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Predator-preymodels describe biological phenomena of pursuit-evasion interaction. And this interaction exists widely in the world
for the necessary energy supplement of species. In this paper, we have investigated a ratio-dependent spatially extended food chain
model. Based on the bifurcation analysis (Hopf and Turing), we give the spatial pattern formation via numerical simulation, that is,
the evolution process of the system near the coexistence equilibrium point (𝑢∗

2
, V∗
2
, 𝑤
∗

2
), and find that the model dynamics exhibits

complex pattern replication. For fixed parameters, on increasing the control parameter 𝑐
1
, the sequence “holes → holes-stripe

mixtures → stripes → spots-stripe mixtures → spots” pattern is observed. And in the case of pure Hopf instability, the model
exhibits chaotic wave pattern replication. Furthermore, we consider the pattern formation in the case of which the top predator is
extinct, that is, the evolution process of the system near the equilibrium point (𝑢∗

1
, V∗
1
, 0), and find that the model dynamics exhibits

stripes-spots pattern replication.Our results show that reaction-diffusionmodel is an appropriate tool for investigating fundamental
mechanism of complex spatiotemporal dynamics. It will be useful for studying the dynamic complexity of ecosystems.

1. Introduction

Predator-prey models are studied in detail in the focus on
equilibria, stability, asymptotic behavior, persistence, bifurca-
tion, chaos, and so on [1–8]. In the past 40 years, with the idea
of Turing [9], spatial extended models, in which not only the
species evolve through time but also distribute in space, and
pattern formation are one of the hot spots [6, 8, 10–20].

Food web models describe the same phenomena as
predator-prey models, but the former description is more
actual than the latter since our real world is so complex. Until
recently, food webs models are widely studied as predator-
preymodels [12–14, 17, 21–29]. But as far as we know, spatially
extended models seem rare and not regarded. In fact, we live
in a spatial world, and the spatial component of ecological
interactions has been identified as an important factor in
how ecological communities are shaped. Understanding the
role of space is challenging both theoretically and empirically
[30]. And the issue of spatial and spatiotemporal pattern for-
mation in biological communities is probably one of themost
exciting problems in modern biology and ecology [31, 32].

And the food web models with spatial distribution will do
better job than the classical models.

In general, a classical food chain model with the nondi-
mensional form can be written as follows:

𝑑𝑢

𝑑𝑡
= 𝑢𝑔 (𝑢) − 𝑐

1
𝑓
1
(𝑢, V) V,

𝑑V
𝑑𝑡

= (𝑚
1
𝑓
1
(𝑢, V) − 𝑞

1
) V − 𝑐

2
𝑝
2
(V, 𝑤)𝑤,

𝑑𝑤

𝑑𝑡
= (𝑚
2
𝑓
2
(V, 𝑤) − 𝑞

2
) 𝑤,

(1)

where 𝑢 stands for prey density,𝑤 is the top predator density,
and V—the density of the intermediate predator—describes
the predator of 𝑢 and the prey of 𝑤; 𝑔(𝑢) is the per capita
rate of increase of the prey in the absence of predation.
And all coefficients are positive constants, 𝑐

1
and 𝑐
2
are the

maximum ingestion rates of intermediate predator and top
predator, 𝑚

1
is the conversion factor of prey to intermediate

predator,𝑚
2
is the conversion factor of intermediate predator
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to top predator, 𝑞
1
is the food-independent death rate of

the intermediate predator, and 𝑞
2
is the food-independent

death rate of the top predator. 𝑓
𝑖
is the functional response.

The functional response is the prey consumption rate by
an average single predator. It can be influenced by the prey
consumption rate and the predator density. 𝑐

𝑖
𝑓
𝑖
is the amount

of prey consumed per predator per unit time, 𝑚
𝑖
𝑓
𝑖
is the

predator production per capita with predation.
In this paper, we focus on the following ratio-dependent

food chain model [28]:

𝑑𝑢

𝑑𝑡
= 𝑢 (1 − 𝑢) − 𝑐

1

𝑢

𝑢 + V
V,

𝑑V
𝑑𝑡

= (𝑚
1

𝑢

𝑢 + V
− 𝑞
1
) V − 𝑐

2

V
V + 𝑤

𝑤,

𝑑𝑤

𝑑𝑡
= (𝑚
2

V
V + 𝑤

− 𝑞
2
)𝑤.

