + d, and @(&) is given by the
implicit function

)’ i

24/A,D; + B, (r9 - q)) +2A,
(”7 ~13) (79 -9)

’
+——1In

VA,

62 —
©2) 4 | 2O, + M,
= — _— n(f———
where |061| (ST S
O, = - - >
5= (r=0)(s-0) "0y I2 Ag®y + By (¢ — 1) + 24, )
M, =2¢0—1;, -1 VAg (r11 = 112) (@ = 710) ’
(65)
= - — <3cx1r9 +2f+ /6, fry + 4[32)
3 where
Tg = — %(3 oy + 2 - 6“1[;”9+452)’ (63) ©y= (9 —ru)(p-r1),
1
M, =29 -1 -1,
1
Tg = — . (ﬁ \/ 4"‘1)’)’ 1 >
1 1o = _2741</3+ \B —4061)/),

=
I

= (rg—19) (r; = 19),

1
=1, + 15 — 219, = - 3a, <3“1”10 +2f+ 6, By + 4/32) > (66)

(2) When 8 > 0, the singular cusp wave solutions possess 1 .
the expression 2= T30 (3“1”10 + 23— 6, By + 4f >,
1

Vs (E) = B I _(E + I o Viaul/4lg] Ag = (ro—r) (ro—m)>
1 3a, 20 3a; 20
Bg = 2ryg

T~ T
x (e ),

N
|

The Derivations of Propositions 4 and 5. According to the
£) = 1 £+d qualitative theory, we obtain the bifurcation phase portraits of
uy3 (§) )LV13()+ > L Lo
system (52) as in Figure 11. Through some orbits in Figure 11,
(64)  \Je derive the results of Propositions 4 and 5 as follows.



Abstract and Applied Analysis 13

(a) oy >0

/’X y3(ﬁ)

FIGURE 11: The bifurcation phase portraits of system (52).

(b) a; <0

() When; > 0,8 < 0,and 0 < y < y5(f) (as in Substituting (67) into d¢/d& = y and integrating it, we have
Figure 11(a)), the homoclinic orbit owns the expression

2

V= g0 -0 -n) (h<n<osn). '“ZW ( 4

(67) s=1y) (r,=s) (s —13)

ds. (68)
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Completing the integral above, we get

B z i r1+r3—2g0> T
|E|—\/“1 [arcsm(—rl_r3 *5 —\/A_Sln|d>1|.

(69)

(2) Whena; > 0,8 > 0,and 0 < y < y5(f) (as in
Figure 11(a)), the homoclinic orbit is expressed by

2 !

yzw (ry<p<rs<ry).

(70)

(rs - 90)2 (p—r4)(rs —9)

Substituting (70) into d¢/d& = y and integrating it, we have

¢ 45>
_ i .o
d L \]0‘1(75 =) (s—1y) (rs—s)

Completing the integral above, we get

4 e i) o,
€] = \j% [arcsm( p— 2+\/A_6ln|(I)2| .

(72)

Note that when § < 0O and y — 0 + 0, it follows that
r, — rf =—-4B/3a;,r, — 0,andr; — 0. Further, we have

N
Bs =1 +r;-2r, — 1],

As = ("1 - ”2) (”2 - ”3) — 0,

’
lim -2
y—>0+()r2
2
‘ 3041, + 23+ \/6a, Br, + 4
= lim -
y—0+0 30(11"2
. 1
= lim -
y—0+0 3047,

Jrer +2p-26(129% o))

<3oclr2 - 30(211’2 + o(r2)> = —%,

= lim -

y—0+0 3047,

1§

,
lim —2= = lim
PN As 0 =1y (ry - 1)

. )
= lim
y=040\[ 1y 413 =1y =1y (13/15)

0
- J(sm Y
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lim @,
y—0+0

- i (r—13)(p—1)
=, 2o
! 2\/As (ry =) (@ —r3) +Bs (p — 1) + 24,

(73)
Thus, from

§

4 Ty +ry—2 r
= lim +|— arcsin<M>+E— 2_In|D,||,
y—0+0 \ o Ty =13 2 LA,

we have

|f| = \/(le [arcsin(rl* r}zq)) + g] . (75)

Solving (75) for ¢, we can get ¢ = v,(&) (see (55)), which is
the same as (2).

Similarly, from (72), we can also get solution ¢ — v, (&)
when f>0andy — 0+0.

(3) When oy < 0, f#0, and y5(8) < y < 9,(f) (as in
Figure 11(b)), the curves I’} and I; own the expression

yzz_(ﬁ <¢2+£go+ 2—V> (76)

4 3a, o

Substituting (76) into dg/d& = y and integrating it, we have

’ ds —
N o),
L, \/52+(4ﬁ/3(x1)5+(2y/“1) \/ 4 | | (B<0)

er ds _ _“_1|§| (B> 0)
o @) s+ Crtar) VA |

(77)

Completing the integrals above and solving the equations for
@, we get ¢ = v;(§) (see (61)) and @ = v,5(&) (see (64)).

