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We investigate the spatiotemporal dynamics of a bacterial colony model. Based on the stability analysis, we derive the conditions
for Hopf and Turing bifurcations. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by
parameters in the model and find that the model dynamics exhibit a diffusion controlled formation growth to spots, holes and
stripes pattern replication, which show that the bacterial colony model is useful in revealing the spatial predation dynamics in the
real world.

1. Introduction

Spatial patterns which are formed by some kinds of bacterial
colonies present an interesting structure during their growth
conditions. In particular, colonies of bacterium bacillus sub-
tilis can present a rich variety of structures [1–13]. The nature
of the pattern exhibited depends on the particular bacterial
species used and the environmental conditions imposed.
Ohgiwari et al. [11] have shown that for a nutrient-poor solid
agar, the bacterium colonies exhibit fractal morphogenesis
similar to diffusion-limited aggregation (DLA). For softer
agar medium, the colonies tend to show a dense-branching
morphology (DBM) [7]. If both the nutrient concentration
and the agar’s softness further increase, simple circular
colonies grow almost homogeneously in space [14].

There are manymathematical models for explaining each
characteristic colony pattern. Kawasaki et al. [7] have devel-
oped a reaction-diffusionmodel and have shown the patterns
by using the computer simulations. Since in Kawasaki et al.’s
model, all the nutrientsmust be consumed; L. Braverman and
E. Braverman [4] have introduced a model of prey-predator
type with Holling-II functional response under the situation
of a renewable nutrient. In the present paper, motivated by
the work of L. Braverman and E. Braverman, we consider

the model with the consumption termof nutrient in aHolling
III functional response.

Let us denote by 𝑢(𝑡, 𝑥, 𝑦) and V(𝑡, 𝑥, 𝑦) the nutrient
concentration and the density of the bacterial cells at point
(𝑥, 𝑦), respectively. We consider the following system:

𝜕𝑢

𝜕𝑡

= 𝐷
𝑢
∇
2

𝑢 −

𝜅𝑢
2V

V2 + 𝛾2
0
𝑢
2
+ 𝑟𝑢 (1 −

𝑢

𝑀

) ,

𝜕V
𝜕𝑡

= ∇ ⋅ (𝐷V∇V) + 𝜃
𝜅𝑢
2V

V2 + 𝛾2
0
𝑢
2
− 𝛾V,

(1)

where 𝑟 is the intrinsic nutrient growth rate,𝑀 is the carrying
capacity of the environment for the nutrient (prey), 𝛾 is the
bacteria (predator) mortality rate, 𝜅, 𝜃, and 𝛾

0
are parameters

of the Holling Type III functional response, and 𝐷V is the
nutrient diffusion coefficient. Following [4, 7], we assumed
that the diffusion coefficient is proportional to both nutrient
and bacteria densities

𝐷V = 𝜎𝑢V. (2)

Here we try to model the situation of a renewable
nutrient. Then the system involves two reaction-diffusion
equations of a predator-prey type with a Holling Type III
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functional response. Diffusive predator-prey systems were
extensively studied; we mention here the recent papers [15–
19], the monograph [20], and the references therein. In the
present paper, it is to investigate the spatial pattern formation
of system (1) which means the convergence of solutions to
some stable spatially-in-homogeneous pattern as time tends
to infinity. And in natural science, the pattern formation can
reveal the evolution process of the species; it is, perhaps, the
most challenging in modern ecology, biology, chemistry, and
many other fields of science [21–38]. Thus, our basic concern
is to find, if any, a spatially inhomogeneous equilibrium and
periodic solutions that are stable in a certain sense. From
the pioneer work by Turing [12], it is widely known that
a reaction-diffusion system exhibits Turing instability if the
homogenous steady state is stable to small perturbations
in the absence of diffusion but unstable to small spatial
perturbations when diffusion is present which implies the
existence of spatially in-homogenous solutions. From the
Hopf bifurcation analysis and the phrase transition theory
developed by Ma and Wang [39–42], it is shown that the
periodic solutions exist [43].

The paper is organized as follows. In Section 2, we give the
analysis of the model and mathematical setup. In Section 3,
we analyze the spatial model, we derive the conditions of
the Turing bifurcation and Hopf bifurcation, and we give
the existence of periodic solution. We give some computer
simulations to illustrate the emergence of pattern formation
in Section 4. Finally, some conclusions are given.

2. Modeling Analysis and Mathematical Setup

To obtain the dimensionless form of the system (1), we intro-
duce the following:

𝑢 = 𝑀𝑢
󸀠

, V = 𝑀𝛾
0
V󸀠, 𝑡 =

1

𝑟

𝑡
󸀠

, 𝑥 = (

1

𝑟

)

1/2

𝑥
󸀠

,

𝑦 = (

1

𝑟

)

1/2

𝑦
󸀠

, 𝛾 =

1

𝑟

𝛾
󸀠

, 𝜎 =

1

𝛾
0
𝑀
2
𝜎
󸀠

.

(3)

Omitting the primes, we obtain the following nondimen-
sional form of (1):

𝜕𝑢

𝜕𝑡

= 𝐷
𝑢
∇
2

𝑢 − 𝛼

𝑢
2V

V2 + 𝑢2
+ 𝑢 (1 − 𝑢) ,

𝜕V
𝜕𝑡

= 𝜎∇ ⋅ (𝑢V∇V) + 𝛽
𝑢
2V

V2 + 𝑢2
− 𝛾V,

(4)

with 𝛼 = 𝜅/𝑟𝛾
0
, 𝛽 = 𝜃𝜅/𝑟𝛾

0
.

