Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 179027, 16 pages
http://dx.doi.org/10.1155/2014/179027

Research Article

Uniform Convergence and Spectra of Operators in

a Class of Fréchet Spaces

Angela A. Albanese,! José Bonet,” and Werner J. Ricker®

I Dipartimento di Matematica e Fisica “E. De Giorgi”, Universita del Salento, C.P193, 73100 Lecce, Italy
2 Instituto Universitario de Matemdtica Pura y Aplicada IUMPA, Universitat Politécnica de Valéncia, 46071 Valencia, Spain
3 Math.-Geogr. Fakultiit, Katholische Universitit Eichstitt-Ingolstadt, 85072 Eichstiitt, Germany

Correspondence should be addressed to José Bonet; jbonet@mat.upv.es

Received 22 October 2013; Accepted 20 December 2013; Published 30 January 2014

Academic Editor: Alfredo Peris

Copyright © 2014 Angela A. Albanese et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri), which relate conditions on the spectrum of a
bounded operator T to the operator norm convergence of certain sequences of operators generated by T, are extended to the class
of quojection Fréchet spaces. These results are then applied to establish various mean ergodic theorems for continuous operators
acting in such Fréchet spaces and which belong to certain operator ideals, for example, compact, weakly compact, and Montel.

1. Introduction

Given a Banach space X and a continuous linear operator
T on X, there are various classical results which relate con-
ditions on the spectrum o(T) of T with the operator norm
convergence of certain sequences of operators generated by
T For instance, if lim,, _, o (17" l,,/n) = 0, with | ||, denoting
the operator norm, (even T"/n — 0 in the weak operator
topology suffices), then necessarily o(T) € D, where D :=
{z € C: |z| < 1}, [1, p. 709, Lemma 1]. The stronger condition
lim,, _, I T"llo, = 0is equivalent to the requirement that both
o(T) € Dand limn_,oo(llT”HOp/n) = 0 hold [2]. An alternate
condition, namely, that {T"};?, is a convergent sequence
relative to the operator norm, is equivalent to the requirement
that the three conditions limn_mo(IIT"IIop/n) = 0, the range
(I-T)"(X)isclosed in X for somem € N,and I'(T) € {1} are
satisfied [3]. Here I'(T) := o(T)NT with T :={z € C : |z] = 1}
being the boundary of D. Such results as above are often
related to the uniform mean ergodicity of T, meaning that the
sequence of averages {(1/n) Z”m:I T™} of T is operator norm
convergent. For instance, if limn_>oo(||T"||Op/n) =0and1 ¢
o(T), then T is uniformly mean ergodic [4, p. 90, Theorem
2.7]. Or if limn_>oo(||T”||0p/n) = 0, then T is uniformly mean
ergodic if and only if (I — T)(X) is closed [5].

Our first aim is to extend results of the above kind to
the class of all Fréchet spaces referred to as prequojections;
this is achieved in Section 3. The extension to the class of
all Fréchet spaces is not possible; see Proposition 17 below
and [6, Example 3.11], for instance. We point out that a clas-
sical result of Katznelson and Tzafriri stating, for any Banach-
space-operator T satisfying supneNllT"IIOp < 00, that
limrHoollT"+1 - T”||Op = 0ifand only if I(T) < {1} [7],is also
extended to prequojection Fréchet spaces; see Theorem 20.

Our second aim is inspired by well-known applications
of the above mentioned Banach space results to determine
the uniform mean ergodicity of operators T" which satisfy
lim,HOO(HT"llOp /n) = 0 and belong to certain operator ideals,
such as the compact or weakly compact operators; see, for
example, [1, Ch. VIII, § 8], [4, Ch. 2, § 2.2], and [8, Theorem
6.1], where T can even be quasi-compact. An extension of
such a mean ergodic result to the class of quasi-precompact
operators acting in various locally convex Hausdorft spaces
is presented in [9]. For prequojection Fréchet spaces, this
result is further extended to the (genuinely) larger class of
quasi-Montel operators; see Proposition 32, Remark 33, and
Theorem 35. A mean ergodic theorem for Cesaro bounded,
weakly compact operators (and also reflexive operators) in
a certain class of locally convex spaces (which includes all
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Fréchet spaces), is also presented; see Proposition 23 and
Remark 24(ii).

2. Preliminaries and Spectra of Operators

Let X be a IcHs and T'y a system of continuous seminorms
determining the topology of X. The strong operator topology
7, in the space Z(X) of all continuous linear operators from
X into itself (from X into another IcHs Y we write Z(X,Y))
is determined by the family of seminorms g,.(S) := g(Sx), for
S € L(X), for each x € X and q € I, in which case we
write Z(X). Denote by %(X) the collection of all bounded
subsets of X. The topology 7, of uniform convergence on
bounded sets is defined in £ (X) via the seminorms gg(S) :=
sup,..5 4(Sx), for S € Z(X), foreach B € B(X)andq € I'y;in
this case we write £, (X). For X a Banach space, 1;, is the oper-
ator norm topology in Z(X). If Iy is countable and X is com-
plete, then X is called a Fréchet space. The identity operator
on alcHs X is denoted by I.

By X, we denote X equipped with its weak topology
o(X, X"), where X' is the topological dual space of X. The
strong topology in X (resp. X') is denoted by B(X, X') (resp.
[S(X',X)) and we write Xg (resp. X;3); see [10, IV, Ch. 23]
for the definition. The strong dual space (X;;);g of X;; is
denoted simply by X". By X/ we denote X' equipped with its
weak-star topology o(X',X). Given T ¢ Z(X), its dual
operator T' : X' > X'is defined by (x, T'x'y = (Tx,x")
forall x € X, x' € X'. It is known that T' € .Sf(X;) and
T € g(x’ﬁ), (11, p. 134].

For a Fréchet space X and T' € Z(X), the resolvent set
p(T) of T consists of all A € C such that R(A, T) := (AI - )™
exists in Z(X). Then o(T) := C\ p(T) is called the spectrum
of T. The point spectrum ¢,(T) consists of all A € C such that
(AI = T) is not injective. Unlike for Banach spaces, it may
happen that p(T) = . For example, let 0 = C" be the
Fréchet space equipped with the lc-topology determined via
the seminorms {g,},>,, where g,,(x) := maxlgjgnlle, for x =
(xj)‘;il € w. Then the unit left shift operator T': x — (x,, x3,
Xy . ..), for x € w, belongs to Z(w) and, for every A € C, the
element (1,1, A%, 1%,...) € wis an eigenvector corresponding
to A.

For a Fréchet space X, the natural imbedding ® : X —
X" is an isomorphism of X onto the closed subspace ®(X) of
X" Moreover, we always have

S"ed=0oS, SeZLX); (1)

that is, S is an extension of S.

The following result will be required in the sequel. Since
the proof is standard we omit it. The polar of a set % < X is
denoted by %° ¢ X'.

Lemma 1. Let X be a Fréchet space.

(i) Let {pj}?gl C Ty be a fundamental, increasing sequence
which determines the lc-topology of X"'. For each j € N
define q; on X via q; = p; o @. Then {q;}72, € Iy is

a fundamental, increasing sequence which determines

the Ic-topology of X.
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(ii) Let {rj}?zl C I'y be a fundamental, increasing sequence
which determines the lc-topology of X. For each j € N,

let r;' denote the Minkowski functional (in X"') of the

bipolar of % ; := rJfl([O, 1]) € X. Then {r]'-'}(]?zl C Ty is
a fundamental, increasing sequence which determines
the lc-topology of X"'. Moreover, for each j € N, we
have

"

T (x) = sup |<x,x’>', r; (x”) = sup |<x”,x’>| @)
e x'eU;

foreach x € X and x" € X". In particular, r}' o®=r;

that is, the restriction of r}' to X = O(X) coincides with
rj, for each j € N.

For Banach spaces the following fact is well-known.

Lemma2. Let X bealcHsand{T,}.;2, € L(X) be an equicon-
tinuous sequence. Then also {T,'/}Zil < L(X") is equicontinu-

ous.

Proof. Let B € B(X). Then C := U2 T,(B) € RB(X) as
{T,,}°° is equicontinuous. So, for all x' € X' andn € N, we
have T)x' € X;; with

Pz (T,'lx') = sup '<x, Tr'lx'>'
x€B

= sup |<Tnx,x'>| < sup '<y,x'>' = pc (x').
x€B yeC
(3)

As the seminorms {pg : B € 9B(X)} generate the lc-topology
of XL;, the previous inequality shows that {T,',}Z';1 cZ (X;3) is
equicontinuous.

Since {Tr'l};“;l c Z (XZ;) is equicontinuous and the lc-
topology of X" is generated by the polars of bounded subsets
of X;, the same argument as above yields that {T)'}°° ¢

LX) is equicontinuous. O

Lemma 3. Let X be a Fréchet space and T € Z(X). Then
T is an isomorphism of X onto itself if and only if T" is an
isomorphism of X" onto itself.

Proof. If T is an isomorphism of X onto itself, then there
exists T™' € #(X) with TT™' = T™'T = I. It follows that T,
(Tﬁl), € g(X;;) and so T”,(Tﬁl)” e Z(x". Accordingly,
1=y =10 and1 = (') = @)'T".
Thus, (T")! exists in Z(X") and (T")" = (T_l)”; that is,
T" is an isomorphism of X" onto itself.

Conversely, suppose that T is an isomorphism of X"
onto itself. Since T" is an extension of T (i.e., T = T"|y),
we see that T is one-to-one. Moreover, since X is a closed
subspace of X" (as X is a complete, barrelled IcHs), it follows
that T(X) = T"(X) is closed. It remains to show that T(X) =
X. But, if T(X) # X, then there is f € X'\ {0} such that
(Tx, f) = (x, T'f) = 0 for all x € X. Hence, T'f = 0; this is
a contradiction because the surjectivity of T" implies that T’
is necessarily one-to-one. O
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We remark that Lemma 3 remains valid for X a complete
barrelled 1cHs.

The next result is an immediate consequence of (1) and
Lemma 3.

Corollary 4. Let X be a Fréchet space and T € ZL(X). Then
p(T) = p(T") and o(T) = o(T"). Moreover,

®oR(AT)=R(AT")o®, Aep=p(T"); (4)

that is, the restriction of R(A, T"') to the closed subspace X =
O(X) of X" coincides with R(A, T). Briefly, R(A, T")IX =
R(A,T).