(4) When «; < 0, f#0, and y5(f) < y < ,(B) (as in
Figure 11(b)), two homoclinic orbits can be expressed as

2

¥ = —%(go—@f(ry—q))(rg—q)) (B<0), (78

2

P = = o-n)(e=r) (B>0). ()
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Substituting (78) and (79) into dg/d& = y and integrating it,
we have

4s*
¢ ds,
o= J \jlo‘l'(s_’b) (r7 =) (rs =)

4s* ds.
1= J \j|oc1| (1o - 5) (s=ry)(s—12)

Completing the integrals above, we get (62) and (65).
Note that when § < 0and y — y,() — 0, it follows that

Vyl2e, — B/3ay, v, — 0,15 — 0,19 — 19 = —2f3/3a,
and

(80)

M, =2¢-r;,—13 — 209,

"
B, =rg+r;, —2rg — —2r,,

. (81)
VA7 =\ =r0) (17 = 1r9) — 3,
Vs = (- 9) (s~ 9) — .

Thus, we have

lim v (§)

=10
im | (Lo
Y=o |\ 3oy 20,

(B, [ e
30y prd (82)

% (e\/WIEI _ 1)
_ %ﬁ(e—mmhl)

Vin (§)

S
= 1' —_ r—
=, Jw

203 - M
X@'L

v, =1y

(see (60)),

2+/A, D5 + B, (ro — ¢) + 24,
("7 - "8) (”9 - 4’)

’
+——1In

VA,

)

15
(2\/A7(D3 +B,(ry — @) + 24, )
X
(r; = 15)(rg — @)
_ \jzln‘_4¢(r9 <p)|
|“1| drgp
= - \jzln ik :(p‘
|‘X1| Ty
(83)

Solving (78) for ¢, we obtain ¢ = v,,(§) (see (60)).

Similarly, from (65), we can also get ¢ = v,,(§) (see
(60)) when 3 > 0Oand y — y,(f) — 0. These complete the
derivations of Propositions 4 and 5.

4. The Bifurcations of Solitary Waves for
D(2,2) System

When m = 2 and n = 2, system (1) becomes
u, + (vz)x =0,
2
v+ a(v )xxx

We will reveal the interesting bifurcation phenomenon to
system (84). That is, the solitary waves can be bifurcated from
the smooth periodic waves and the singular periodic waves.
The concrete results are stated as follows.

Note that P(2,2) system is read as

(84)
+bu,v+cuv, = 0.

de
L =20y,
g = 2y

(85)

d
dﬁ— -2y* -9’ - Pp -y,

where «, is as (18) and 3, y are given in (13). Let

=3[ ()]
1, = ﬁ<222>/ (1—i\/§)—6—(¥)1/3(1+1\/_)
. ﬁ<22_(52> (1+ix/§)—6—;<§)1/3(1—i\/§),
Q= - 27aly + (8003 + 729aty?,

4V§< ﬂ3>1/2
FARY A

and let y, () be as (20).

v+ (B) =
(86)
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Proposition 6. For fixed o, and P, system (84) has solitary
wave solutions

vf@)=:tJ—gf[é—tmm2<d_%§g>],
(87)

w(® =17 +d

which can be bifurcated from the following two types of
nonlinear wave solutions.

(1) Smooth periodic wave solution:

vis (§) =1, - (ra - rb) sn’ (7175’ k3) >
- (88)
Uys (E) = XV15 (5) +d,

where

14 (B) <y <v:(B),

N o -
7 20 (ra rc)’ (89)
h:J“_W
Ta— T
(2) Singular periodic wave solutions:

(Ag +1,) cn(ngé ky) — Ag +1,

Vi (§) = ,
' cn (g€, ky) +1 (90)
1
e ) = 36 @ +d, (> 0,$<0),
_Agtr, - (Ag —1,) cn (ng€, ks)
vy (§) = R
1+ cn (158, ks) (o1)
1
;€)= v, O +ds (0 <0,6>0),
where
(B <y<-1:(B),
A29 = (b - T’a)z + aé,
1
-~y
1
by = E(”b*”’c))
(92)
1
118 = \/gAQ |(X2|,
k2 _ A9 - bO + ru
24y
k2 _ A9 + bO —Ta
ST 24

For the varying process, see Figures 12 and 13.
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The Derivations of Proposition 6. According to the qualitative
theory, we also obtain the bifurcation phase portraits of sys-
tem (85) as in Figure 14. Employing some orbits in Figure 14,
we derive the results of Proposition 6 as follows.