(2)

The necessary condition of the persistence of V and𝑤 is𝑚
1
>

𝑞
1
and𝑚

2
> 𝑞
2
, respectively.

When all the species distribute randomly in the space,
model (2) can be rewritten with a supplement:

𝑑𝑢

𝑑𝑡
= 𝑢 (1 − 𝑢) − 𝑐

1

𝑢

𝑢 + V
V + 𝑑
1
∇
2

𝑢,

𝑑V
𝑑𝑡

= (𝑚
1

𝑢

𝑢 + V
− 𝑞
1
) V − 𝑐

2

V
V + 𝑤

𝑤 + 𝑑
2
∇
2V,

𝑑𝑤

𝑑𝑡
= (𝑚
2

V
V + 𝑤

− 𝑞
2
)𝑤 + 𝑑

3
∇
2

𝑤,

(3)

where 𝑑
1
, 𝑑
2
, and 𝑑

3
are the diffusion coefficients of the three

species, respectively,∇2 = 𝜕/𝜕𝑥
2

+𝜕/𝜕𝑦
2 is the usual Laplacian

operator in two-dimensional space, and other parameters
have the same definitions as those above.

Model (3) is to be analyzed under the nonzero initial
condition and Neumann, or zero flux, boundary conditions:

𝑢 (𝑥, 𝑦, 0) ≥ 0, V (𝑥, 𝑦, 0) ≥ 0, 𝑤 (𝑥, 𝑦, 0) ≥ 0,

(𝑥, 𝑦) ∈ Ω ⊂ R
2

,

𝜕𝑢

𝜕n
=

𝜕V
𝜕n

=
𝜕V
𝜕n

= 0, (𝑥, 𝑦) ∈ 𝜕Ω.

(4)

In the above, n is the outward unit normal vector of the
boundary 𝜕Ω which we will assume is smooth. The main
reason for choosing such boundary conditions is that we
are interested in the self-organization of pattern; zero-flux
conditions imply no external input [17].

This paper is organized as follows. In the next section,
we give a local stability analysis of model (3). Then, we
present the pattern formation of model (3) via numerical
simulations, which is followed by Section 2. Finally, we give
some discussions in Section 4.
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1
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2
=

2, 𝑞
2

= 1, 𝑐
2

= 0.5, 𝑑
1

= 0.01, 𝑑
2

= 0.1, 𝑑
3

= 1, and 𝑞
1
a

variational parameter. Hopf and Turing bifurcation curves separate
the coexistence parameter space into four domains. . . .: the dividing
line of coexistence and noncoexistence of prey and their predators.

2. Linear Stability Analysis

There are two equilibria (steady states) in model (2), which
correspond to spatially homogeneous equilibria of model (3):

𝐸
∗

1
= (𝑢
∗

1
, V∗
1
, 0)

= (−
−𝑚
1
+ 𝑐
1
𝑚
1
− 𝑐
1
𝑞
1

𝑚
1

,

−
(−𝑚
1
+ 𝑐
1
𝑚
1
− 𝑐
1
𝑞
1
) (𝑚
1
− 𝑞
1
)

𝑚
1
𝑞
1

, 0) ,

(5)

corresponding to top-predator extinction when 𝑚
1
(𝑐
1
−

1)/𝑐
1
< 𝑞
1
. Consider

𝐸
∗

2
= (𝑢
∗

2
, V∗
2
, 𝑤
∗

2
) , (6)

corresponding to coexistence of prey and predators when

𝑐
1
< 1,

𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

< 𝑞
1
<
𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

− 𝑚
1
+
𝑚
1

𝑐
1

, (7)

or

𝑐
1
= 1, 𝑞

1
<
𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

, (8)

or

𝑐
1
> 1,

𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

− 𝑚
1
+
𝑚
1

𝑐
1

< 𝑞
1
<
𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

,

(9)

where

𝑢
∗

2
=
𝑚
1
𝑚
2
− 𝑐
1
𝑚
1
𝑚
2
+ 𝑐
1
𝑚
2
𝑞
1
+ 𝑐
1
𝑚
2
𝑐
2
− 𝑐
1
𝑞
2
𝑐
2

𝑚
1
𝑚
2

,
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Figure 2: Holes pattern of the prey 𝑢 obtained with model (3) with 𝑐
1
= 1.84 and 𝑞

1
= 0.6. Iterations: (a) 0, (b) 20000, (c) 60000, and

(d) 200000.
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Figure 3: Pattern formation of the prey 𝑢 of model (3) with 𝑞
1
= 0.6, 𝑐

1
= 1.87 (a) and 𝑐

1
= 1.95 (b). Iterations: (a) 100000 and (b) 20000.