A Fréchet space X is always a projective limit of con-
tinuous linear operators R, : X;,;, — X, fork € N,
with each X, a Banach space. If X and R; can be chosen
such that each R, is surjective and X is isomorphic to the
projective limit proj;(X;, R;), then X is called a quojection
[12, Section 5]. Banach spaces and countable products of
Banach spaces are quojections. Actually, every quojection is
the quotient of a countable product of Banach spaces [13]. In
[14] Moscatelli gave the first examples of quojections which
are not isomorphic to countable products of Banach spaces.
Concrete examples of quojection Fréchet spaces are w =
C, the spaces LfOC(Q), with 1 € p < o0, and c™(Q)
for m € Ny, with Q ¢ R any open set, all of which
are isomorphic to countable products of Banach spaces. The
spaces of continuous functions C(A), with A a o-compact,
completely regular topological space, endowed with the com-
pact open topology, are also quojections. Domanski exhibited
a completely regular topological space A such that the Fréchet
space C(A) is a quojection which is not isomorphic to a
complemented subspace of a product of Banach spaces, [15,
Theorem]. A Fréchet space X admits a continuous norm if
and only if X contains no isomorphic copy of w [16, Theorem
7.2.7]. On the other hand, a quojection X admits a continuous
norm if and only if it is a Banach space [12, Proposition
3]. So, a quojection is either a Banach space or contains an
isomorphic copy of w, necessarily complemented, [16, Theo-
rem 7.2.7]. Also [17] is relevant.

Lemma5. Let X be a quojection Fréchet space and S ¢ Z(X).
Suppose that X = proj,(X;,Q; ;,,), with X; a Banach space
(having norm || IIj) and linking maps Qjjs € ZL(X ‘+1’Xj)
which are surjective for all j € N, and suppose, for each j € N,
that there exists S; € L(X ;) satisfying

Sij = stx (5)

where Q€ Z(X, X jeN, denotes the canonical projection
of X onto X; (i.e., Qj,j+1 °Qjy = Qj). Then

o(S) ¢ Uo (Sj) QO’(S)UUO’P (Sj). (6)
j=1 j=1
Moreover,
0, (8) € Jo, ($))- ?)
j=1

If, in addition, for every A € p(S), the resolvent operator
R(A, S) satisfies

R(A,9) (Ker Q;) cKer Q;, jeN, )
then o(S) = U;’Zla(Sj).

Proof. For the containments (6) and (7) we refer to [18,
Lemma 5.1].

Suppose now that (8) holds for each A € p(S). To establish
the desired equality, let A € p(S). Then AI - S is surjective. Fix
j € N. Since Q j X - X i is surjective, it is routine to check
from the identity (Mj —Sj)Qj = Qj(/\I—S) that also /\I]- =§;is
surjective (with I; € Z(X) the identity operator). To verify
AI; - S is injective suppose that (AI; — S;)y = 0 for some
y € X, in which case y = Q;x for some x € X. Accordingly,

QM-8 x=(AL;-S;)Qx=(A;-S;) y=0 (9
shows that (AI — S)x € Ker Q;. It then follows from (8) that
x = R(A,S)(AI — S)x € Ker Qj that is, Q;x = 0. Since
y = Q;x, we have y = 0. Hence, AI; — §; is injective. This
establishes that A € p(S;). Accordingly, p(S) = ﬂ;’:l p(S;) as
desired.

The following result occurs in [18, Lemma 5.2].

Lemma 6. Let X be a quojection Fréchet space and {S,},2,
Z(X). Suppose that X = proj(X;,Q;;.,), with X;
Banach space (having norm || ;) and linking maps Q)
Z(X 1> X;) which are surjective for all j € N, and suppose,
for each j,n € N, that there exists Sff) € Z(X;) satisfying

$7Q; = Q;S, (10)

where Q; € Z(X, X), j € N, denotes the canonical projection
of X onto X (i.e.,‘ Qjj+1 ° Qju1 = Q). Then the following
statements are equivalent.

Q 1N

m

(i) The limit 7,-lim, S, =: S exists in £}, (X).

S = U exists

n—00"n

(ii) For each j € N, the limit 7,-lim

In this case, the operators S € Z(X) and SY ¢ g(Xj), for
j €N, satisfy

Sx = (S(j)xj)j, X = (xj)j € X. (11)

Moreover, (i) and (ii) remain equivalent if T, is replaced by

Given any IcHs X and T € Z(X), let us introduce the
notation:

1 n
Ty = = YT", neN, (12)
m=1

for the Cesaro means of T. Then T is called mean ergodic
precisely when {Tj,},2, is a convergent sequence in Z(X).
If {1y, }2o happens to be convergent in #},(X), then T will
be called uniformly mean ergodic.

We always have the identities

(I—T)T[n]=T[n](I—T)=%(T—T””), neN, (13)



and also (setting Ty := I) that

1 -1
_Tn = T[n] — (n )T[n—l]’ n e N. (14)
n n
Some authors prefer to use (1/n) an;lo T™ in place of Tips
since
1 n—1 1 1 n—1
T[n]:T(;ZTW‘>=E(T"—I)+;ZTW[, neN,
m=0 m=0

(15)

this leads to identical results.

Recall that T € Z(X) is called power bounded if {T"},?,
is an equicontinuous subset of Z(X).

The final result that we require (i.e., [18, Lemma 5.4]) is as
follows.

Lemma 7. Let X = proj,(X;,Q; ;;,) be a quojection Fréchet
space and let operators S € L(X) and S; € Z(X)), forjeN,
be given which satisfy the assumptions of Lemma 5 (with Q; €
Z(X, X)), j €N, denoting the canonical projection of X onto
X; and || I; being the norm in the Banach space X;).

(i) S € L(X) is power bounded if and only if each S; €
SZ(X]-), j €N, is power bounded.

(i) S € Z(X) is mean ergodic (resp., uniformly mean
ergodic) if and only if each S; € Z(X), j € N, is mean
ergodic (resp., uniformly mean ergodic).

3. Spectrum, Uniform Convergence,
and Mean Ergodicity

A prequojection is a Fréchet space X such that X" is a quo-
ection. Every quojection is a prequojection. A prequojection
is called nontrivial if it is not itself a quojection. It is known
that X is a prequojection if and only if X;; isastrict (LB) space.
An alternative characterization is that X is a prequojecton if
and only if X has no Kéthe nuclear quotient which admits a
continuous norm; see [12,19-21]. This implies that a quotient
of a prequojection is again a prequojection. In particular,
every complemented subspace of a prequojection is again a
prequojection. The problem of the existence of nontrivial pre-
quojections arose in a natural way in [12]; it has been solved,
in the positive sense, in various papers [19, 22, 23]. All of these
papers employ the same method, which consists in the con-
struction of the dual of a prequojection, rather than the pre-
quojection itself, which is often difficult to describe (see the
survey paper [24] for further information). However, in [25]
an alternative method for constructing prequojections is pre-
sented which has the advantage of being direct. For an exam-
ple of a concrete space (i.e., a space of continuous functions on
a suitable topological space), which is a nontrivial prequojec-
tion, see [26].

In this section we extend to prequojection Fréchet spaces
some well-known results from the Banach setting which con-
nect various conditions on the spectrum o(T'), of a continu-
ous linear operator T, to the operator norm convergence of
certain sequences of operators generated by T. Such results
have well-known consequences for the uniform mean ergod-
icity of T
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We begin with a construction for quojection Fréchet
spaces which is needed in the sequel.

Let X be a quojection Fréchet space and {qj}?zl be any
fundamental, increasing sequence of seminorms generating
thelc-topology of X. Foreach j € N, set X ; := X/q}l({O}) and
endow X ; with the quotientlc-topology. Denote by Q; : X —
X the corresponding canonical (surjective) quotient map
and define the quotient topology on X via the increasing

sequence of seminorms {(q;)¢};2, on X; by

(@), (Qx) =inf{g (») : ¥y € X, Qy=Qyx},
(16)
x € X,

for each k € N. Then
(@)k (ij) <q(x), xeX, kjeN. a7)

Moreover,
(@),(Qx)=q;(x), xeX, jeN, (18)

which implies that ((jj) j is a norm on X;. As noted above,
since X is a quojection Fréchet space and every quotient space
(of such a Fréchet space) with a continuous norm is necessar-
ily Banach [12, Proposition 3], it follows that for each j € N
there exists k(j) > j such that the norm (q;);, generates the
lc-topology of X ;. Moreover, it is possible to choose k(j+1) >
k(j) for all j € N. Thus, X is isomorphic to the projective
limit of the sequence {(X (G j))}]'fl of Banach spaces with
respect to the continuous, surjective linking maps Q
Xj;1 — X defined by

Jt+

.l -

Qjjs1°Qjn = Q)

This particular construction will be used on various occasions
in the sequel, where B ; will always denote the closed unit ball
of X, for j € N. The so-constructed Banach space norm
(@j)k(j) of X; will always be denoted by g;, for j € N.

Tfle following result is classical in Banach spaces [1, p. 709,
Lemma 1].

jeN. (19)

Proposition 8. Let X be a quojection Fréchet space and T €
Z(X) satisfy 7,-lim,, _, .. (T"/n) = 0. Then o(T) < D.

In case X is a prequojection Fréchet space and T,-
lim,,_, .,(T"/n) = 0, the inclusion o(T) € Dis again valid.

Proof. We have the following two cases.

[e9)

Case (I) (X is a quojection). Let {rj} -1 be a fundamental,
increasing sequence of seminorms generating the Ic-topology
of X.SinceT"/n — 0in Z(X)asn — ocoand X isa Fréchet
space, the sequence {T"/n},.  is equicontinuous. So, for each
j € N there exists ¢; > 0 such that

T x
T <7> S GTjn (x), xeX, neN (20)

there is no loss in generality by assuming that r;,; can be
chosen.
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Define gjon X by qj(x) = max{rj(x), SUP, e rj(T”x/n)},
for x € X. Then (20) ensures that {qj};’gl is also a fundamen-

tal, increasing sequence of seminorms generating the lc-
topology of X. Moreover,

q;(Tx) < 2q; (x),

We now apply the construction (16)-(19) to the sequence
of seminorms {qj};?zl to yield the corresponding sequence
{(X j,qj)};’;’l of Banach spaces and the quotient maps Q; €
Z(X, X)), for j € N; recall that g; := ()i, for j € N.

Fix j € N. Define the operator T; : X; — X via

Tijx = Qij,

ThenT; is a well-defined, continuous linear operator from X ;
into X ;. Indeed, suppose Q;x = Q,y for some x, y € X; that
is, (x — y) € Ker Qj, so that qj(x — ) = 0. This, together with
(21), yields 0 < qj(T(x—y)) < 2qj(x—y) = 0. Since Ker Q; =
q}l ({0}), it follows that QjT(x—y) = 0,and hence, by (22) that

T)Qj(x - y) = QT(x~-y) = 0. Therefore, T;Qjx = T;Q;y.
This means that T is well defined. Clearly, T} is also linear.
Moreover, (17), (21), and (22) imply that

7;(1;%) = 3;(T)Q;x)
= 3; (QTx) < di(j) (T) < 244 (%),

forall X € X; and x € X with Q;x = X. Taking the infimum
with respect to x € Q;l ({x}), it follows that

xeX, jeN. (21)

x e X. (22)

(23)

5 (1/%)<24,(®), %eX; 24)

Since g; generates the quotient topology of X, (24) ensures
the continuity of T;. Moreover, it follows from (22) that

n n
(Tj) Qx=QT"x, xeX, neN. (25)

The surjectivity and the continuity of Q; together with (25)
imply that Ts—limn_,oo((Tj)"/n) = 0. Indeed, fix any X € X .
By the surjectivity of Q; there exists x € X such that Q;x = x.
By (25) it follows that (Tj)”a?/n = Qj(T"x/n), forn € N.
Moreover, T"x/n — 0asn — o0 by assumption. So, the
continuity of Q; yields that limn_,oo((Tj)"a’c‘/n) = 0 in the
Banach space X ;. We can then apply Lemma 1in [1, p. 709] to
obtain that O‘(Tj) cD.