Model (4) is to be analyzed under the following nonzero
initial conditions:

𝑢 (𝑡, 𝑥, 𝑦) > 0, V (𝑡, 𝑥, 𝑦) > 0,

(𝑥, 𝑦) ∈ Ω = (0, 𝐿
𝑥
) × (0, 𝐿

𝑦
)

(5)

and Neumann boundary conditions:

𝜕𝑢

𝜕]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜕Ω

=

𝜕V
𝜕]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜕Ω

= 0. (6)

In the above, 𝐿
𝑥
and 𝐿

𝑦
denote the size of the system in

square domain and ] is the outward unit normal vector of the
boundary 𝜕Ω. The main reason for choosing such boundary
conditions is that we are interested in the self-organization of
the pattern and the Neumann conditions imply no external
input [22].

It is known that only nonnegative solutions of (4) have
biological significance. System (4) has two spatially homoge-
neous stationary solutions:

(1) the bacteria-free equilibrium 𝑈
0
= (1, 0) which

implies that the nutrient is at the carrying capacity
level;

(2) coexistence equilibrium 𝑈∗ = (𝑢∗, V∗) which repre-
sents a uniform distribution of bacteria, where

𝑢
∗

=

𝛽 − 𝑆𝛼

𝛽

, V∗ =
𝑆 (𝛽 − 𝑆𝛼)

𝛽𝛾

, (7)

and 𝑆 = √𝛾(𝛽 − 𝛾) with 𝛽 > 𝛾 and 𝛽2 − 𝛼2𝛾𝛽 + 𝛼2𝛾2 > 0.
To consider the pattern formation of (4) from (𝑢∗, V∗)we

make the translation

𝑢 󳨀→ 𝑢
1
+ 𝑢
∗

, V 󳨀→ 𝑢
2
+ V∗. (8)

Then, (4) are rewritten as

𝜕𝑢
1

𝜕𝑡

= 𝐷
𝑢
∇
2

𝑢
1
+ 𝑎
11
𝑢
1
+ 𝑎
12
𝑢
2
+ 𝐺
1
(𝑢
1
, 𝑢
2
) ,

𝜕𝑢
2

𝜕𝑡

= 𝜇∇
2

𝑢
2
+ 𝑎
21
𝑢
1
+ 𝑎
22
𝑢
2
+ 𝑔 (𝑢

1
, 𝑢
2
) + 𝐺
2
(𝑢
1
, 𝑢
2
) ,

(9)

where

𝑎
11
=

−𝛽
2

+ 2𝑆𝛼𝛾

𝛽
2

, 𝑎
12
= −

(2𝛾 − 𝛽) 𝛾𝛼

𝛽
2

,

𝑎
21
= −2

(𝛾 − 𝛽) 𝑆𝛼

𝛼𝛽

, 𝑎
22
= 2

𝛾 (𝛾 − 𝛽)

𝛽

,

(10)

and 𝜇 = 𝑢∗V∗𝜎, 𝑔(𝑢
1
, 𝑢
2
) = 𝜎[∇ ⋅ (𝑢

1
𝑢
2
∇𝑢
2
)+ V∗∇ ⋅ (𝑢

1
∇𝑢
2
)+

𝑢
∗

∇ ⋅ (𝑢
2
∇𝑢
2
)], 𝐺
1
(𝑢
1
, 𝑢
2
), and 𝐺

2
(𝑢
1
, 𝑢
2
) are terms of high

order.
Define two Hilbert spaces

𝑋 = 𝐻
2

(Ω) ,

𝑋
1
= {𝑢 ∈ 𝐻

2

(Ω, 𝑅)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑢

𝜕]
on 𝜕Ω} .

(11)

Then𝑋
1
→ 𝑋 is dense and compact inclusion.

𝐿
𝜆
:= −𝐵

𝜆
+ 𝐴, (12)

where

−𝐵
𝜆
𝑢 = (𝐷

𝑢
Δ𝑢
1
, 𝜇Δ𝑢
2
)
𝑇

,

𝐴𝑢 = (

𝑎
11
𝑎
12

𝑎
21
𝑎
22

)(

𝑢
1

𝑢
2

)

(13)

for 𝑢 = (𝑢
1
, 𝑢
2
)
𝑇

∈ 𝑋
1
.
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Furthermore, denote that

𝐺 (𝑢, 𝜆)

= (𝐺
2

1
(𝑢, 𝜆) + 𝐺

3

1
(𝑢, 𝜆) + 𝑔

1
(𝑢
1
, 𝑢
2
) ,

𝐺
2

2
(𝑢, 𝜆) + 𝐺

3

2
(𝑢, 𝜆) + 𝑔 (𝑢

1
, 𝑢
2
) + 𝑔
2
(𝑢
1
, 𝑢
2
) )

𝑇

(14)

with

(

𝐺
2

1
(𝑢, 𝜆)

𝐺
2

2
(𝑢, 𝜆)

) = (

𝑎
20
𝑢
2

1
+ 𝑎
11
𝑢
1
𝑢
2
+ 𝑎
02
𝑢
2

2

𝑏
20
𝑢
2

1
+ 𝑏
11
𝑢
1
𝑢
2
+ 𝑏
02
𝑢
2

2

) ,

(

𝐺
3

1
(𝑢, 𝜆)

𝐺
3

2
(𝑢, 𝜆)