V∗
2
= − (𝑚

1
𝑚
2
− 𝑐
1
𝑚
1
𝑚
2
+ 𝑐
1
𝑚
2
𝑞
1
+ 𝑐
1
𝑚
2
𝑐
2
− 𝑐
1
𝑞
2
𝑐
2
)

× (−𝑚
1
𝑚
2
+ 𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
)

× (𝑚
1
𝑚
2
(𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
))
−1

,

𝑤
∗

2
= − (𝑚

1
𝑚
2
− 𝑐
1
𝑚
1
𝑚
2
+ 𝑐
1
𝑚
2
𝑞
1
+ 𝑐
1
𝑚
2
𝑐
2
− 𝑐
1
𝑞
2
𝑐
2
)

× (−𝑚
1
𝑚
2
+ 𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
) (𝑚
2
− 𝑞
2
)

× (𝑚
1
𝑚
2
(𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
) 𝑞
2
)
−1

.

(10)
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Figure 4: Pattern formation of the prey 𝑢 of model (3) with 𝑞
1
= 0.6, 𝑐

1
= 2.1 (a) and 𝑐

1
= 2.21 (b). Iterations: (a) 100000 and (b) 20000.

And in the presence of diffusion, set 𝑢 = 𝑢∗ + 𝑢̃, V =

V∗ + Ṽ, 𝑤 = 𝑤∗ + 𝑤, and the standard linear analysis predicts
exponentially growing solutions of model (3) in the form

𝑢̃ (r, 𝑡) ∼ 𝑒
𝜆𝑡

𝑡𝑒
𝑖
⃗
𝑘⋅r
, Ṽ (r, 𝑡) ∼ 𝑒

𝜆𝑡

𝑡𝑒
𝑖
⃗
𝑘⋅r
, 𝑤 (r, 𝑡) ∼ 𝑒

𝜆𝑡

𝑡𝑒
𝑖
⃗
𝑘⋅r
,

r = (𝑥, 𝑦) ,

(11)

where 𝑘⃗ ⋅ 𝑘⃗ = 𝑘
2, 𝑘, and 𝜆 are the wave-number and frequency,

respectively.
And the eigenvalue equation then reads

󵄨󵄨󵄨󵄨󵄨
𝜆𝐼 + 𝑘

2

𝐷 − 𝐽
󵄨󵄨󵄨󵄨󵄨
= 0, (12)

where the diffusion matrix 𝐷 = diag(𝑑
1
, 𝑑
2
, 𝑑
3
), and 𝐽 the

Jacobian matrix

𝐽 =

[
[
[
[
[
[
[
[
[

[

1 − 2𝑢 −
𝑐
1
V

𝑢 + V
+

𝑐
1
𝑢V

(𝑢 + V)2
−

𝑐
1
𝑢

𝑢 + V
+

𝑐
1
𝑢V

(𝑢 + V)2
0

𝑚
1
V

𝑢 + V
−

𝑚
1
𝑢V

(𝑢 + V)2
𝑚
1
𝑢

𝑢 + V
−

𝑚
1
𝑢V

(𝑢 + V)2
− 𝑞
1
−

𝑐
2
𝑤

V + 𝑤
+

𝑐
2
V𝑤

(V + 𝑤)
2

−
𝑐
2
V

V + 𝑤
+

𝑐
2
V𝑤

(V + 𝑤)
2

0
𝑚
2
𝑤

V + 𝑤
−

𝑚
2
V𝑤

(V + 𝑤)
2

𝑚
2
V

V + 𝑤
−

𝑚
2
V𝑤

(V + 𝑤)
2
− 𝑞
2

]
]
]
]
]
]
]
]
]

](𝑢∗
2
,V∗
2
,𝑤
∗

2
)

=
[
[

[

𝐽
11

𝐽
12

𝐽
13

𝐽
21

𝐽
22

𝐽
23

𝐽
31

𝐽
32

𝐽
33

]
]

]

.