We have just shown that (C \ D) ¢ n;’jl p(T;). Moreover,
the operators T and T satisfy (22). So, we can apply Lemma 5

which yields (C \ D) c p(T); thatis, o(T) € D.

Case (1I). (X is a prequojection and 7,-lim,_, . (T"/n) =
0). Observe that X and X;; are barrelled and, hence, quasi-
barrelled as X is a Fréchet space and X;; is the strong dual
of a prequojection Fréchet space. Since T' ¢ .Sf(X;;) and
T" ¢ Z(X"), the condition 7,-lim,, _, . (T"/n) = 0 implies
that 7,-lim,, _, . ,((T"")"/n) = 0 (see [27, Lemma 2.6] or [28,
Lemma 2.1]). On the other hand, X" is a quojection Fréchet
space. So, it follows from Case (I) that o(T"") < D. Finally,
Corollary 4 ensures that o(T) = o(T"yandsoo(T) cD. O

Remark 9. For a power-bounded operator T € £(X) it is
always the case that 7,-lim,, _, . ,(T"/n) = 0 and so, when-
ever X is a prequojection Fréchet space, it follows from
Proposition 8 that o(T) € D.

For operators in Banach spaces, the following result is due
to Koliha [2].

Theorem 10. Let X be a prequojection Fréchet space and T €
Z(X). The following assertions are equivalent.

(i) 7-lim,, _, ,T" = 0.

(ii) The series Y >, T" converges in &, (X).
(iii) 73-lim,, _, (T"/n) = 0 and o(T) < D.

Moreover, if one (hence, all) of the above conditions holds, then
I =T is an isomorphism of X onto X with inverse (I - T)™" =
Yoo T" and the series converging in £,(X).

Proof. We have the following two cases.

Case (I) (X is a quojection). (i)=(ii). The assumption ;-
lim, _, 7" = 0 implies that 7;,-lim,,_, . ,(T"/n) = 0. So, we
can proceed as in the proof of Proposition 8 to obtain that
X = proj;(X;,Q; ;1) in such a way that, for every j € N,
there exists T; in Z(X) satisfying T;Q; = QT. Then also
T;’Qj = QjT", for every j,n € N. So, Lemma 6 implies that
Tp-lim, , T = 0 forall j € N. Thus, by [2, Theorem 2.1]
the series )0, T;‘ converges in Z,(X ), for each j € N. With
S, = ZZZO Tk, for n € N, it follows again from Lemma 6 that
the series ) >, T" converges in Z},(X).

(ii)=(iii)). The assumption clearly implies 7,-
lim,, _, .,(T"/n) = 0. So, as in the proof of (i)=(ii), we may
assume that X = proj j(X 7»Qjj+1) in such a way that, for
every j € N, there exists T; in Z(X) satisfying T,Q; = Q;T.
Then also T;‘Qj = QjT", for every j,n € N. Since Y o) T"
converges in Z,(X) and X is a quojection, the series
Yoo T;‘ also converges in Z;(X ;) forall j € N; see Lemma 6.
By [2, Theorem 2.1] we have that (T(Tj) Cc Dand so A :=
(C\D) ¢ p(Tj), for all j € N. Accordingly, since T,Q;=Q,T
forall j € N, Lemma 5 yields A € N2, p(T}) € p(T); that s,
o(T) c D.

(iii)=(). Since A < p(T), for every A € A, the operator
I-A'T = XYM - T) € Z(X) is invertible, that is, biject-
ive with (I - A7'T)™" € Z(X). On the other hand,
7-lim,  (A'T)"/n) = 0 for every A € A as 7,-
lim,_, (T"/n) = 0 and |A"'| < 1. So, by Theorem 4.1 in [29]
(see also Theorem 3.5 of [6]) we can conclude that

7- lim (A7) =0, AeA. (26)

Let {rj}}’zl be a fundamental, increasing sequence of semi-
norms generating the lc-topology of X. Arguing as in the
proof of Proposition 8 (and adopting the notation from there)
we conclude that (20) is satisfied. Define g; on X by gq;(x) :=
max{r;(x), sup,,y rj(T"x/n)}, for x € X. Then again (21)
is satisfied and, for each j € N, there exists a continuous



linear operator Tj 1 X - X satisfying both (22) and (24).
Moreover, it follows from (22) that

(A'T,)'Qx=Q(A'T)'x, xeX, neN, AeA.
(27)

Fix A € Aand consider the sequences {R,},°, and {H,},°,
in Z(X) given by R, := (1/m) Y1 37 (A7'T)" and H,, :=
I- (A‘lT)[n], for n € N. Then the operator A := [ - A™'T
satisfies H, = AR, = R,A for all n € N. Moreover, (26)
implies that H, — Iin Z,(X). Since all the assumptions of
Lemma 3.4 in [6] are satisfied with F = E= X, R =1 € ZL(X,
X),and A = I — AT, we can proceed as in the proof of that
result to conclude, for every j € N, that the operator I — /VlTj
is invertible in £ (X i) (hence, also AI — T;is invertible); that
is, A € p(Tj).

By the arbitrariness of A € A, we have that A € p(T)), for
all j € N. So, there exists Sj € (0,1) such that p(T;) > A e
C:|Al=1- 5j}. It follows that

r(T]-) = max{|)t| tA e O’(Tj)}

_ (28)
= Jim Il < (1-9) <1 jen

n— 00

and, hence, that lim”HOOIIT}“IIop = 0. Because of (27), with

A =1 € A, it follows from Lemma 6 (with S, := T") that 7;,-
lim, _, 7" = 0.

Case (1I) (X is a prequojection). As noted before X and X;;
are barrelled with T € Q(X;;) and T" € 2(X").

()=(ii). fT" - 0in &L}, (X) forn — oo, then an argu-
ment as for Case (II) in the proof of Proposition 8 shows that
(T = (1" - 0in Zy(X") forn — co. Since X" is a
quojection Fréchet space, we can apply (i)=(ii) of Case (I)
above to conclude that the series Z;’ZO(T”)” converges in
gb(X"). Then also Ziio T" converges in &, (X) as T”lX =T
and X is a closed subspace of X"

(i) = (iii). If Y20, T" converges in &, (X), then Y 0 (T")"
converges in gb(X"); see [27, Lemma 2.6] or [28, Lemma
2.1]. Since X" is a quojection Fréchet space, we can apply
(ii)=(iii) of Case (I) above to conclude that o(T") c D (the
condition 7,-lim,,_, . ,(T"/n) = 0 clearly follows from the
assumption). So, o(T) < D by Corollary 4.

(iii)=(i). As already noted (cf. proof of Case (II)
in Proposition 8) X and X;; are barrelled (hence, quasi-

barrelled) and 7,-lim,_, .,((T")"/n) = 0. By Corollary 4,
p(T") = p(T) and so A € p(T"") by assumption. Since X" is
a quojection Fréchet space, we can apply Case (I) to conclude
that 7,-lim,, _, . (T"")" = 0. So, also 7,-lim,_, 7" = 0 as
T"|x = T and X is a closed subspace of X"

Finally, suppose that one (hence, all) of the above condi-
tions holds. Then the series ) 72 T" converges in %}, (X) and
soT" — 0in Z,(X) forn — oo.But, for everyn € N, we
have

n n
(I_T)ZTmz z (Tm_TmH):(I_TnH) (29)
m=0

m=0
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and so, for n — 00, we can conclude that (I - T) Y2 T" =
I with convergence of the series in Z},(X). In a similar way
one shows that (3,72, T")(I — T) = I, with the series again
converging in &, (X). O

Remark 11. In the proof of (iii)=(i) in Case (I) above, if
infjeN (Sj =: § > 0, then it follows that p(T) > {A € C : |A] >
(1 = 8)}. But, this is not the case in general as the following
example shows.

Let X be a Banach space and let {A,}72 € (0,1) be an
increasing sequence with sup, .y A,, = 1. Consider the quojec-
tion Fréchet space X" (endowed with the product topology)
and the operator T on X" defined by T(x,), := (A,x,,),,, for
(x,), € XN It is easy to show that T € Z(X) and that T is
even power bounded. Moreover, A € p(T'). Indeed, for a fixed
A e A, if x € Ker (AI = T), then Ax — Tx = 05 that is, (A —
A)x, = 0foralln € N. Since A ¢ {A,}2,, it follows that
x, = 0forall n € Nand so x = 0. On the other hand, if
y € XV, then x := (y,/(A - A,))), belongs to X" and Tx = y.
Hence, AI - T is bijective and so A € p(T). Moreover, fix any
x € X\ {0} and sete, := (J,,,%),, for everyn € N. Then Te, =
A,e, for every n € N. Thus, each A,, is an eigenvalue of T'.

Now, suppose that p(T) > {A € C : [A| > 1 - 8} for some
0 €(0,1). Then B(1,6/2) :={p € C: |u— 1| < 6/2} c p(T).
But A, — 1forn — o0, and hence, there is n, € N such
that /\no € B(1,6/2) c p(T). This contradiction as )Lno is an
eigenvalue for T

If T is uniformly mean ergodic, then (14) implies that ;-
lim,,_, .o (T"/n) = 0. With an extra condition the converse is
also valid.

Corollary 12. Let X be a prequojection Fréchet space and
T € Z(X). If i,-lim,,_, . ,(T"/n) = 0 and 1 € p(T), then T
is uniformly mean ergodic.

Proof. Since 1 € p(T), the operator I-T is bijective and so the
space (I - T)(X) = X is closed in X. By [6, Theorem 3.5], T
is uniformly mean ergodic. In particular, as Ker (I - T) = {0},
we have that Tj,,, — 0in Z},(X) forn — oco. O

Remark 13. Let X be a prequojection Fréchet space and let
T € Z(X) satisfy 7,-lim,, _, ..(T"/n) = 0.1f1 € p(T), then the
proof of Corollary 12 shows that T is uniformly mean ergodic
with 7;,-lim T(y = 0. On the other hand, if o(T) € D (a

n— 00
stronger condition than 1 € p(T)), then Theorem 10 implies
that 7,-lim,, , ,,T7" = 0 and hence again 7,-lim,, _, ., T(,,; = 0

follows [30, Remark 3.1]. However, the stronger conclusion
that 7,-lim, _, 7" = 0 does not follow from Corollary 12
in general. Indeed, let X # {0} be any Banach space (even
finite dimensional). Then every power of T := il belongs
to the set {-I,I,—il,iI} and so T is power bounded. This
implies that 7,-lim,_, (T"/n) = 0. Since o(T) = {i},
surely 1 € p(T) and so, by Corollary 12, it follows that ;-

lim,, _, ,, T}, = 0. However, for every n € N we have [T"|,, =
1 and so {IIT"IIOP}Zi1 does not converge to zero. This does not

contradict Theorem 10 as o(T') is not included in D.