) = (

𝑎
30
𝑢
3

1
+ 𝑎
21
𝑢
2

1
𝑢
2
+ 𝑎
12
𝑢
1
𝑢
2

2
+ 𝑎
03
𝑢
3

2

𝑏
30
𝑢
3

1
+ 𝑏
21
𝑢
2

1
𝑢
2
+ 𝑏
12
𝑢
1
𝑢
2

2
+ 𝑏
03
𝑢
3

2

) ,

(15)

where

𝑎
20
= −

−𝛽
3

− 4𝑆𝛼𝛾
2

+ 5𝑆𝛼𝛽𝛾

𝛽
2
(−𝛽 + 𝑆𝛼)

,

𝑎
11
= −2

𝛼𝛾 (−𝛾 + 𝛽) (𝛽 − 4𝛾)

𝛽
2
(−𝛽 + 𝑆𝛼)

,

𝑎
02
=

(𝛽 − 4𝛾) 𝑆𝛼𝛾

𝛽
2
(−𝛽 + 𝑆𝛼)

,

𝑎
30
= 4

(𝛽 − 2𝛾) (𝛽 − 𝛾) 𝑆𝛼𝛾

𝛽
2
(−𝛽 + 𝑆𝛼)

2
,

𝑎
21
=

𝛼𝛾 (𝛽 − 𝛾) (24𝛾
2

− 16𝛾𝛽 + 𝛽
2

)

𝛽
2
(−𝛽 + 𝑆𝛼)

2
,

𝑎
12
= −2

(−10𝛾𝛽 + 𝛽
2

+ 12𝛾
2

) 𝑆𝛼𝛾

𝛽
2
(−𝛽 + 𝑆𝛼)

2
,

𝑎
03
=

𝛼𝛾
2

(−8𝛾𝛽 + 𝛽
2

+ 8𝛾
2

)

𝛽
2
(−𝛽 + 𝑆𝛼)

2
,

𝑏
20
= −

𝑆𝛼 (𝛽 − 𝛾) (𝛽 − 4𝛾)

𝛼𝛽 (−𝛽 + 𝑆𝛼)

,

𝑏
11
=

2𝛾 (𝛽 − 𝛾) (𝛽 − 4𝛾)

𝛽 (−𝛽 + 𝑆𝛼)

,

𝑏
02
= −

(𝛽 − 4𝛾) 𝑆𝛾

𝛽 (−𝛽 + 𝑆𝛼)

,

𝑏
30
= −

4 (𝛽 − 2𝛾) (𝛽 − 𝛾) 𝑆𝛾

𝛽(−𝛽 + 𝑆𝛼)
2

,

𝑏
21
= −

𝛾 (𝛽 − 𝛾) (24𝛾
2

− 16𝛾𝛽 + 𝛽
2

)

𝛽(−𝛽 + 𝑆𝛼)
2

,

𝑏
12
=

2 (−10𝛾𝛽 + 𝛽
2

+ 12𝛾
2

) 𝑆𝛾

𝛽(−𝛽 + 𝑆𝛼)
2

,

𝑏
03
= −

𝛾
2

(−8𝛾𝛽 + 𝛽
2

+ 8𝛾
2

)

𝛽(−𝛽 + 𝑆𝛼)
2

.

(16)

Here 𝑔
1
(𝑢
1
, 𝑢
2
) and 𝑔

2
(𝑢
1
, 𝑢
2
) are terms of high order.

Then𝐺(⋅, 𝜆) : 𝑋
1
→ 𝑋 are a family of parameterizedC∞

bounded operators continuously depending on the parame-
ter 𝜆 such that 𝐺(𝑢, 𝜆) = 𝑜(‖ 𝑢 ‖).

Then (9) can be written in the following operator form:

𝑑𝑢

𝑑𝑡

= 𝐹 (𝑢) = 𝐿
𝜆
𝑢 + 𝐺 (𝑢, 𝜆) . (17)

3. Bifurcation Analysis

Unless otherwise specified, in this section, we require that
𝑈
∗

= (𝑢
∗

, V∗) always exist; that is, 𝛽 > 𝛾 and 𝛽2 − 𝛼2𝛾𝛽 +
𝛼
2

𝛾
2

> 0.
Consider the following eigenvalue problem of system (9):

𝐿
𝜆
𝜑 = 𝜆𝜑, 𝜑 ∈ 𝐻

1
(18)

with the Neumann boundary condition (6).
Let 𝜌
𝑘
and 𝑒
𝑘
be the 𝑘th eigenvalue and eigenvector of the

Laplacian ∇2 with Neumann boundary condition and

−∇
2

𝑒
𝑘
= 𝜌
𝑘
𝑒
𝑘
,

𝜕𝑒
𝑘

𝜕]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜕Ω

= 0

(19)

with 𝜌
0
= 0, 𝑒

0
= (1, 1)

𝑇.
Denote by𝑀

𝑘
the matrix given by

𝑀
𝑘
= (

𝑎
11
− 𝐷
𝑢
𝜌
𝑘

𝑎
12

𝑎
21

𝑎
22
− 𝜇𝜌
𝑘

) , 𝑘 = 0, 1, 2, . . . . (20)

Thus, all eigenvalues 𝜆 = 𝛽±
𝑘
of (18) satisfy

𝑀
𝑘
𝜉
±

𝑘
= 𝛽
𝑘
𝜉
±

𝑘
, 𝑘 = 0, 1, 2, . . . , (21)

where 𝜉±
𝑘
∈ R2 is the eigenvector of𝑀

𝑘
corresponding to 𝛽±

𝑘

and 𝛽±
𝑘
is expressed as

𝛽
±

𝑘
=

1

2

(tr (𝑀
𝑘
) ± √tr (𝑀

𝑘
)
2

− 4 det (𝑀
𝑘
)) (22)

with

tr (𝑀
𝑘
) = (𝐷

𝑢
𝜌
𝑘
− 𝑎
11
) + (𝜇𝜌

𝑘
− 𝑎
22
) ,

det (𝑀
𝑘
) = (𝐷

𝑢
𝜌
𝑘
− 𝑎
11
) (𝜇𝜌
𝑘
− 𝑎
22
) − 𝑎
12
𝑎
21
.