(13)

Then we can obtain the eigenvalues 𝜆(𝑘) as functions of
the wave number 𝑘 as the roots of

𝜆
3

+ 𝑝 (𝑘
2

) 𝜆
2

+ 𝑞 (𝑘
2

) 𝜆 + 𝑟 (𝑘
2

) = 0, (14)

where

𝑝 (𝑘
2

) = (𝑑
1
+ 𝑑
2
+ 𝑑
3
) 𝑘
2

− (𝐽
11
+ 𝐽
22
+ 𝐽
33
) ,

𝑞 (𝑘
2

) = (𝑑
1
𝑑
2
+ 𝑑
1
𝑑
3
+ 𝑑
2
𝑑
3
) 𝑘
4

− (𝑑
1
𝐽
22
+ 𝑑
1
𝐽
33
+ 𝑑
2
𝐽
11

+𝑑
2
𝐽
33
+ 𝑑
3
𝐽
11
+ 𝑑
3
𝐽
22
) 𝑘
2

+ (𝐽
11
𝐽
22
+ 𝐽
11
𝐽
33
− 𝐽
12
𝐽
21
+ 𝐽
22
𝐽
33
− 𝐽
23
𝐽
32
) ,

𝑟 (𝑘
2

) = 𝑑
1
𝑑
2
𝑑
3
𝑘
6

− (𝑑
1
𝑑
2
𝐽
33
+ 𝑑
1
𝑑
3
𝐽
22
+ 𝑑
2
𝑑
3
𝐽
11
) 𝑘
4

+ (𝑑
1
𝐽
22
𝐽
33
− 𝑑
1
𝐽
23
𝐽
32
+ 𝑑
2
𝐽
11
𝐽
33

+𝑑
3
𝐽
11
𝐽
22
− 𝑑
3
𝐽
12
𝐽
21
) 𝑘
2

+ (−𝐽
11
𝐽
22
𝐽
33
+ 𝐽
11
𝐽
23
𝐽
32
+ 𝐽
12
𝐽
21
𝐽
33
) .

(15)
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Figure 5: Chaotic wave pattern of the prey 𝑢 obtained with model (3) with 𝑐
1
= 5.15 and 𝑞

1
= 1.07. Iterations: (a) 0, (b) 50000, (c) 100000,

and (d) 200000.

And one type of bifurcation will break one type of
symmetry of a system; that is, in the bifurcation point, two
equilibrium states intersect and exchange their stability. Bio-
logically speaking, this bifurcation corresponds to a smooth
transition between equilibrium states [33]. The reaction-
diffusion systems have led to the characterization of two
basic types of symmetry-breaking bifurcations—Hopf and
Turing bifurcation, which are responsible for the emergence
of spatiotemporal patterns.

The onset of Hopf instability corresponds to the case
when a pair of imaginary eigenvalues cross the real axis
from the negative to the positive side. And this situation
occurs only when the diffusion vanishes. Mathematically
speaking, the Hopf bifurcation occurs when Re(𝜆(𝑘2)) = 0,
Im(𝜆(𝑘2)) ̸= 0 at the wavenumber 𝑘 = 0. For unstable steady
states to heterogeneous perturbations leading to Turing
patterns, the real part of the eigenvalue, Re(𝜆(𝑘2)), has to
be greater than zero. Mathematically speaking, the Turing
bifurcation occurs when I(𝜆(𝑘)) = 0, R(𝜆(𝑘)) = 0 at the
wavenumber 𝑘 ̸= 0.

Here, we take 𝑐
1
as the bifurcation parameter; linear

stability analysis yields the bifurcation diagram with 𝑚
1
=

1.5, 𝑚
2

= 2, 𝑞
2

= 1, 𝑐
2

= 0.5, 𝑑
1

= 0.01, 𝑑
2

= 0.1,

𝑑
3

= 1, and 𝑞
1
is a variational parameter (c.f., Figure 1).

In Figure 1, the spotted curve is critical state in which
above the spotted curve, the three species cannot both be
positive; under the spotted curve, they are both positive. The
𝑐
1
-𝑞
1
bifurcation diagram shows the two bifurcation curves

separate the coexistence space into four domains. In domain
I, located below all two bifurcation lines, the uniform steady
state is the only stable solution of the model. Domain II is
the region of pure Turing instability. Domain III is the region
of pure Hopf instability. When the parameters correspond to
domain IV, which is located above all two bifurcation lines,
both Hopf instability and Turing instability occur.