Remark 14. Let X be a prequojection Fréchet space and T' €
Z(X). We observe the following.
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(i) Proposition 8 and (14) yield that if T is uniformly

mean ergodic, then 7,-lim, , (T"/n) = 0 and
o(T) c D.
(ii) Suppose that 7,-lim,_, (T"/n) = 0. 1f o(T) <

D, then T is uniformly mean ergodic and T, -
lim T,y = 0 (cf. Remark 13).

n— 00

For Banach spaces the next result is due to Mbekhta and
Zemanek [3]. Recall that T'(T) := o(T) N T.

Theorem 15. Let X be a prequojection Fréchet space and T €
ZL(X). The following statements are equivalent.

(i) {T"},2, is convergent in &}, (X).
(i) 7,-lim,,_, .(T"/n) = 0, the linear space (I - T)"(X) is
closed in X for some m € N and I'(T) < {1}.

(iii) 7,-lim,, _, . (T" = T"") = 0 and (I - T)"™(X) is closed
for somem € N.

Proof. (1)=(ii). If {T"};?, converges in Z;,(X) to P, say, then
T is uniformly mean ergodic with ergodic projection equal to
P [30, Remark 3.1]. Moreover, as {T"'},2, is necessarily equi-
continuous, it follows that 7,-lim,, _, . (T"/n) = 0. Hence, by
Theorem 3.5 and Remark 3.6 of [6] the space (I — T)"(X) is
closed for every m € N. Moreover, by Proposition 8 we have
o(T) < D. To establish the remaining condition I'(T) < {1}
we distinguish two cases.

(a) X is a quojection. Let {rj};’gl be any fundamental, increas-
ing sequence of seminorms generating the lc-topology of X.
By equicontinuity of {T"}° , for each j € N, there exists
¢; > 0 such that

ri (T"x) < ¢jrj (%),

it xeX, neN. (30)

Define g;, for each j € N, by g;(x) = sup,,,r;(T"x), for
x € X. Then (30) ensures that {qj};?zl is also a fundamental,

increasing sequence of seminorms generating the lc-topology
of X. Moreover, it is routine to check (using also that T"x —
Px for each x € X) that

q; (Tx) < q; (x), xe€X, jeN. (31)

q; (Px) < q;(x),

With (31) in place of (21), we can argue as in the proof of
Proposition 8 to deduce that X = proj;(X;,Q; ;;,) and that,
forevery j € N, there exist operators T; and P; in Z(X ;) satis-
fying T;Q; = Q;T and P;Q; = Q;P. Hence, T;'Qj = QjT" for
every j,n € N. Since also 7,-lim,,_, ., 7" = P, it follows from
Lemma 6 (with S, := T" and § := P) that 7;-lim,,_, ., T} = P;,
foreach j € N. By [3, Corollaire 3] we have that I(T)) ¢ {1} for
every j € N. Thisimplies that I'(T)) € {1}. Indeed, it A € T\{1},
then for every j € N we have A ¢ F(Tj) andso A € p(Tj); that
is, A € ﬂ‘]?ZIp(TJ-). AsT;Q; = Q;T forevery j € N, an appeal to
Lemma 5 yields that A € p(T).

(b) X is a prequojection. As noted before, X and X;; are bar-
relled (hence, quasi-barrelled) with T',P’ € Q(X;;) and

T",P" ¢ 2(X"). Hence, 7,-lim, _, . . T" = P implies that 7 -
lim,,_mo(T")” = P"; see [27, Lemma 2.6] or [28, Lemma 2.1].

Since X' is a quojection Fréchet space, we can apply the result
from case (a) to conclude that I(T"") < {1} and so I'(T) < {1};
see Corollary 4.

(ii)=(i). The assumptions 7,,-lim,, _, ., (T"/n) = 0 and the
space (I — T)™(X) being closed for some m € N imply that T
is uniformly mean ergodic [6, Theorem 3.4 and Remark 3.6].
In particular, (I - T)(X) is closed and

X=Ker(I-T)e(I-T)(X) (32)

[6, Theorem 3.4]. Moreover, Proposition 8 implies that
o(T) ¢ D. It then follows from the assumption I'(T) < {1}
that either I'(T') = @ or I'(T) = {1}.

IfT(T) = 0, then necessarily o(T") € D and so, by (iii)=(i)
of Theorem 10, we have 7;,-lim,,_, . ,T7" = 0.

In the event that I'(T') = {1} we have that 1 € ¢(T) and
so Ker(I — T) # {0} (otherwise, (I — T) is injective and from
X=Ker(I-T)® (I -T)X) = (I -T)(X) also surjective;
thatis, 1 € p(T)). Define Y := (I -T)(X) and T := T'|y. Then
Y is a prequojection Fréchet space (being a quotient space of
the prequojection X) which is T-invariant and so T} € Z(Y).
The claim is that

p(Ty) = p(T)U{1}. (33)

It follows from (32) that 1 € p(T)). Fix A € p(T) (so that
A#1). If (AT - T})x = 0 for some x € Y (i.e., (AI - T)x = 0),
then x = 0as A € p(T). Hence, (AI - T}) is injective. Next, let
y € Y. Then there exists x € X such that (A - T)x = y.
Since x = x; + x, with x; € Ker(I - T) and x, € Y (cf.
(32)), it follows that (A — 1)x; + (AI — T})x, = y; that is,
(A=1)x; = y— (AL = T,)x,, with (A - 1)x, € Ker (I - T) and
(y—-(AM-T)x,) e Y. AsKer(I-T)NY = {0} and A #1,
this implies that x; = 0 and so (AI — T})x, = y with x, € Y;
that is, (AI - T}) is surjective. These facts show that A € p(T}).
This establishes p(T) U {1} € p(T}).

Fix A € p(T;) \ {1}. Suppose that (AI — T)x = 0 for some
x € X. Then x = x; +x, withx; € Ker(I-T) and x, € Y (cf.
(32)). It follows that (A-1)x; +(AI-T;)x, = Owith (A-1)x, €
Ker (I —T) and (AI - T})x, € Y. Arguing as in the previous
paragraph, this implies that x; = 0 and (AI - T)x, = 0. Since
x, € Yand A € p(T;), we can conclude that x = 0; that is,
(AI = T) is injective. Next, let y € X. Then y = y; + y, with
y, € Ker(I-T)and y, € Y (cf. (32)). Since A # 1, the element
x; := y;/(A-1) € Ker (I-T) exists. Moreover, A € p(T;) with
y, € Y implies the existence of x, € Y such that y, = (AI -
T)x, = (Al — T)x,. It follows that x := (x; + x,) € X satis-
fies (AI-T)x = y. Hence, (AI-T) is also surjectiveand so A €
p(T). Accordingly, p(T}) < p(T) U {1} is proved. This estab-
lishes (33).

Since o(T) € D U {1} and (33) is equivalent to o(T;) =
o(T)\ {1}, it follows that o(T;) € D. Moreover, Y is a prequo-
jection Fréchet space and (T})"/n — 0in &, (Y)asn — o
(because 7,-lim,_, . (T"/n) = 0and T; = T on Y). So, we
can apply Theorem 10 to conclude that T}’ — 0in Z,(Y) as
n — 00.On the other hand, T = I on Ker (I = T'). These facts
ensure that T" = I & (T})" — I®0in &}, (X) because X =
Ker(I-T)®Yand T, =TonY.

()= (iii). If {T"};2, converges to some P in Z;(X), then T
is uniformly mean ergodic with ergodic projection equal to P



[30, Remark 3.1]. Hence, by [6, Theorem 3.5 and Remark 3.6]
the space (I — T)™(X) is closed for every m € N. Moreover,
(T"-T"™') - P-P=0inZ,(X)asn — co.

(iii)=(i). We first observe that

1 L m m+1 1 n+1
an:l(T ") =~ (T-T"), neN.  (9)
This identity (together with the fact that 7,-lim, _, . (T"-
T™") = 0 implies for the averages that 7,-lim,,_, . (1/n)
yr (T =T™") = 0 [30, Remark 3.1]) yields 7,-lim,, _, o (1/
n)(T — T™") = 0. But, 7,-lim,, _, . ,(T/n) = 0 and so we can
conclude that 7,-lim,, _, . .(T"/n) = 0. As also (I — T)"(X) is
closed for some m € N, we can apply [6, Theorem 3.4 and
Remark 3.6] to conclude that T' is uniformly mean ergodic
and, in particular, that (32) is valid with (I — T)(X) being
closed. We claim that this fact, together with the assump-
tion that ,-lim,, _, o (T"~T"*") = 0, implies that {T"}%2, con-
verges in Z;,(X). To see this, note that T" = I on Ker (I-T") and
soT"=1 — Iin Z,(Ker(I -T))asn — oo.On the other
hand, the surjective operator (I - T) : X — (I - T)(X) lifts
bounded sets via [10, Lemma 26.13] because X and Ker (I-T),
both being prequojections, are quasinormable Fréchet spaces
[24, Proposition 2.1], [21]; that is, for every C € B((I-T)(X))
there exists B € %B(X) such that C € (I — T)(B). So, for fixed
C € B((I - T)(X)) (with corresponding set B € $B(X)) and
p € Tk (every g € [(g_r)x is the restriction of some p € Ty),
we have
supp (T"y) < supp (T" (I - T) x)
yeC X€B

(35)

= supp((T" - T”H) x) , neN,

x€B

where sup, zp((T" = T"")x) — 0asn — oo by assump-
tion. Set T := T'|;_1)(x)- The arbitrariness of C and p shows
that (T;)" — 0in Z,((I — T)(X)) (after observing that (I —
T)(X) is T-invariantand so T} = T'|;_1yx) € ZL((I-T)(X))).
These facts ensure that T" = [ & (T})" — [ &0 in &£, (X) as
X=Ker(I-T)aY. O]

Remark 16. In assertion (ii) of Theorem 15 the condition that
“(I - T)™(X) is closed in X for some m € N” can be replaced
with the condition that “T" is uniformly mean ergodic”; see [6,
Theorem 3.5 and Remark 3.6].

Theorems 10 and 15 do not necessarily hold for operators
acting in general Fréchet spaces.

Proposition 17. Let p € [1,00) or p = 0 and let A be a
Kothe matrix on N such that /\p(A) is a Montel space with
/\P(A) #CN. Then there exists an operator T € EZ’(AP(A)) such
that T" — 0in Zy(A,(A)) asn — oo and I(T) = {1} but
(I- T)m()tp(A)) is not closed for every m € N.