(23)

Hence, the eigenvector 𝜙±
𝑘
of (18) corresponding to 𝛽±

𝑘
is

𝜙
±

𝑘
= 𝜉
±

𝑘
𝑒
𝑘
, (24)

where 𝑒
𝑘
is as in (19).
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3.1. Hopf Bifurcation Analysis. It is clear that 𝛽±
𝑘
(𝛼) = ±𝑖𝜎

𝑘
(𝛼)

with 𝜎
𝑘
̸= 0 if and only if

tr (𝑀
𝑘
) = (𝑎

11
− 𝐷
𝑢
𝜌
𝑘
) + (𝑎

22
− 𝜇𝜌
𝑘
) = 0,

det (𝑀
𝑘
) = (𝐷

𝑢
𝜌
𝑘
− 𝑎
11
) (𝜇𝜌
𝑘
− 𝑎
22
) − 𝑎
12
𝑎
21
> 0.

(25)

Thus, we introduce one critical number

𝛼
0
=

𝛽 (𝛽 − 2𝛾
2

+ 2𝛾𝛽)

2𝑆𝛾

, (26)

where 𝜌
𝑘
= 𝜌
0
= 0 such that 𝜒(𝛼) attains its minimum values.

Consider

𝜒 (𝛼) = min
𝜌𝑘

{(𝐷
𝑢
𝜌
𝑘
+ 𝑎
11
) (𝜇𝜌
𝑘
+ 𝑎
22
) − 𝑎
12
𝑎
21
}

= 𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
.

(27)

Theorem 1. Let 𝛼
0
be the number given in (26) such that (27)

is satisfied. Then 𝛽+
0
(𝜆) and 𝛽−

0
(𝜆) are a pair of first complex

eigenvalues of (18) near 𝜆 = 𝛼
0
, and

Re 𝛽+
0
(𝜆) = Re 𝛽−

0
(𝜆)

{
{

{
{

{

< 0, 𝜆 < 𝛼
0
,

= 0, 𝜆 = 𝛼
0
,

> 0, 𝜆 > 𝛼
0
,

Im 𝛽±
0
(𝛼
0
) ̸= 0,

Re 𝛽±
𝑘
(𝛼
0
) < 0, ∀𝑘 > 0.

(28)

3.2. Periodic Solution from Hopf Bifurcation. By Theorem 1,
problem (4) undergoes a dynamic transition to a periodic
solution from 𝛼 = 𝛼

0
. To determine the types of transition

we introduced a parameter as follows:

𝑏 =

𝐹
1

𝐹
2

, (29)

where

𝐹
1
= 𝜋 (𝛼

2

𝛾𝑆𝛽 − 𝛼
2

𝑆𝛾
2

− 2𝛽𝛾
2

𝛼 + 2𝛼𝛾𝛽
2

+ 𝑆𝛽
2

)