In Figure 1, the stationary state in the parameter domains
II and IV (sometimes called the “Turing space”) is unstable
only to a nonuniform perturbation. As expected, this domain
exists only when the inhibitor species (for predator-prey
system, predator 𝑢) diffuses faster than the activator species
(for predator-prey system, prey V, 𝑤) and the area of this
Turing space increases with 𝑑

3
> 𝑑
2
> 𝑑
1
.

3. Pattern Formation

In this section, we perform extensive numerical simulations
of the spatially extended model (3) in two-dimensional
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Figure 6: Dynamical behaviors of model (3). (a) Time-series plot of 𝑢, (b) time-series plot of V, (c) time-series plot of 𝑤; (d) phase portrait.
The parameters are the same as those in Figure 5.

spaces, and the qualitative results are shown here. The
parameters are 𝑚

1
= 1.5, 𝑚

2
= 2, 𝑞

2
= 1, 𝑐

2
= 0.5, 𝑑

1
=

0.01, 𝑑
2
= 0.1, and 𝑑

3
= 1. Model (3) is integrated initially in

two-dimensional space from the homogeneous steady state;
that is, we start with the unstable uniform solution 𝐸

∗

2
=

(𝑢∗
2
, V∗
2
, 𝑤∗
2
) with small random perturbation superimposed;

in each, the initial condition is always a small amplitude
random perturbation (±5 × 10−4), using an explicit Euler
method for the time integration with a time stepsize of
Δ𝑡 = 0.01. We use the standard five-point approximation
for the Laplacian operator with the Zero-flux boundary
conditions and the system size is 50 × 50 space units with
space stepsize (lattice constant) ℎ = Δ𝑥 = Δ𝑦 = 0.25,
discretized through 𝑥 → (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

200
) and 𝑦 →

(𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑗
, . . . , 𝑦

200
). The form of the Laplacian operator

is taken as follows:

Δ
ℎ
𝑢𝑛
𝑖,𝑗
=
𝑢𝑛
𝑖+1,𝑗

+ 𝑢𝑛
𝑖−1,𝑗

+ 𝑢𝑛
𝑖,𝑗+1

+ 𝑢𝑛
𝑖,𝑗−1

− 4𝑢𝑛
𝑖,𝑗

ℎ2
. (16)

The concentrations (𝑢𝑛+1
𝑖,𝑗

, V𝑛+1
𝑖,𝑗

, 𝑤𝑛+1
𝑖,𝑗

) at the moment (𝑛 +
1)𝜏 at the mesh position (𝑖, 𝑗) are given by

𝑢
𝑛+1

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+ 𝜏𝑑
1
Δ
ℎ
𝑢
𝑛

𝑖,𝑗
+ 𝜏𝑓
1
(𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, 𝑤
𝑛

𝑖,𝑗
) ,

V𝑛+1
𝑖,𝑗

= V𝑛
𝑖,𝑗
+ 𝜏𝑑
2
Δ
ℎ
V𝑛
𝑖,𝑗
+ 𝜏𝑓
2
(𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, 𝑤
𝑛

𝑖,𝑗
) ,

𝑤
𝑛+1

𝑖,𝑗
= 𝑤
𝑛

𝑖,𝑗
+ 𝜏𝑑
3
Δ
ℎ
𝑤
𝑛

𝑖,𝑗
+ 𝜏𝑓
3
(𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, 𝑤
𝑛

𝑖,𝑗
) .

(17)

When the evolution processes reached steady state, we
took a snapshot with white corresponding to the high value
of prey 𝑢 while black corresponding to the low one.

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance.

From the bifurcation diagram in the above section (cf.,
Figure 1), the results of numerical simulations show that the
type of the system dynamics is determined by the values of
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𝑐
1
and 𝑞
1
. And for different sets of parameters, the features of

the spatial patterns become essentially different if 𝑐
1
exceeds

the bifurcation curves which depend on 𝑞
1
.

First, we consider the pattern formation for the param-
eters (𝑞

1
, 𝑐
1
) located in domain II (c.f., Figure 1); the region

of pure Turing instability occurs while Hopf stability occurs.
As an example, we show the time evolution of three typical
patterns when 𝑞

1
= 0.6. With the parameters set, one can

conclude that the critical value of Hopf bifurcation is 𝑐
1
=

1.81365 and Turing bifurcation value is 𝑐
1
= 2.12057. So, the

values of 𝑐
1
that we adopt are between 1.81365 and 2.12057.