Proof. By the proof of Proposition 3.1 in [6] there exists d :=
(d); € RN with 0 < d; < 1 foralli € N such that the diagonal
operator T : AP(A) — /\P(A) given by T'((x;);) := (d;x;);, for
x = (x;); € A,(A), is power bounded, uniformly mean ergodic
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and (I - T)(A,(A)) is dense but, not closed in A ,(A). So, for
everym € N, also (I — T)™(A,(A)) is dense but not closed in
A P(A). To see this, note that tll;e arguments in the proof of [6,
Remark 3.6, (5)=(4)] are valid for any operator T satisfying
7,-lim,,_, ., (T"/n) = 0 and acting in any Fréchet space. So,
in the case that (I — T)m(AP(A)) was closed for some m €
N, we could apply [6, Remark 3.6, (5)=(4)] to conclude that
(I- T)()LP(A)) is also closed; a contradiction. So 1 € I'(T).

We claim that 7" — 0in #;(1,(A))asn — co.Indeed,
since {T"};2, is equicontinuous and convergence of a
sequence in & (A, (A)) is equivalent to its convergence in
QS(AP(A)) (as /\P(A) is Montel), it suffices to show that
lim,,_, ,T"e; = 0in A ,(A) for each j € N, wheree; := (5;;); €
A,(A). But, this is immediate because T"ej = d;.lej, for all
j» n€N.

It remains to show that I'(T) < {1}. Set D := {d, : i ¢ N}.
Then D < [0,1]. Let A € T\ {1}. Then inf,y|A — d;| =:
& > 0. It is routine to check that, for a fixed y € /\P(A), the
element x := ((1/(A - d;))y;); belongs to AP(A) and satisfies
(AI = T)x = y. This means that the operator (AI — T) is
surjective. On the other hand Ker (AI-T') = {0} which follows
from A ¢ {d; : i € N}. Therefore, as A p(A) is a Fréchet space,
A € p(T); thatis, T\ {1} € p(T). Since 1 € I'(T), it follows that
I(T) = {1}. O

Concerning the example in Proposition 17 we note that (i)
of Theorem 10 holds but (iii) of Theorem 10 fails (as T'(T) =
{1} implies that o(T) ¢ D). Moreover, (i) of Theorem 15 holds
(as 1,-lim, _, , ,T" = 0) but (ii) and (iii) of Theorem 15 fail
(because (I —T)m(AP(A)) is not closed in )‘P (A) foreverym €
N). Of course, A,(A) is not a prequojection.

A well-known result of Katznelson and Tzafriri states that
a power bounded operator T on a Banach space satisfies
lim,, _, ,IT"*" = T"|,, = 0 if and only if I(T) < {1}, [7,
Theorem 1 and p. 317 Remark]. In order to extend this result
to prequojection Fréchet spaces (see Theorem 20 below) we
require the following notion.

Let X be a Fréchet space and T' € Z(X). A fundamental,
increasing sequence {qj}j?gl < Ty which generates the lc-
topology of X is called T' contractively admissible if, for each
j € N, we have

q; (Tx) < q; (x),

Lemma 18. Let X be a Fréchet space and T € Z(X). Then
there exists a T contractively admissible sequence of seminorms

which generates the lc-topology of X if and only if T' is power
bounded.

x € X. (36)

Proof. If {qj};’i’ C I'y is T contractively admissible, then it is
clear from (36) that qj(T”x) < q;(x), for x € Xand everyn €
Ny, j € N. This means precisely that {T"};? is equicontinuous
in Z(X); thatis, T is power bounded.

Conversely, suppose that T' is power bounded. Let {rj};’zl
be a fundamental, increasing sequence in I'y which generates

the lc-topology of X. Via the equicontinuity of {T"};>, for
every j € N there exist k(j) > j and «; > 0 such that
ri(T"x) < ajrjy (x), x€X, neN. (37)
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Define qj(x) = supneNorj(T”x), for x € X and each j € N.
Then the previous inequality implies that

r; (x) < q; (x) < T (x), xeX, jeN, (38)
and so {qj}‘;zl C Iy is a fundamental, increasing sequence

determining the Ic topology of X, which clearly satisfies (36).
That is, {g J} ~, is T contractively admissible. O

Remark 19. (i) For a Banach space X, Lemma 18 simply states
that T' is power bounded if and only if it is a contraction for
some equivalent norm in X.

(ii) Let X be a Fréchet space and let T € Z(X) be an
isomorphism which is bipower bounded; that is, {T" : n € Z}
is equicontinuous in Z(X). An examination of the proof of
Lemma 18 shows that there exists a sequence {qj}‘]?zl c Iy,
again called T contractively admissible, which generates the
lc-topology of X and satisfies, for each j € N,

9;(T"x) <q;(x), xeX neZ (39)
Theorem 20. Let X be a prequojection Fréchet space and let
T € Z(X) be power bounded. The following assertions are
equivalent.

nHOO(TrH-l _ Tn) =0

(ii) I'(T) € {1} and there exists a T contractively admissible
sequence {pj};’zl C Ty such that, for each A € T \ {1}
and j € N, there exists M) ; > 0 satisfying

(i) 7,-lim

P; (R(A,T)x) < M, ,;p; (x), xeX. (40)
Remark 21. (i) If I'(T) < {1}, then necessarily T \ {1} € p(T)
and so the resolvent family {R(A,T) : A € T \ {1}} is defined.

(ii) If I(T) = 0, then (i) of Theorem 20 follows without
any further conditions. Indeed, by Remark 9 we actually have
o(T) € D. Then Theorem 10 implies that 7,-lim,, _, . ;7" = 0
and, hence, also 7,-lim,, _, . ,(T""" = T") = 0

(iii) If X is a Banach space and | - || is any norm in X for
which T is a contraction (i.e., || - || is T contractively admis-
sible), then the requirement (40) automatically holds with
M, = [|R(A, T)|,,- That is, condition (ii) in Theorem 20
simply reduces to I'(T) < {1} and we recover the result of
Katznelson and Tzafriri.

Proof of Theorem 20 (i)=(ii). As usual we distinguish two
cases.

Case (I) (X is a quojection). According to Lemma 18 there is
a T contractively admissible sequence {q;}, < Ty satisfying
(36) and, hence, also qj(T”x) < qj(x), forx € Xandall j,n €
N. We proceed as in the proof of Proposition 8 (now using
(36) in place of (21) so that (24) becomes g,(T;x) < g;(%), for
X € X;and j € N) to obtain that X = proj].(Xj,Qj)jH)insuch
a way that, for every j € N, there exists a contraction T; €
Z(X) satisfying T;Q; = Q;T. Then also T;Qj = QjT" for
all j, n € N. For each j € N, define p;(x) = q;(Q;x) for
x € X. By the properties of projective limits { pj};’zl c Iy

is a fundamental sequence generating the lc-topology of X.
Moreover,

p; (Tx) = ;(Q;Tx)
= 4;(T)Qx) <q;(Qx) = p; (%),

shows that {g j};‘):l is also T contractively admissible. Accord-

(41)
x € X,

ing to Lemma 6 (applied to the norms | || i =4 and with
S, == (I"™" = T"), n € N, and 8 := (17" = T7), for j,

n € N), the assumption 7,-lim,, _, ..(T""" = T") = 0 implies
that lim,1_>00||TJ'.‘Jrl - T]"’||0p = 0, for each j € N. By [7, Theo-
rem 1] we can conclude that F(Tj) C {1}. On the other hand,

o(T)) < D as T; is a contraction and so o(T;) cDu {1}; that
is, (T) DC\(Du{l}),forjeN. Accordlng to Lemma 5
als p(T) 2 C\ (D U {1))s thatis, I(T) < (1)

Concerning (40), fix A € T\{1}and j € N. By the previous
paragraph A € p(T) N p(Tj). It follows from Tij = QjT that
Q]-R(/\, T) = R(A, Tj)Qj. Hence, for x € X, we have

p;(R(A,T)x) =3; (QR(A,T) )
=4 (R(LT;) Qx

= [rR, T, 2 ()

) < [R.T)],,3; (%)

(42)
which establishes (40).

Case (II) (X is a prequojection). As noted before, X and X;;
are barrelled (hence, quasi-barrelled) with T € g(Xk) and
T" € Z(X"). So, the assumption 7,-lim,, _, ., (T"*" = T") = 0
implies that 7,-lim,, _, . ((T"")"*" = (T"")") = 0. Moreover, X"
is a quojection Fréchet space and T" is power bounded; see
Lemma 2. So, the result of Case (I) yields I(r"y c {1}. But,
I(T) = T(T") (see Corollary 4) and so I'(T) ¢ {1}.

By (i)=(ii) for quojections there exists a T" contractively
admissible sequence { p;.'};.’zl C Ty such that, for every A €
T\ {1} and j € N, there exists M, ; > 0 satisfying

PR ") < Myl (), ' eX". (@)

By Lemma 1 and Corollary 4 the seminorms p; := p}' o @,

j € N, satisty (40).

(ii)=(1). Case (I). (X is a quojection).

Let { pj}‘J?Zl € Ty be as in the statement of (ii), in which
case (36) holds. Proceed as in Case (I) of the proof of (i)=(ii)
to obtain that X = proj;(X;,Q; ;;;) in such a way that, for
every j € N, there exists a contraction T; € £(X ), satisfying
TiQ; = QT.

Claim 1. F(Tj) c {1}, for every j € N.

To establish this, let A € T\{1}. Since I'(T") < {1}, it follows
that A € p(T), and hence, AI — T is surjective. But, also Q;:
X — X. is surjective. It is then routine to check from the
identity (AIJ- -T)Q; = Qj(M —T) that /Uj —T; is surjective.
To verify that AI; - T is injective suppose that (AI; = T;)y = 0
for some y € X, in which case y = Q;x for some x € X.
Accordingly,

QM -T)x=(A;-T;)Qux=(A;-T;) y=0 (44)
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shows that (AI — T)x € KerQ i =Kerp;. It then follows from
(40) that x = R(A, T)(AI — T)x € Ker Py that is, Q;x = 0.
Since y = Q;x, wehave y = 0. Hence, AI;,~T} is injective. This
establishes that A € p(Tj), and hence, Claim 1 follows as A €
T\ {1} was arbitrary.

Fix j € N. From Claim 1 and the fact that T'; is a con-

traction, it follows from [7, Theorem 1] that
limn_,oollT]'.' - T;’+1||Dp = 0. According to Lemma 6 (with
S, = ("' = T", n € N) we can conclude that 7,-
lim, _, ., (T™" = T") = 0.

Case (1I) (X is a prequojection). By Corollary 4 we have from
[(T) < {1} that T(T"") € {1}. Moreover, Lemma 2 implies that
T" € 2(X") is power bounded.