× (−8𝛽
5

𝛾
4

𝛼
4

− 20𝛽
9

𝛾
2

+ 512𝛽
2

𝛾
7

𝛼
4

− 416𝛽𝛾
8

𝛼
4

− 66𝛽
8

𝛾
3

𝜔
2

+ 80𝛽
7

𝛾
4

𝜔
2

− 32𝛽
6

𝜔
2

𝛾
5

+ 66𝛽
8

𝛾
3

+ 20𝛽
9

𝛾
2

𝜔
2

− 2𝛽
10

𝛾𝜔
2

+ 464𝛽
5

𝛼
2

𝛾
5

− 88𝛽
6

𝛾
5

𝛼
2

+ 8𝛽
7

𝛾
4

𝛼
2

− 456𝛽
4

𝛼
2

𝛾
6

+ 160𝛽
3

𝛼
2

𝛾
7

+ 128𝛼
4

𝛾
9

− 296𝛽
3

𝛾
6

𝛼
4

+ 80𝛽
4

𝛾
5

𝛼
4

− 202𝛽
6

𝛼
2

𝛾
4

+ 2𝛽
10

𝛾 − 16𝛾
5

𝛽
5

𝜔𝛼

− 2𝛾𝛽
9

𝜔𝛼 + 16𝛾
2

𝛽
8

𝜔𝛼 − 42𝛾
3

𝛽
7

𝜔𝛼

+ 44𝛾
4

𝛽
6

𝜔𝛼 − 64𝛼
3

𝛽
2

𝛾
6

𝜔
2

𝑆 + 18𝛼
3

𝛽
5

𝛾
3

𝜔
2

𝑆

+ 120𝛼
3

𝛽
3

𝛾
5

𝜔
2

𝑆 − 76𝛼
3

𝛽
4

𝛾
4

𝜔
2

𝑆

− 𝛼
3

𝛽
6

𝛾
2

𝜔
2

𝑆 + 252𝛼
2

𝛽
5

𝛾
4

𝜔𝑆 − 304𝛼
2

𝛽
4

𝛾
5

𝜔𝑆

+ 128𝛼
2

𝛽
3

𝛾
6

𝜔𝑆 − 86𝛼
2

𝛽
6

𝛾
3

𝜔𝑆 + 10𝛼
2

𝛽
7

𝛾
2

𝜔𝑆

− 16𝛼𝛽
7

𝛾
2

𝜔
2

𝑆 + 44𝛼𝛽
6

𝛾
3

𝜔
2

𝑆 − 32𝛼𝛽
5

𝛾
4

𝜔
2

𝑆

+ 𝛼𝛽
8

𝛾𝜔
2

𝑆 − 2𝛽
8

𝛼
2

𝛾
2

+ 2𝛽
10

𝜔𝑆

− 128𝛼
2

𝛽
2

𝛾
9

− 584𝛼
2

𝛽
4

𝛾
7

+ 344𝛼
2

𝛽
5

𝛾
6

+ 448𝛼
2

𝛽
3

𝛾
8

+ 36𝛽
7

𝛾
3

𝛼
2

− 80𝛽
7

𝛾
4

+ 32𝛽
6

𝛾
5

− 22𝛽
9

𝛾𝜔𝑆 + 84𝛽
8

𝛾
2

𝜔𝑆

− 128𝛽
7

𝛾
3

𝜔𝑆 + 64𝛽
6

𝛾
4

𝜔𝑆 + 340𝛼
3

𝛽
4

𝛾
5

𝑆

+ 4𝛼
3

𝛽
6

𝑆𝛾
3

− 760𝛼
3

𝛽
3

𝛾
6

𝑆 − 72𝛼
3

𝛽
3

𝛾
5

𝑆

+ 2𝛼
3

𝛽
6

𝑆𝛾
2

− 256𝛼
3

𝛽𝛾
8

𝑆 + 56𝛼
3

𝛽
4

𝑆𝛾
4

− 18𝛼
3

𝛽
5

𝑆𝛾
3

− 64𝛼
3

𝛽
5

𝑆𝛾
4

+ 32𝛼
3

𝛽
2

𝛾
6

𝑆

+ 736𝛼
3

𝛽
2

𝛾
7

𝑆 − 64𝛼
2

𝛽
3

𝜔
2

𝛾
7

− 120𝛼
2

𝛽
5

𝜔
2

𝛾
5

+ 152𝛼
2

𝛽
4

𝜔
2

𝛾
6

+ 34𝛼
2

𝛽
6

𝛾
4

𝜔
2

− 2𝛼
2

𝛽
7

𝛾
3

𝜔
2

− 4𝛼𝛽
9

𝜔𝛾
2

+ 48𝛼𝛽
8

𝛾
3

𝜔

− 212𝛼𝛽
7

𝜔𝛾
4

+ 424𝛼𝛽
6

𝛾
5

𝜔

− 384𝛼𝛾
6

𝜔𝛽
5

+ 128𝛼𝛾
7

𝜔𝛽
4

− 10𝛼𝛽
8

𝛾
2

𝜔
3

+ 46𝛼𝛽
7

𝛾
3

𝜔
3

− 68𝛼𝛽
6

𝛾
4

𝜔
3

+ 32𝛼𝛽
5

𝛾
5

𝜔
3

− 28𝛼𝛽
6

𝑆𝛾
3

+ 14𝛼𝛽
7

𝑆𝛾
2

− 8𝛼𝛽
8

𝛾
2

𝑆 + 80𝛼𝛽
7

𝛾
3

𝑆

− 264𝛼𝛽
6

𝛾
4

𝑆 + 320𝛼𝛽
5

𝛾
5

𝑆 − 128𝛼𝛽
4

𝛾
6

𝑆

+16𝛼𝛽
5

𝑆𝛾
4

− 2𝛼𝛽
8

𝑆𝛾) ,

𝐹
2
= 4𝜔
2

(−2𝛾 + 𝛽)
2

(−𝛼
2

𝛾
2

− 𝛽
2

+ 𝛼
2

𝛾𝛽)

2

× 𝛽
3

𝛼
2

𝛾
2

(−𝛾 + 𝛽) .

(30)

Theorem 2. Let 𝑏 be the number given by (29), then the
problem undergoes a transition to periodic solutions at 𝜆 = 𝜆

0
,

and the following assertions hold true.

(1) When 𝑏 < 0, the transition is continuous and the
system bifurcates to a periodic solution on𝛼 < 𝛼

0
which

is an attractor.
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(2) When 𝑏 > 0, the transition is jump and the system
bifurcates to a periodic solution on 𝛼 > 𝛼

0
which is a

repeller.

Proof. We will verify this theorem by using Theorem A.3 in
[44]. The eigenvalues 𝛽±

1
at 𝜆 = 𝛼

0
in are given by 𝛽+

1
= 𝛽

−

1
=

𝑖𝜔. The eigenvectors 𝜉 and 𝜂 corresponding to 𝛽±
1
(𝛼
0
) satisfy

𝐴𝜉 = 𝜔𝜂,

𝐴𝜂 = −𝜔𝜉.

(31)

It is easy to see that

𝜉 = (𝜉
1
, 𝜉
2
) = (𝑎

11
, 𝑎
12
) ,

𝜂 = (𝜂
1
, 𝜂
2
) = (−𝜔, 0) .