As an example, in Figure 2, we show the time evolu-
tion of holes pattern of prey 𝑢 at 0, 20000, 60000, and
200000 iterations for (𝑞

1
, 𝑐
1
) = (0.6, 1.84). In this case,

one can see that for model (1), the pattern takes a long
time to settle down, starting with a homogeneous state
(𝑢
∗, V∗, 𝑤∗) = (0.20267, 0.15498, 0.15498) (c.f., Figure 5(a)),

and the random initial distribution leads to the formation of
regular holes (c.f., Figure 2(d)).This pattern (c.f., Figure 2(d))
consists of black (minimumdensity of 𝑢) hexagons on awhite
(maximum density of 𝑢) background, that is, isolated zones
with low population densities. Baurmann et al. [33] called this
type pattern “cold spots” and vonHardenberg et al. [34] called
it “holes.” In this paper, we adopt the name “holes.”

When increasing 𝑐
1
to 1.87, a few of stripes emerge, and

the remainder of the holes pattern remains time indepen-
dent (Figure 3(a)). And while increasing 𝑐

1
to 1.95, model

dynamics exhibits a transition from stripe-hole growth to
stripes replication; that is, holes decay and the stripes pattern
emerges (Figure 3(b)).

Next, we consider the pattern formation in domain IV
in Figure 1; both Hopf and Turing instability occur in this
domain. We adopt 𝑞

1
= 0.6 and 2.12057 < 𝑐

1
< 2.30769—

the maximized value of the coexistence of prey and their
predators. The model dynamics exhibits two typical pattern
formations.

In Figure 4, with the increasing of 𝑐
1
to 2.1, a few of

white hexagons (i.e., spots, associate with high population
densities) fill in the stripes; that is, the stripes-spots pat-
tern emerges (c.f., Figure 4(a)). And while increasing 𝑐

1
to

2.21, model dynamics exhibits a transition from stripe-spots
growth to spots replication; that is, stripes decay and the spots
pattern emerges(c.f., Figure 4(b)).

FromFigures 2–4, one can see that, with fixed parameters,
on increasing the control parameter 𝑐

1
, the sequence “holes

→ holes-stripes mixtures → stripes → spots-stripes mix-
tures → spots” pattern is observed.

In addition, we consider the pattern formation when
(𝑐
1
, 𝑞
1
) locates in domain III in Figure 1, pure Hopf instability

occurs. Figure 5 shows the evolution of the chaotic wave
pattern of prey 𝑢 at 0, 50000, 100000, and 200000 iterations
with (𝑞

1
, 𝑐
1
) = (1.07, 5.15). With these fixed parameters, the

critical value of Hopf bifurcation is 𝑐
1

= 5.13108 and the
Turing bifurcation values equal 𝑐

1
= 5.24545. In order to

make it clearer, in Figure 6, we show oscillate time series plots
of 𝑢, V, 𝑤 (c.f., Figures 6(a), 6(b), and 6(c)), respectively. And
phase portrait (c.f., Figure 6(d)) shows that there exhibits the
“local” phase plane of the system obtained in a fixed point

c 1

1.25

1.20

1.15

1.10

1.05

1.00

q1

0 0.1 0.2 0.3

Non-coexistence

Hopf line

Turing line I

II

Figure 7: 𝑐
1
-𝑞
1
bifurcation diagram for model (3) with 𝑚

1
=

1.5, 𝑚
2
= 2, 𝑞

2
= 1, 𝑐

2
= 0.5, 𝑑

1
= 0.01, 𝑑

2
= 0.1, 𝑑

3
= 1 and 𝑞

1
;

the corresponding steady state is (𝑢∗
1
, V∗
1
, 0) = (0.04667, 0.30333, 0).

. . .: the dividing line of coexistence and noncoexistence of prey and
their predators.

𝐸∗
2
= (0.38200, 0.05209, 0.05209) inside the region invaded

by the irregular spatiotemporal oscillations.
Furthermore, we restrict our attention to the case when

the top predator vanishes. Extinction of the top predator is
studied by Chiu and coworkers; they gave a criterion for the
extinction of top predator [35]. Here, we will illustrate the
pattern formation about this case.