(1) When o, > 0, 8 < 0, and —y,(f) < y < 0 (as in
Figure 14(a)), the closed orbit owns the expression

(ro.<rm,<@<r,).
(93)

¥ =2 (r-9)(p-n) 1)

Substituting (93) into dg/d& = y and integrating it, we have

Completing the integral above and solving the equation for
@, we get v,5(&) (see (88)).

When &, > 0 and —y,(B) < y < —y4(pB), r, is real
and r, and r, become a pair of conjugate complex in (94).
Completing the integral (94) and solving the equation for ¢,
we get v,6(§) (see (90)).

(2) When e, < 0, 3 > 0, similarly, we get v,5(§) (see (88))
and v, (&) (see (91)).

Note that when o, > 0 andy — —y,(B) + 0, it follows

thatr, — ry = (2/3)\=5B/ay, 1, = 1, = =(1/3)\/=5B/ax,,
andr, — r, = —(1/3)y/-5p/a,. Further,

(95)
07 4 &
Ny = \2_(2)(ra_rc)_) \/_ 82(5
Thus, we have
V—1>iP1},+0V15 ©) = yli$,+or“ ~ (ra = 7y) sn” (1,8, k3)
4 & /3
— * _ * _ * t h2 _L
ra (ra rb) an <\/ 80 £>
(96)

_ Tﬁ 2 2 4 wpf
_\/—a—zlig—tanh <\/_E£>:|

=V (®)  (see(87)).



Abstract and Applied Analysis 17

v15(8)

\ / £ v15(8) £

¢
NARVE RV VA NIVA N N

(@) y= —pa(B) + 107" ) y=—y(B)+107* () y=—ys(B)+ 1078
v v v
v16(8)
A / ké /\F vi6(§) 13 §
o) \ (_/ @) j [ O \i®
) y=-p(p)-10" (&) y=-ys(B)-107" ) y=-pn(p)-107°

FIGURE 12: The solitary wave is bifurcated from the smooth periodic wave and the singular periodic wave. The varying process for the figures
of vi5(&) and vig(§) whena, =5, =-9,9 — y,(B) +0,0ry — y,(B8) 0.

4 v v
SN NN N S §
/ 0O \ o) [e)
VIS(E) V15(f) VIS(E)
(@) y= —pa(B) + 107" (b) y = —pu(B) +107* () y=—y(B)+107°
v v 14
4 4 4
[®) [®) o)
v17(&) v17(§) v17(8)
) y=-p(p)-10" (e) y=-ys(B)-107" ) y=-pn@-10"°

FIGURE 13: The solitary wave is bifurcated from the smooth periodic wave and the singular periodic wave. The varying process for the figures
of vi5(&) and v, (§) when o, = =5, =9,y — y(B) +0,0ry — y,(B8) - 0.

Ifo, >0and y — —y,(B) — 0, then it follows that r, — T S ap
ry = (2/3)\-5B/ay, 1, — 1, = —(1/3)\/-5B/ay, and r, — Mg = \/_A9“2 —2 80
rp = —(1/3)+/-5p/e,. Further, it follows that (97)
2 1 2 Thus, we get
= — — — 0,
% 4(rb el — (Ag +1,)en(ngd, ky) = Ag + 1,

lim v = lim
y—--0 ©) Y= 30 cen (ng€ ky) + 1

~ (2r; — ;) sech (2x“/—¢x2ﬁ/805) +1,

Ag=\(by-r1) +a@ — 71 -1, 1+ sech (24/~a, B/80¢)

Y _ (ora =) +ri [2cosh? (Y0 B780E) — 1]
47 2A, b 2cosh? (x“/—cxzﬁ/SO«f)

by = %(rb“ch)_”';’
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(b) a, <0

FIGURE 14: The bifurcation phase portraits of system (85).

= (rX — ;) sech’ ((]—

o . = v () (see(87)).
S0 )T (98)

— — Similarly, we can also get v;5(§) — v;(§) and v|;(§) —
- \j_% [% — tanh? <<j_ﬁg>] v; (§) whena, <0, 3> 0,andy — —y,(B) + 0. Hereto, we
)

have completed all of the derivations.
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5. Conclusions

In this paper, by employing the bifurcation method and
qualitative theory of dynamical systems, we have revealed
some interesting bifurcation phenomena of nonlinear waves
for the D(m,n) system (1). Firstly, for D(2,1) system, we
have pointed out that the fractional solitary waves can be
bifurcated from the trigonometric periodic waves and the
elliptic periodic waves (see Figures 1 and 2). In the meantime,
the kink waves can be bifurcated from the solitary waves and
the singular waves (see Figures 3-6). Secondly, for D(1,2)
system, we have showed that the solitary waves can turn
into the compactons (see Figure 8) and the peakons can be
bifurcated from the singular cusp waves and the solitary
waves (see Figures 9 and 10). Thirdly, for D(2, 2) system, we
have confirmed that the solitary waves can be bifurcated from
the smooth periodic waves and the singular periodic waves
(see Figures 12 and 13).
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