(32)

The conjugate eigenvectors 𝜉∗ and 𝜂∗ satisfy

𝐴𝜉
∗

= 𝜔𝜂
∗

,

𝐴𝜂
∗

= −𝜔𝜉
∗

.

(33)

It is easy to check that

𝜉
∗

= (𝜉
∗

1
, 𝜉
2
) = (𝑎

11
, 𝑎
21
) ,

𝜂
∗

= (𝜂
∗

1
, 𝜂
∗

2
) = (−𝜔, 0) .

(34)

It is known that functions 𝜓∗
1
and 𝜓∗

2
are given by

𝜓
∗

1
=

1

(𝜉, 𝜉
∗
)

[(𝜉, 𝜉
∗

) 𝜉
∗

+ (𝜉, 𝜂
∗

) 𝜂
∗

] = (0, 𝑎
21
) ,

𝜓
∗

2
=

1

(𝜂, 𝜂
∗
)

[(𝜂, 𝜉
∗

) 𝜉
∗

+ (𝜂, 𝜂
∗

) 𝜂
∗

]

= (

𝑎
12
𝑎
21

𝜔

, −

𝑎
11
𝑎
21

𝜔

) .

(35)

Because the first eigenvector space 𝐸 = span{𝜉, 𝜂} of (18)
with (6) is invariant for the equations (4) with (6), the center
manifold functionΦ vanishes; that is,

Φ(𝑥, 𝑦) ≡ 0. (36)

Therefore, we derive from (32) to (35) that

𝐺 (𝑥𝜉 + 𝑦𝜂 + Φ) , 𝜓
∗

1

(𝜉, 𝜓
∗

1
)

= 𝑎
20
𝑥
2

+ 𝑎
11
𝑥𝑦 + 𝑎

02
𝑦
2

+ 𝑎
30
𝑥
3

+ 𝑎
21
𝑥
2

𝑦 + 𝑎
12
𝑥𝑦
2

+ 𝑎
03
𝑦
3

,

𝐺 (𝑥𝜉 + 𝑦𝜂 + Φ) , 𝜓
∗

2

(𝜂, 𝜓
∗

2
)

= 𝑏
20
𝑥
2

+ 𝑏
11
𝑥𝑦 + 𝑏

02
𝑦
2

+ 𝑏
30
𝑥
3

+ 𝑏
21
𝑥
2

𝑦 + 𝑏
12
𝑥𝑦
2

+ 𝑏
03
𝑦
3

,

(37)

where

𝑎
20
=

1

𝑎
12

(𝑏
11
𝑎
11
𝑎
12
+ 𝑏
02
𝑎
2

12
+ 𝑏
20
𝑎
2

11
) ,

𝑎
11
=

𝜔

𝑎
12

(2𝑏
20
𝑎
11
+ 𝑏
11
𝑎
12
) 𝑎
02
=

𝑏
20
𝜔
2

𝑎
12

,

𝑎
30
=

1

𝑎
12

(𝑏
21
𝑎
2

11
𝑎
12
+ 𝑏
30
𝑎
3

11

+𝑏
12
𝑎
11
𝑎
2

12
+ 𝑏
03
𝑎
3

12
) ,

𝑎
12
=

𝜔
2

𝑎
12

(𝑏
21
𝑎
12
+ 3𝑏
30
𝑎
11
) ,

𝑎
21
= −

𝜔

𝑎
12

(3𝑏
30
𝑎
2

11
+ 𝑏
12
𝑎
2

12
+ 2𝑏
21
𝑎
11
𝑎
12
) ,

𝑎
03
= −

𝑏
30
𝜔
3

𝑎
12

,

𝑏
11
= −

𝑎
11

𝑎
12

(−2𝑎
12
𝑎
20
− 𝑎
2

12
+ 2𝑏
20
𝑎
11
+ 𝑏
11
𝑎
12
) ,

𝑏
02
=

𝜔

𝑎
12

(−𝑎
12
𝑎
20
+ 𝑏
20
𝑎
11
) ,

𝑏
20
= −

1

𝑎
12
𝜔

(𝑎
2

11
𝑎
2

12
+ 𝑎
02
𝑎
3

12
+ 𝑎
12
𝑎
20
𝑎
2

11

−𝑏
11
𝑎
2

11
𝑎
12
− 𝑎
11
𝑏
02
𝑎
2

12
− 𝑏
20
𝑎
3

11
) ,

𝑏
30
= −

1

𝑎
12
𝜔

(𝑎
2

11
𝑎
2

12
𝑎
21
+ 𝑎
12
𝑎
30
𝑎
3

11
+ 𝑎
4

12
𝑎
11

+ 𝑎
03
𝑎
4

12
− 𝑏
21
𝑎
3

11
𝑎
12
− 𝑏
30
𝑎
4

11

−𝑏
12
𝑎
2

11
𝑎
2

12
− 𝑎
11
𝑏
03
𝑎
3

12
) ,

𝑏
21
= −

1

𝑎
12

(−3𝑎
12
𝑎
30
𝑎
2

11
− 𝑎
4

12

− 2𝑎
21
𝑎
11
𝑎
2

12
+ 3𝑏
30
𝑎
3

11

+𝑏
12
𝑎
11
𝑎
2

12
+ 2𝑏
21
𝑎
2

11
𝑎
12
) ,

𝑏
12
=

𝜔

𝑎
12

(−𝑎
2

12
𝑎
21
− 3𝑎
12
𝑎
30
𝑎
11

+𝑏
21
𝑎
11
𝑎
12
+ 3𝑏
30
𝑎
2

11
) ,

𝑏
03
= −

𝜔
2

𝑎
12

(−𝑎
12
𝑎
30
+ 𝑏
30
𝑎
11
) .