Let {p;}72, € I'x be as stated in part (ii). Apply Lemma 1
to construct the seminorms { p}'}‘;’l C Ty, given there. We first
verify that { p;'}j.xz’l C Iy is T" contractively admissible. Since

{ pj}?i’l is T contractively admissible, we have T(% )< U

with ?lj the closed unit ball ofpj; that is, %j = p;l([O, 1]), for
j € N. By the Bi-polar Theorem, [10, Theorem 22.13] applied
twice we have

T (%) =T" (%) < TU) U, = %7, (45)

where V’ denotes the closure for the weak* topology o(X",
X") of asubset V¢ X" (or, of V. ¢ X < X"). Then (45)
implies that p}'(T"x”) < p}'(x") foreachx” € X" and j € N;
that is, { p}'}‘;:l is T"' contractively admissible.

It follows from (40) that R(A, T)(CZJ]-) c %j, forallA € T\
{1} and j € N. Using R(A, T")IX = R(A,T) (c.t. Corollary 4)
one can repeat the argument via the Bi-polar Theorem to
conclude that R(A, T")(%}") c M, j%;", which then implies
that

P R(LT") ") < My ol (1), %" X" (46)

So, the conditions in part (ii) are satisfied for the power
bounded operator T" € Z(X") with respect to {p}'};ﬁl.
Applying (ii)=(i) for the quojection Fréchet space X" we
conclude that 7,-lim, _, _ ((T")"™*" = (T"")") = 0. But, T" | =
T with X closed in X"'. So, 7,-lim,, _, ., (T"™*" = T") = 0; that
is, (i) holds. O

Let X be a prequojection Fréchet space and T ¢ Z(X)
be power bounded. By Remark 9 we have o(T) € D. Suppose
that T is actually bipower bounded. Then also o(T™) ¢ D.
Clearly, 0 € p(T). Moreover, if 4 € D \ {0}, then 1/u € C \D
andso 1/u € p(T_l), that is, ((1/w)I - T_1)71 e Z(X). Itis
routine to check that R, = —(l/y)T’l((l/y)I - T’1)71 €
Z(X) satisfies (ul — T)R, = I = R,(ul —T) and hence,
(uI — T) is invertible in £(X) with (uI - T)™" = R,. This
shows that D € p(T'). Accordingly, o(T') € T; for X a Banach
space, see [31, Proposition 1.31], for example. Suppose now, in
addition, that o(T) = {1} in which case (T — I) = {0}; that
is, T is quasinilpotent. For X a Banach space, a classical result
of Gelfand-Hille then states that necessarily T = I; see the
survey article [32] for a complete discussion of this topic. The
following fact is an extension of this result.
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Corollary 22. Let X be a prequojection Fréchet space and T €
ZL(X) be an isomorphism which is bipower bounded. Suppose
that I(T) = {1} and there exists a T contractively admissible
sequence {pj};?gl C Ty such that, for each A € T\ {1}, the
inequalities (40) are satisfied. Then T = I.

Proof. According to Theorem 20 we can conclude that -
lim,,_, (T = T™) = 0. Fix x € X. For each j € N, it follows
that

p;((T=D)x)=p;(T"T"(T - 1) x)

< p;(T"(T-Dx) = p;((T"" - T") x)
(47)

for every n € N. Since lim,,_, . (T"" = T")x = 0, it follows
that pj((T— I)x) = 0 with j € N arbitrary; that is, Tx = x. So,
T=1I O

4. Operator Ideals and Uniform
Mean Ergodicity

Let X, Y be IcHS. An operator T' € £(X,Y) is called Montel
(resp. reflexive) if T maps bounded subsets of X into relatively
compact (resp. relatively weakly compact) subsets of Y [33]
(resp., [34]). According to Grothendieck, [35, Chapter 5, Part
2], T is called compact (resp., weakly compact) if there exists
a 0-neighbourhood % < X such that T(%) is relatively
compact (resp., relatively weakly compact) in Y. Clearly, the
2-sided ideal (X,Y) (resp., Z(X,Y)) of all Montel (resp.,
reflexive) operators coincides with the 2-sided ideal #(X,Y)
(resp., W H(X,Y)) of all compact (resp., weakly compact)
operators whenever X, Y are Banach spaces. For general IcHs’
we always have #(X,Y) < #(X,Y) but the containment
may be proper; consider the identity operator on an infinite
dimensional Montel IcHs. Clearly, #(X,Y) € %(X,Y) and
W H(X,Y) < H(X,Y). Criteria for membership of #(X,Y)
(resp. Z(X,Y)) occur in Theorem 9.2.1 (resp. Corollary 9.3.2)
of [36], for example.

In this section we present various connections between
the uniform convergence of sequences of operators generated
by an operator T € #/(X) and the uniform mean ergodicity
of T, where # stands for one of the operator ideals %, ./,
WHK,R.

Every compact operator T acting in a Banach space
has the property that (I — T) has closed range. Hence, if
limn_>oo(||T"||Op/n) = 0, then T is uniformly mean ergodic
(1, p. 711, Corollary 4], [4, p. 87, Theorem 2.1]. For any lcHs
Xand T € H(X), it is also the case that (I — T)(X) is
a closed subspace of X [36, Theorem 9.10.1]. Hence, if X
is a prequojection Fréchet space, then Theorem 3.5 of [6]
implies that T' is uniformly mean ergodic whenever 7;,-
lim, _, . ,(T"/n) = 0 (equivalently, 7,-lim,_, ,(T"/n) = 0
because K € H(X); see Remark 26(ii)). Since #(X) <
M (X), the question arises of whether the same is true for
T € #(X)? This is indeed so; see Theorem 27 below.

InalcHs X all relatively o(X, X')-compact sets and all rel-
atively sequentially o(X, X')-compact sets are necessarily rel-
atively countably o(X, X') compact. These are the only impli-
cations between these three notions which hold in general.
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All three notions coincide whenever X, is angelic [37, p. 31].
Such spaces X include all Fréchet spaces (actually, all (LF)-
spaces), all (DF)-spaces and many more, [37, Section 3.10],
[38, Theorem 11, Examples 1.2].

Operators T € Z(X) for which {Tj,;}}2, ¢ Z(X) is
equicontinuous will be called Cesdaro bounded; see [4, p. 72]
for X a Banach space.

Proposition 23. Let X be a IcHs such that X, is angelic and
T € Z(X).

DT € RX) is Cesaro bounded and satisfies -
lim, _, (T"/n) = 0, then T is mean ergodic.

(i) f T € JM(X) is Cesaro bounded and satisfies T,-
lim,,_, ..(T"/n) = 0, then T is uniformly mean ergodic.

Proof. (i) Fix x € X. It follows from (13) that
T[n]x = T[n] (I - T) X+ T[H]Tx

(48)

1 n+1
== (T-T"")x+TTyx, neN.

n
The equicontinuity of {Tj,j};2, ensures that {Tp,x}.2, €
HB(X). Since T € R(X), the set {T(T[n]x)}fli1 is relatively
weakly compact in X. Moreover, lim, _, . (1/n)(T - T"x =
0 in X because of 7,-lim,_, (T"/n) = 0. These facts,
together with X, being angelic and (48), show that {T},;x}7>|
is relatively weakly (hence, relatively weakly sequentially)
compact in X. Since x is arbitrary, we can apply Theorem
2.4 of [39] (an examination of its proof shows that it is
not necessary to assume the barrelledness of X stated there
because of the equicontinuity of {T[n]}f;l assumed here) to
conclude that T is mean ergodic.

(ii) By part (i) the operator T is mean ergodic, that is, 7,-
lim,, , o, T},; =: Pexistsin Z(X). In particular, P = TP = PT
(which follows from (13)) and so P = T{,;P = PT},;,forn € N.

To establish the uniform mean ergodicity of T, fix p € T,
¢ > 0,and B € B(X). By the equicontinuity of {Tj,},2, there
exist M > 0 and q € I'y such that

p((Ty,y = P) x) < Mq (x),

On the other hand, T(B) is a relatively compact subset of X
and so there exist z,,...,z;, € T(B) such that, for every y €
T(B), we have q(y — z;) < ¢/(2M) for some i € {1,...,h}.
Hence, via (49) we obtain, for every x € Band n € N, that

p (T Tx = Px) = p((Ty,y - P) Tx)

xeX, neN. (49)

< p((Tyy = P) (Tx —2,)) + p ((Tyy — P) 2)
< Mq(Tx - z;) + p((Ty) - P) z;)

£
<5 +p (T —P)z).
(50)
It follows that

.....

(51)

1

with lim,, _, . ;max;_; , p((T},; — P)z;) = 0. The arbitrariness
of € > 0 implies that lim sup, (T, Tx — Px) = 0. So,
7,-lim,, , T,y T = P.

Finally, the arbitrariness of p € I'y and of B € %(X)
together with the assumption 7;,-lim,, _, .. (T"/n) = 0 implies,
via (48), that T' is uniformly mean ergodic. O

n— 0o

Remark 24. (i) Let X be alcHs and let T € Z(X) be mean
ergodic with P := 7.-lim,, _, ,,T{,;. Then it follows from P =
PT that P € #(X) whenever T € %(X) (here, # stands for
the operator ideal &, M, W', or R). In particular, if T' €
H(X),thenFix(T) :={x € X: Tx = x} =Ker(I-T) = P(X)
is finite dimensional, [36, Theorem 9.10.1(1)].

(ii) Let X be a IcHs such that X is angelic. Then the
class of all weakly completely continuous operators in Z(X)
in the sense of Definition 2 in [40] is precisely # F (X).
Moreover, if X is additionally barrelled, then, for any T €
Z(X), the boundedness of the set {T"}7, in Z(X) is
equivalent to T being power bounded. In particular, T is
necessarily Cesaro bounded and satisfies 7,-lim,, _, .,(T"/n) =
0. Accordingly, the containment 7" % (X) < R(X) shows
that Proposition 23(i) is an extension of the following result
of Altman [40, Theorem)].

Fact 1. Let X be a barrelled IcHs with X being angelic. Then
every power bounded operator T' € 7" (X) is mean ergodic.

The following technical result should be compared with
[33, Proposition 3.1].

Lemma 25. Let X be a quojection Fréchet space, and letY be a
Fréchet space and T € M(X,Y) (resp. T € R(X,Y)). Suppose
that X = proj(X;,Q; ;.1), with X; a Banach space (having
norm ||| ;) and surjective linking maps Qjjn € (X1, X)),
forall j € N, and that Y = proj,(Y;,R;;,,), with Y; a
Banach space (having norm ||| |||j) and linking maps Rjin €
Z(Y;,1,Y)) for all j € N. Then, for every j € N, there exist
k(j) = jand T; € %(Xk(j),Yj)(resp. T; € W%(Xk(j),Yj))
such that

RT = T)Qu;), (52)

where R; € Z(Y,Y;), j € N, is the canonical projection of Y
intoY; (i.e, R ;. o Ry = Ry).
Proof. If we define qj(x) = IIQ]-x||j forx € Xand j e N
and r;(y) = |||Rjy|||j for y € Yand j € N, then {qj}‘;gl and
{rj}?zl are fundamental sequences of seminorms generating
the lc-topology of X and of Y, respectively.