According to food chainmodel,𝐸∗
1
= (𝑢∗
1
, V∗
1
, 0) describes

extinction of the top predator. With the same method and
the same parameters in Section 2, the bifurcation diagram
is shown in Figure 7. In Figure 7, the spotted curve is
critical state in which the domain above the spotted curve is
noncoexistence space; the domain under the spotted curve
is coexistence space. Only Turing curve intersects with the
spotted curve, and it separates the coexistence space into two
domains.When (𝑐

1
, 𝑞
1
) locates in domain I, under the Turing

curve, the steady state is only stable solution of model (3);
when (𝑐

1
, 𝑞
1
) locates in domain II in Figure 7, pure Turing

instability occurs. That is to say, domain II is the “Turing
space” only.

Figure 8 shows the evolution of the spatial pattern of prey
at 0, 10000, 100000, and 300000 iterations with 𝑐

1
= 1.1 and

𝑞
1
= 0.2; that is, (𝑐

1
, 𝑞
1
) point locates in domain II in Figure 7.

The random initial distribution around the steady state 𝐸∗
1
=

(0.04667, 0.30333, 0) leads to the formation of stripes-spots
pattern (c.f., Figure 8(d)).

4. Conclusions and Remarks

In summary, we have investigated a ratio-dependent spatially
extended food chainmodel. Based on the bifurcation analysis
(Hopf and Turing), we give the spatial pattern formation
via numerical simulation. For the coexistence equilibrium
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Figure 8: Spatiotemporal pattern of the prey 𝑢 of model (3) with 𝑐
1
= 1.07 and 𝑞

1
= 0.2; the initial condition is the random initial distribution

around the steady state (𝑢∗
1
, V∗
1
, 0) = (0.04667, 0.30333, 0). Iterations: (a) 0, (b) 10000, (c) 100000, and (d) 300000.

point 𝐸∗
2

= (𝑢∗
2
, V∗
2
, 𝑤∗
2
), we find that the model dynamics

exhibits complex pattern replication, such as holes, holes-
stripes, stripes, spots-stripes, spots, and chaotic wave pattern.
And for the extinction of the top predator equilibrium point
𝐸
∗

1
= (𝑢∗
1
, V∗
1
, 0), we find that the model dynamics exhibits

stripes-spots pattern replication.
In fact, in our world, every day, hundreds of species are

extinct, and the extinction of a species is a fearful thing. And
the top predator is extinct because there is a balance between
the prey 𝑢 and the intermediate predator V. In the case we
considered, the density of the intermediate predator V is not
small, but very big. The intermediate predator V is strong
enough to fight back the top predator 𝑤.

On the other hand, in the analysis of bifurcations (i.e.,
Hopf and Turing), we find that huge-sized computations are
required, so we have to obtain more help via computers. In
fact, computer-aided analysis is useful for nonlinear analysis.
And computers have played an important role throughout
the history of ecology. Today, numerical simulations also play
an important role in spatial ecology. There are some interna-
tional mathematical softwares, such as Matlab, Maple, and
Mathematica, all of which have powerful function library

and can provide scientific calculation and programming
with friendly platform. We have finished all our symbolic
computations in Maple and obtained our pattern snapshots
(i.e., numerical simulations) in Matlab as Maple is more
superior in symbolic computations while Matlab is more
superior in numerical computations.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by NSFC no. 11071273.

References

[1] P. A. Abrams and L. R. Ginzburg, “The nature of predation: prey
dependent, ratio dependent or neither?” Trends in Ecology and
Evolution, vol. 15, no. 8, pp. 337–341, 2000.



Abstract and Applied Analysis 9

[2] R. Arditi and L. R. Ginzburg, “Coupling in predator-prey
dynamics: ratio-dependence,” Journal ofTheoretical Biology, vol.
139, no. 3, pp. 311–326, 1989.

[3] C. Jost,Comparing predator-prey models qualitatively and quan-
titatively with ecological timeseries data [Ph.D. thesis], Institute
National Agronomique, Paris, France, 1998.

[4] C. Jost, O. Arino, and R. Arditi, “About deterministic extinction
in ratio-dependent predator-prey models,” Bulletin of Mathe-
matical Biology, vol. 61, no. 1, pp. 19–32, 1999.

[5] Y. Kuang and E. Beretta, “Global qualitative analysis of a ratio-
dependent predator-prey system,” Journal ofMathematical Biol-
ogy, vol. 36, no. 4, pp. 389–406, 1998.

[6] F. Rao and W. Wang, “Dynamics of a Michaelis-Menten-type
predation model incorporating a prey refuge with noise and
external forces,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2012, no. 3, Article ID P03014, 2012.