(38)

From the focus values in [39, 40, 43], we have that

𝑏 =

3𝜋

4

(𝑎
30
+ 𝑏
03
) +

𝜋

4

(𝑎
12
+ 𝑏
21
)
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+

𝜋

2𝜔

(𝑎
02
𝑏
02
− 𝑎
20
𝑏
20
)

+

𝜋

4𝜔

(𝑎
11
𝑎
20
+ 𝑎
11
𝑎
02
− 𝑏
11
𝑏
20
− 𝑏
11
𝑏
02
)

(39)
is the same as in (29).Hence, byTheoremA.3 in [3] the system
bifurcates from (𝑢, 𝛼) = (0, 𝛼

0
) to a periodic solution; thus the

proof is complete.

Remark 3. As an example, let 𝐷
𝑢
= 1, 𝐷V = 16, 𝛾 = 1,

𝛽 = 5/4, and 𝛼
0
= 35/16, then from (29), we compute 𝑏 =

𝜋((1141012/2205) − (235072/3675)√5) ≐ 1176.323160 > 0.
FromTheorem 2, we can conclude that the transition is jump
and the system bifurcates to a periodic solution on 𝛼 > 𝛼

0

which is a repeller (see Figure 1).

3.3. Turing Bifurcation Analysis. In this subsection, we will
state the Turing instability for the positive equilibrium 𝐸∗ of
model (1). Mathematically speaking, the positive equilibrium
𝐸
∗ is Turing instability, which was emphasized by Turing

in his pioneering work in 1952 [12]. The Turing bifurcation
occurs when

Im (𝛽±
𝑘
) = 0, Re (𝛽±

𝑘
) = 0 at 𝜌

𝑘
= 𝜌
𝑇
̸= 0 (40)

and the wave-number√𝜌𝑇 satisfies

𝜌
𝑇
= √

det (𝑀
0
)

𝜇𝐷
𝑢

. (41)

Hence, Turing instability occurs when the condition either
tr(𝑀
𝑘
) < 0 or det(𝑀

𝑘
) > 0 is violated.

Since the positive equilibrium 𝐸∗ is stable without dif-
fusion means that tr(𝑀

0
) < 0 and det(𝑀

0
) > 0 hold, then

tr(𝑀
𝑘
) < 0 is always true. Therefore, for the emergency

of the diffusion-driven instability in model (1), it is needed
det(𝑀

𝑘
) < 0 for some 𝜌

𝑘
> 0. A necessary condition is

𝑎
11
𝜇 + 𝑑
22
𝐷
𝑢
> 0; (42)

otherwise det(𝑀
𝑘
) > 0 for all 𝑘 > 0 since 𝜇𝐷

𝑢
> 0 and

𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
> 0. And we notice that det(𝑀

𝑘
) achieves its

minimum

min
𝑘∈R+

det (𝑀
𝑘
) = 𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
−

(𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22
)
2

4𝐷
𝑢
𝜇

(43)

at the critical value 𝜇2
𝑐
> 0 where

𝜇
2

𝑐
=

𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22

2𝐷
𝑢
𝜇

. (44)

Summarizing the above calculation, we conclude.

Theorem 4. If
𝑎
11
+ 𝑎
22
< 0,

𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
> 0,

𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22
> 0,

(𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22
)
2

> 4𝐷
𝑢
𝜇 (𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
) ,

(45)

then the positive equilibrium𝐸∗ ofmodel (1) is Turing unstable.

0.118 0.12 0.122 0.124 0.126 0.128 0.13 0.132 0.134
0.059

0.06

0.061

0.062

0.063

0.064

0.065

0.066

u

�

Figure 1:The phrase diagram with𝐷
𝑢
= 1,𝐷V = 16, 𝛼 = 35/16, 𝛽 =

5/4, and 𝛾 = 1 illustrating system (4) admits an unstable periodic
solution.

II

III
I

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

1.61.41.21.00.80.60.40.2 1.8

𝛽

𝛾

Figure 2: The dispersal relation of 𝛾 with 𝛽. Parameters: 𝛼 = 1.8,
𝐷
𝑢
= 0.02, 𝜎 = 18. The blue and red curves represent Hopf and

Turing bifurcation curves, respectively.They separate the parametric
space into three domains, and domain(III) is called Turing space.

In Figure 2, based on the results of Theorem 4, we show
the dispersal relation of 𝛾 with 𝛼. The blue and red curves
represent Hopf and Turing bifurcation curves, respectively.
They separate the parametric space into three domains. The
outside domain of the Hopf bifurcation curve is stable and
the inside domain of the Turing bifurcation curve is unstable.
Hence, among these domains, only the domain(III) satisfies
the conditions of Theorem 4 and we call domain(III) as
Turing space, where the Turing instability occurs and the
Turing patterns may be undergone.
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Figure 3: The process of formation of spiral pattern for 𝑢 for (𝛽, 𝛾) = (0.55, 0.44); the other parameters are fixed as in (46). Times: (a) 𝑡 = 0,
(b) 𝑡 = 100, (c) 𝑡 = 500, and (d) 𝑡 = 2000.