Fix j € N. The continuity of T implies that there exist
k(j) = jand C; > 0 satistying

r; (Tx) < Cidx(j) (x), xeX (53)
or equivalently, that
IR T = Sl xex 69

As noted before such an inequality ensures that there exists
T] € g(Xk(]), Y]) defined via R]T = T]Qk(])
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Denote by %y;) the closed unit ball of X ;. Since X is
a quojection Fréchet space, there exists B € $B(X) such that
Uy < Qu j)(B) [17, Proposition 1]. Since T' is Montel (resp.
reflexive) and R ; Is continuous, it follows from Tj(%k( j)) c
Tj(Qk(j)(B)) = Rj(T(B)), with Rj(T(B)) a relatively compact
subset (resp. relatively weakly compact subset) of Y;, that
T;(%y;)) is a relatively compact (resp. relatively weakly com-
pact) subset of Y;. That is, T; € F(Xy;),Y;) (resp. T; €
W H Xy Y7))- O

Remark 26. (i) Let X = proj].(Xj,Qj)jJr
chetspaceand T' € Z(X). Suppose, for every j € N, that there
exists C; > 0 such that q;(Tx) < C;q;(x) for x € X (here, the
notation is according to Lemma 25 and its proof with Y := X).
Then, for every j € N, there exists T; € Z(X)) satisfying
QT =T,Q;. So, it T € M(X) (resp., T € K(X)), then each
T]- € %(Xj) (resp., Tj € 'W/%(Xj)).

(ii) Let X be a Fréchet space and T' € #(X). Then ,-
lim,,_, .(T"/n) = 0 if and only if 7,-lim,, _, . ,(T"/n) = 0.

As 1, C T, it suffices to show 7,-lim,,_, .,(T"/n) = 0
implies 7,-lim,, _, ., (T"/n) = 0.

Since X is a Fréchet space and 7,-lim,, _, . ,(T"/n) = 0, the
set{T"/n} " is equicontinuous in #(X); thatis, for every p €
I'y there exist g € Ty and M > 0 such that

1) be a quojection Fré-

p(Tnx)qu(x), xeX, neN. (55)

Now, fix p € Ty, B € %B(X), and ¢ > 0. Choose g € Ty
and M > 0 according to (55). Since T' is a Montel operator,
T(B) is a relatively compact subset of X and so there exist
X1,..., X, € X such that

k
e
T8 < J(w+5%,), 56
(B) U1 X+ 2%y (56)
with %q = {x € X : q(x) < 1}. Let x € B. By (56) there exist
ie€{l,....,kland z € %q such that T'(x) = x; + (¢/2M)z.
Then, by (55), we have for every n > 1 that

T"x !
p( . >=p( " T(x)>
T x, € ™'z
o(5) e (5) o

- T 'x; L€

=P\ 2
But, p(T”_lxi/(n —-1)) — O0asn — 00. So, there exists n, €
N (depending only on x;) such that p(T"x/n) < & for every
n > ny. Since x is arbitrary and the set {x;,...,x;} is finite,

we can conclude that sup, ., p(T"x/n) — 0forn — co. By
the arbitrariness of B and p we have 7,,-lim,,_, ..(T"/n) = 0.

The following result should be compared with
Proposition 23(ii). We point out (even if dim(X) < co) that
a Cesaro bounded operator T need not satisfy T"/n — 0 in
Z(X) [4,p. 85].
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Theorem 27. Let X be a prequojection Fréchet space and T €
M(X). If T,-lim (T"[n) = 0, then T is uniformly mean
ergodic.

n— 00

Proof. We have the following two cases.

(I) (X is a quojection). The condition .-
lim,,_, .,(T"/n) = 0 ensures that both 7,-lim,_, . (T"/n) = 0
(see Remark 26(ii)) and that we can represent X = proj j(X i
Qj,j+1) such that, for every j € N, there exists Tj € S(Xj)
satisfying Q;T T;Qj; see the proof of Proposition 8.
According to Lemma 25 and Remark 26(i) we have T; e X
(X]-) for all j € N. Moreover, T;’/n — 0in 3b(Xj) for
n — 00; see Remark 26(ii) and Lemma 6 with S,, := T"/n,
forn € N.

Since T; € %(Xj) and TJ’.'/n — 0in yb(Xj) forn —
00, for every j € N, each T} is uniformly mean ergodic 1, p.
711, Corollary 4], which implies that T is also uniformly mean
ergodic; see Lemma 7.

Case

Case (1I) (X is a prequojection). As noted before X and X;;
are barrelled (hence, quasi-barrelled) with T' € 3(X;3) and

T" € Z(X"). So, the condition 7,-lim,, _, .,(T"/n) = 0 (see
Remark 26(ii)) implies that Tb—limn_,oo((T")”/n) = 0. More-
over, X" is a quojection Fréchet space. Also, Corollaries 2.3
and 2.4 of [33] yield that T € .#(X"). We can then apply
Case (I) to conclude that T" is uniformly mean ergodic. So,
T is also uniformly mean ergodic as T"'|x = T and X is a
closed subspace of X" O

It was noted prior to Proposition 23, for X a prequojec-
tion Fréchet space and T' € J#(X), that T is uniformly mean
ergodic whenever ,-lim, _, . (T"/n) = 0. Since F(X) C
A (X) in general, Theorem 27 can be viewed as an extension
of this fact.

Corollary 28. Let X be a prequojection Fréchet space and let
T € M(X) be power bounded. Then T(T) < {1} if and only if
7-lim, _, (T"" = T") = 0.

Proof. If 7,-lim,,_, . (T""" = T") = 0, then Theorem 20 yields
I(T) c {1}.

Conversely, suppose that I'(T") < {1}. Since T is power
bounded, T"/n — 0 in &,(X) forn — oo and so T is
uniformly mean ergodic by Theorem 27. By Theorem 3.5 of
[6] this is equivalent to the fact that (I — T)(X) is closed
in X. So, by Theorem 15(ii)&(iii) we can conclude that T,-
lim T —T") = 0. O

ﬂHOO(

In a Banach space X, an operator T' € Z(X) is called
quasi-compact if there exist m € Nand K € #(X) such that
IT™ ~ Kllop, < 1[8,56], [4, p. 88]. For example, if some power
of T ¢ Z(X) is compact or if some power of T has norm
less than one, then T is quasi-compact. For a quasi-compact
operator T it is known that 7,-lim,, _, ., (T"/n) = 0 suffices for
T to be uniformly mean ergodic [1, Ch.VIIL, Corollary 8.4].
For X non-normable, the question arises of how to extend
the notion of a quasi-compact operator.
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According to [9, Definition 1], for a IcHs X an operator
T e L(X) is called quasi-precompact if there exists a 0-
neighbourhood W such that for every 0-neighbourhood %
in X there exist p € N and a finite set F € X (both depending
on %) with the property that T?(W) € U cx(y + %). For X
a Banach space, this notion coincides precisely with T being
quasi-compact [9, Theorem 3]. In [41] an operator K € Z(X)
is called V-compact if K(V) is a relatively compact subset of
X, where V is some 0-neighbourhood in X. More generally,
T € Z(X) is called V-quasicompact [41, Definition 2.1], if
there exist m € N, a V-compact operator K and § € (0,1)
such that (T — K)(V) € %B(X) and (T - K)(V) c §V.

Lemma 29. Let X be a IcHs and let V be any 0-neighbour-
hood in X. Then every V-quasicompact operator is quasi-pre-
compact.

Proof. Let T € Z(X) be V-quasicompact. Choose m € N, a
V-compact operator K and & € (0, 1) such that the set B :=
(T™ - K)(V) is bounded and B € V. Then
(T - K)* (V) = (T" - K) (B) < (T™ - K) (8V) = 8B.
(58)
Proceeding inductively yields
(1" -K)P (V) c6*'B, peN. (59)
Fix p € N. Note that T and K need not commute. By
expanding (T — K)? it can be seen that (T — K)? = T —
H,, where H,, is a finite sum of operators all of the form AK
or BK(T™)" with A,B € ¥(X)andn € {1,...,p — 1}. The
claim is that H,, is a V-compact operator. Indeed, since AK is
always V-compact and the finite sum of V-compact operators
is clearly V-compact, it suffices to show that K(T™)" (hence,
also BK(T™)") is V-compact forall 1 < n < p.
For n = 1, observe that T (V) = K(V) + B € K(V) + 6V
yields

KT™ (V) c K* (V) + 8K (V), (60)

which is a relatively compact subset of X. For n = 2, we then
have

(T™)* (V) < T (K (V) + 8V) = T"K (V) + T (V) (6])
and, hence, that
K(T™)* (V) C KT"K (V) + SKT™ (V). (62)

Since both T"K(V) and KT™(V) are relatively compact, it
follows that K(T™)*(V') is also relatively compact. This argu-
ment can be continued to yield the above stated claim for all
I<n<p.

Define now W := V and let % be any convex, balanced 0-
neighbourhood of X. Since B is bounded, there is A > 0 such
that B € (1/2)A%. Choose p € N large enough to ensure that

8771\ < 1. It follows from (59) that
(1" ~Hz) (W) = (T" - K)’ (V) < 6"'B (63)
and so

T (W) € Hy (V) + (T™ - Hz) (W)
]. 1’5_1 1 (64)
€ Hy (V) + 28" 'A% € Hy (V) + .
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But, H ﬁ(V) is relatively compact and so there is a finite set
F € X such that H5(V) € Uyep(x + (1/2)%). Accordingly,

Tmﬁ(W)g%%+U(x+%W>§ Ue+2), (65

x€F x€F

which establishes that T' is quasi-precompact. O

Returning to mean ergodicity, we have the following
result of Pietsch [9, Theorem 7].

Fact 2. Let X be a complete, barrelled lcHs and let
T e Z(X) be a quasi-precompact operator satisfying -
lim,_, .(T"/n) = 0. Then T is uniformly mean ergodic and
Fix(T) = Ker(I — T) is finite dimensional.

In order to be able to extend this result to a larger class of
operators we recall, for a Banach space X, that T € Z(X) is
quasi-compact if and only if there exists a sequence {K,,} -2, €

n=1 =
F(X) such that lim |T" - K|l = 0 [4, p. 88, Lemma 2.4].

VlHOO|
Definition 30. Let X be a IcHs. An operator T € Z(X) is
called quasi-Montel (resp., quasi reflexive) if there exists a
sequence {M,}2 < M(X) (resp., {M,},>, € R(X)) such
that (T" - M,)) — 0in Z,(X)asn — oo.

Remark 31. (i) Let X be a Fréchet space and T € £(X)
be quasi-Montel. Then T € Z(X") is also quasi-Montel.
Indeed, in the notation of Definition 30, we have {M,’L'}Zi’1 C
(X" [33, Corollaries 2.3 and 2.4], with (T")"-M,)) — 0
in gb(X") asn — 00; see [27, Lemma 2.6] or [28, Lemma
2.1].