[7] S. Ruan and D. Xiao, “Global analysis in a predator-prey system
with nonmonotonic functional response,” SIAM Journal on
Applied Mathematics, vol. 61, no. 4, pp. 1445–1472, 2001.

[8] W. Wang, Y. Cai, Y. Zhu, and Z. Guo, “Allee-effect-induced
instability in a reaction-diffusion predator-prey model,”
Abstract and Applied Analysis, vol. 2013, Article ID 487810, 10
pages, 2013.

[9] A. M. Turing, “The chemical basis of morphogenisis,” Philo-
sophical Transactions of the Royal Society B, vol. 237, pp. 7–72,
1952.

[10] A. Aotani, M. Mimura, and T. Mollee, “A model aided under-
standing of spot pattern formation in chemotactic E. Coli
colonies,” Japan Journal of Industrial and Applied Mathematics,
vol. 27, no. 1, pp. 5–22, 2010.

[11] D. Alonso, F. Bartumeus, and J. Catalan, “Mutual interference
between predators can give rise to turing spatial patterns,”
Ecology, vol. 83, no. 1, pp. 28–34, 2002.

[12] S. A. Levin, “The problem of pattern and scale in ecology,”
Ecology, vol. 73, no. 6, pp. 1943–1967, 1992.

[13] M. Li, B. Han, L. Xu, and G. Zhang, “Spiral patterns near
Turing instability in a discrete reaction diffusion system,”Chaos,
Solitons & Fractals, vol. 49, pp. 1–6, 2013.

[14] L. A. Dı́az Rodrigues, D. C. Mistro, and S. Petrovskii, “Pattern
formation in a space- and time-discrete predator-prey system
with a strong Allee effect,” Theoretical Ecology, vol. 5, no. 3, pp.
341–362, 2012.

[15] P. K. Maini, “Using mathematical models to help understand
biological pattern formation,” Comptes Rendus—Biologies, vol.
327, no. 3, pp. 225–234, 2004.

[16] Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion
Equations, Springer, Berlin, Germany, 2000.

[17] J. D. Murray, Mathematical Biology II, Spatial Models and
Biomedical Applications, vol. 18 of Interdisciplinary Applied
Mathematics, Springer, New York, NY, USA, 3rd edition, 2003.

[18] N. Sapoukhina, Y. Tyutyunov, and R. Arditi, “The role of
prey taxis in biological control: a spatial theoretical model,”
American Naturalist, vol. 162, no. 1, pp. 61–76, 2003.

[19] W. Wang, Q.-X. Liu, and Z. Jin, “Spatiotemporal complexity
of a ratio-dependent predator-prey system,” Physical Review E:
Statistical, Nonlinear, and Soft Matter Physics, vol. 75, no. 5,
Article ID 051913, 2007.

[20] W. Wang, L. Zhang, H. Wang, and Z. Li, “Pattern formation
of a predator-prey system with Ivlev-type functional response,”
Ecological Modelling, vol. 221, no. 2, pp. 131–140, 2010.

[21] A. Klebanoff and A. Hastings, “Chaos in three-species food
chains,” Journal of Mathematical Biology, vol. 32, no. 5, pp. 427–
451, 1994.

[22] M. P. Boer, B. W. Kooi, and S. A. L. M. Kooijman, “Homoclinic
and heteroclinic orbits to a cycle in a tri-trophic food chain,”
Journal of Mathematical Biology, vol. 39, no. 1, pp. 19–38, 1999.

[23] D. O. Maionchi, S. F. dos Reis, and M. A. M. de Aguiar,
“Chaos and pattern formation in a spatial tritrophic food chain,”
Ecological Modelling, vol. 191, no. 2, pp. 291–303, 2006.

[24] S. Gakkhar and B. Singh, “The dynamics of a food web
consisting of two preys and a harvesting predator,” Chaos,
Solitons and Fractals, vol. 34, no. 4, pp. 1346–1356, 2007.

[25] J. P. Keener, “Oscillatory coexistence in a food chainmodel with
competing predators,” Journal of Mathematical Biology, vol. 22,
no. 2, pp. 123–135, 1985.

[26] B. W. Kooi, M. P. Boer, and S. A. L. M. Kooijman, “Complex
dynamic behaviour of autonomous microbial food chains,”
Journal of Mathematical Biology, vol. 36, no. 1, pp. 24–40, 1997.
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