4. Pattern Formation

In this section, we perform extensive numerical simulations
of the spatially extended model (4) in 2-dimensional spaces,
and the qualitative results are shown here. Our numerical
simulations employ the nonzero initial (5) and the zero-flux
boundary conditions (6) with a system size of 𝐿

𝑥
× 𝐿
𝑦
, with

𝐿
𝑥
= 𝐿
𝑦
= 25 discretized through 𝑥 → (𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

and𝑦 → (𝑦
0
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), with 𝑛 = 100. Other parameters

are fixed as

𝛼 = 1.8, 𝐷
𝑢
= 0.02, 𝜎 = 18, ℎ =

1

4

.

(46)

The numerical integration of (4) was performed by fourth-
order Runge-Kutta scheme integration [45], with a time step
of 𝜏 = 0.01, and by using the standard five-point approx-
imation for the 2D Laplacian with the zero-flux boundary
conditions [46, 47]. More precisely, the concentrations (𝑢𝑛+1

𝑖,𝑗
)

at the moment (𝑛 + 1)𝜏 at the mesh position (𝑥
𝑖
, 𝑦
𝑗
) are given

by

𝑢
(1)

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+

1

2

𝜏𝐹 (𝑢
𝑛

𝑖,𝑗
)

𝑢
(2)

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+

1

2

𝜏𝐹 (𝑢
(1)

𝑖,𝑗
)

𝑢
(3)

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+ 𝜏𝐹 (𝑢

(2)

𝑖,𝑗
)

𝑢
(𝑛+1)

=
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+ 𝑢
(1)

𝑖,𝑗
+ 2𝑢
(2)

𝑖,𝑗
+ 𝑢
(3)

𝑖,𝑗
)

+

1

6

𝜏𝐹 (𝑢
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𝑖,𝑗
) ,

(47)

where 𝐹(𝑢) is defined in (17).
Initially, the entire system is placed in the steady state

(𝑢
∗

, V∗), and the propagation velocity of the initial pertur-
bation is thus on the order of 5 × 10−4 space units per time
unit. And the system is then integrated for 200 000 time steps,
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Figure 4: Spots-stripes and holes-stripes patterns obtained with model (4) for (a) (𝛽, 𝛾) = (0.60, 0.46) and (b) (𝛽, 𝛾) = (0.60, 0.55) at 200 000
iterations. Other parameters are fixed as (46).
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Figure 5: Spots and holes patterns obtained with model (4) for (a) (𝛽, 𝛾) = (0.55, 0.4) and (b) (𝛽, 𝛾) = (0.79, 0.67) at 200 000 iterations. Other
parameters are fixed as (46).

and the last images are saved. After the initial period during
which the perturbation spreads, either the system goes into
a time-dependent state or to an essentially steady state (time
independent).

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. And the parameters are located in the Turing space
(cf., Figure 2), the region where Turing instability occurs. We
have taken some snapshots with red (blue) corresponding to
the high (low) value of prey 𝑢.

Figure 3 shows the process of pattern formation formodel
(4) with 𝛽 = 0.55 and 𝛾 = 0.44. In this case, the pattern
takes a long time to settle down, starting with a homogeneous
state (𝑢∗, V∗) = (0.2800, 0.1400) (cf., Figure 3(a)), and the
random perturbation leads to the formation of stripes and

spots (cf., Figures 3(b) and 3(c)) and ends with stripes only
(cf., Figure 3(d)), which is time independent.

In Figure 4, we show two spots-stripes patterns obtained
with model (4) at 100 000 iterations; that is, 𝑡 = 5000.
These two patterns are similar to each other. With (𝛽, 𝛾) =
(0.60, 0.46), in this case, the equilibrium is (𝑢∗, V∗) =

(0.2386, 0.1316) and the spots-stripes pattern is relatively
high (cf., Figure 4(a)), while with (𝛽, 𝛾) = (0.60, 0.50),
the equilibrium is (𝑢∗, V∗) = (0.3291, 0.1472), at low prey
densities (c.f., Figure 4(b)).

In Figure 5, we show the interesting and similartime-
independent patterns which obtained by model (4) at 200
000 iterations. They consist of blue/red spots on a red/blue
background. We refer to them as spots (cf., Figure 5(a))
and holes (cf., Figure 5(b)), respectively. In Figure 5(a), with
(𝛽, 𝛾) = (0.55, 0.40), (𝑢∗, V∗) = (0.1983, 0.1214), the hot
spots are isolated zones with high prey densities. In this
case, the predators are in low density obviously. While with
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(𝛽, 𝛾) = (0.79, 0.67), (𝑢∗, V∗) = (0.3539, 0.1497), holes are
isolated zoneswith lowprey density (Figure 5(b)). In this case,
the predators are in high density. From Figure 5(b), one can
see that the predators apparently almost occupy the whole
spatial domain.

5. Concluding and Remarks

In this paper, pattern formation of a spatial model for the
growth of bacterial colonies with the two-dimensional space
is investigated. Based on both mathematical analysis and
numerical simulations, we have found that its spatial pattern
includes periodic solutions from Hopf bifurcation and the
spotted and striped patterns from Turing bifurcation.

It should be noticed that, if considered in a somewhat
broader ecological perspective, our results have an intuitively
clear meaning; there has been a growing understanding in
the past regarding the dynamics of the system’s parameter.
From this standpoint, it seems interesting to know that
the dynamics vary when the parameter moves across the
diagram. From our analysis, the parameters 𝛾 and 𝛽 play
an important role in pattern formation. Our results show
that the pattern formation formed by the bacterial colonies
model represents rich spatial dynamics which will be useful
for studying the dynamic complexity of bacterial ecosystems.
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