(ii) Let X be a Fréchet space and T € Z(X) be quasi-
Montel. Then 7,-lim,_, (T"/n) = 0 if and only if 7,-
lim,_, . (T"/n) = 0.

Again it suffices to show that 7,-lim,_, (T"/n) = 0
implies 7,-lim,, _, . ,(T"/n) = 0.

Arguing as in Remark 26(ii), for every p € Ty there exist
q € Ty and M > 0 such that (55) holds. Fix p € I'y, B €
HB(X), and € > 0. Choose g and M according to (55). Since
T is a quasi-Montel operator, there is {M,}°, € /(X) with
(T"-M,) — 0in Z(X)asn — 0. So there exists m € N
such that

m £
sup (T = M) x) < 7. (66)
But, M,, € #(X)and so M,,(B) is a relatively compact subset
of X. It follows that there exist xy, ..., x; € X such that

k
M, B < <x,. + ﬁ%q) (67)
i1

where %, = {x € X: g(x) < 1}. From (66) and (67) it follows
that

T"(B) < (T" - M,,) (B) + M,, (B)

k
& &
a4 < —%)
am T I\ T g (68)

<xi+i°2l )
2M 1

N

—-

1l
—

-

1
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Fix x € B. By (68) there existi € {1,...,k} and z € CZlq such
that T (x) = x; + (¢/2M)z. Then, by (55), for every n > m we
have that

()0 (5)

() 5p(5E) @

n

- <T”_mx,-> L€

=P n—m 2
But, p(T" "x;/(n—-m)) — O0asn — 0. So, there exists n, €
N (depending only on x;) such that p(T"x/n) < &, for every
n > ny. Since x is arbitrary and the set {x;,...,x;} is finite,

we can conclude that sup, ., p(T"x/n) — 0forn — co. By
the arbitrariness of B and p we have 7;,-lim (T"/n) = 0.

n— o0

Proposition 32. Let X be a prequojection Fréchet space and
let T € L(X) satisfy 7,-lim,,_, . (T"/n) = 0. If T is quasi-
precompact, then there exists a sequence {K,}>, < H(X) such
that t,-lim,, _, . (T" - K,) = 0. In particular, T is quasi-Montel
as K(X) € M(X).

Proof. The completeness of X ensures that every precompact
subset of X is also relatively compact. By Fact 2 the operator
T is uniformly mean ergodic and so 7,-lim,,_, ..(T"/n) = 0.
By [9, Theorems 1, 2 and Satz 10] there exist R € Z(X)
and a projection P € Z(X) commuting with T such that
dim P(X) < co and satistying

T"=R"+T"'P, neN, (70)

C\D¢Cp(R). (71)

Since P € F(X), also K,, := T"P € F(X) for eachn € N.
Moreover, (70) yields R* = T"(I - P) = (I — P)T", forn €
N, and so 7;,-lim,,_, ., ,R"/n = 0. Since (71) is equivalent to
o(R) < D, it then follows from Theorem 10 applied to R that
7,-lim,,_, . R" = 0. It is then clear (see (70)) that (T" - K,,) =
R" - 0in Z,(X)asn — oo. ]

Remark 33. There exist quasi-Montel operators, even in
quojection Fréchet spaces, which fail to be quasi-precompact.
(i) For X := w = CN, define the projection P € Z(X) via

Px = (x1,0,x3,0,%5,...), x=(x,), €X. (72)

Since X is a Montel space, all of its bounded subsets are
relatively compact. It is then clear that P € .#(X), and hence,
P is surely quasi-Montel. Of course, P ¢ #(X). On the other
hand, since Ker (I — P) is infinite-dimensional, P cannot be
quasi-precompact [9, Satz 3].

(ii) Let X be as in (i) and define the diagonal operator
T € L(X) by

1 1
Tx := <x1, 7% §x3,...), x=(x,),€X (73)

The same argument as in (i) shows that T € Z(X).
In this case, in contrast to (i), the space Ker(I — T) =
span{(1,0,0,...)} is finite-dimensional. However, T still fails
to be quasi-precompact [9, p. 24].
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Remark 34. The converse of Proposition 32 is not valid.
Indeed, let X := wand let T € Z(X) be as Remark 33(ii), in
which case X is a quojection Fréchet space. For each n € N,
let K,, € Z(X) be the finite rank operator given by

.), x = (xj)j € X.

(74)

Xy X3 Xn
K,x:=(x,,=2,22,...,72,0,0,..
2n 3" n"

Then %, := {x € X : max,_;.,|x;| < 1} isa 0-neighbourhood
in X. Since K,, has finite-dimensional range, it follows that
K, (%,) is arelatively compact subset of X; that is, K,, € F#(X)
for each n € N. Direct calculations show that the sequence of
operators

(T"_K)x=<o 0, m1_ Xna )
" U ) (e 2)” )
(75)

X = (xj)j e X,

converges to 0 in £ (X) asn — 00. Since X is a Montel
space, also 7,-lim,,_, . ,(T" — K,,) = 0. However, as noted in
Remark 33(ii), the diagonal operator T is not quasi-compact.

In view of Remark 33 the following result is an extension
of Fact 2 above for prequojection Fréchet spaces (without the
condition dim Ker (I - T) < 00).

Theorem 35. Let X be a prequojection Fréchet space and
T e Z(X). IfT is a quasi-Montel operator and t,-

lim,,_, .,(T"/n) = 0, then T is uniformly mean ergodic.

Proof. We have the following two cases.

Case (I) (X is a quojection). The assumption 7,-
lim, , (T"/n) = 0 ensures that we can proceed as in
the proof of Proposition 8 to obtain X = proj j(X 7»Qj 1) In
such a way that, for every j € N, there exists T; in Z(X) satis-
fying Q;T = T;Q;. Then also QjT” = T;’Qj and Qj(T”/n) =
(T;‘/n)Qj, for every j,n € N. So, Lemma 6 (with S,, := T"/n,
for n € N) implies that Ts-limn_,oo(T?/n) =0forall j e N.

Since T is quasi-Montel, there exists a sequence
{M,},en © A (X) such that 7,-lim,,_, . (T" = M,,) = 0. From
this it follows that the operator T, for any fixed j € N, is
quasi-precompact. To see this, let g; denote the norm of X;
alrlld € > 0. Since p; = g; ° Q; € Ty, there exists n € N such
that

&
sup p, ("~ M,x) < &, 76)

x€B

with B € %(X) chosen such that Ej C Qj(B). Since

supp; (T"x = M,x) = supg; (Q; (T"x - M,x))
(77)
= supg; (TjQx - QiM,x),
it follows that

T7(B;) € T (Q; (B)) € Q; (M, (B)) + géj. (78)
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Hence, by the relative compactness (hence, precompactness)
of Q;(M,(B)) in X, due to M,, € #(X) and the continuity
of Q), there exist Xy,..., X € X such that

k
T} (B;) < |J (% +¢B;). (79)
i=1
By the arbitrariness of ¢ > 0 it follows that T; € Z(X))
is quasi-precompact. As X; is a Banach space, T; is quasi-
compact [9, Theorem 3] and satisfies T;/n — 0in 3S(Xj)
forn — oo. By Fact 2, each operator T}, for j € N, is
uniformly mean ergodic. Then Lemma 7 implies that T is also
uniformly mean ergodic.

Case (1I) (X is a prequojection). The condition
7,-lim,, _, . (T"/n) = 0 actually means that t,-
lim, ,(T"/n) = 0 because T is quasi-Montel (see

Remark 31(ii)). So, arguing as for Case (II) in the proof of
Theorem 27, it follows that also 7,-lim,, _, . ,((T")"/n) = 0.
Moreover, by Remark 31(i) the operator T is quasi-Montel.
Since X" is a quojection Fréchet space, we can apply Case
(I) to conclude that T is uniformly mean ergodic. Then T is
also uniformly mean ergodic as T"'|y = T with X a closed
subspace of X"'. O

Since the only Fréchet-Montel spaces which are normable
are the finite-dimensional ones, the following result may be
viewed as an analogue of the fact that Ker (AI — T) is finite
dimensional whenever T' is quasi-precompact; see Definition
3 and Theorem 1 of [9].

Proposition 36. Let X be a Fréchet space andletT € Z(X) be
a quasi-Montel operator. Then Ker(AI —T) is a Fréchet-Montel
space, for every A € T.

Proof. It suffices to show that Fix(T') = Ker (I-T) is a Fréchet-
Montel space. Indeed, for every A € T, the operator A™'T is
quasi-Montel if and only if T is quasi-Montel, with Ker (AI —
T) = Fix(A™'T).

Let {rj}‘;zl be any fundamental, increasing sequence of
seminorms generating the lc-topology of X. Let {x;};2, <
Fix(T') be a bounded sequence. Since T is quasi-Montel, there
exists {M,,} 2, € M (X) such that 7,-lim, _, . (T" - M,) = 0
and so, for every j € N, we have sup;yrj(x, — M,x;) — 0
asn — 00.

Since {x; }-, isbounded and each operator M, forn € N,
is Montel, we may construct recursively subsequences {x}};-,
of {x;}52, such that each {xzﬂ};ﬁl is a subsequence of {x};2,
and {M,x;};2, converges in X for all n € N. Consider the
diagonal sequence {xi},i“;l. Clearly, {Mnxllz}izl converges in X
for each n € N (by observing that {Mnx],z}zil < M, xp} s,
Fix ¢ > 0 and j € N. Then, for every k, k' e Nandn € N, we
have

kK k k
r (xk - xk,> <7 (xk - Mnxk)

M k M K M K _ K
+ rj nXk nXk! + 1’]- nXp — Xg!

15
< 2supr; (x, — M,xy,)
heN
K K
+7; (M,,xk - Mnxk,) ,
(80)

with sup,ey 7;(x, — M,x;,) — 0asn — oo. So, there is
1y € N such that supy,cy 1;(x, — M,x;,) < &/4 foreveryn > n,.

But, {Mnoxlli}iil converges in X and, hence, there is also k, €
N such that rj(Mnox,’: - Mnox,l::) < g/2forall k,k' > k,. It
follows that rj(xi - xl,z:) < & whenever k, k' > k,. By the

arbitrariness of j € N and ¢ > 0 this means that {x}}{°, is
a Cauchy sequence in X and so it converges in X. Since X
is a Fréchet space, this shows that Fix(T') is a Fréchet-Montel
space. U

Proposition 37. Let X be a prequojection Fréchet space and
T € Z(X) be a quasi-Montel operator. If ,-lim,,_, ..(T"/n) =
0, then (I — T)(X) is closed.

Proof. By Theorem 35 the operator T is uniformly mean
ergodic. Also 7,-lim,, _, . ,(T"/n) = 0. By [6, Theorem 3.5] this
is equivalent to (I — T)(X) being closed in X. O
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