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We consider SIR epidemic model in which population growth is subject to logistic growth in absence of disease. We get the
condition for Hopf bifurcation of a delayed epidemic model with information variable and limited medical resources. By analyzing
the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed.
If the basic reproduction ratioR

0
< 1, we discuss the global asymptotical stability of the disease-free equilibrium by constructing

a Lyapunov functional. If R
0
> 1, we obtain sufficient conditions under which the endemic equilibrium 𝐸

∗ of system is locally
asymptotically stable. Andwe also have discussed the stability and direction ofHopf bifurcations. Numerical simulations are carried
out to explain the mathematical conclusions.

1. Introduction

From an epidemiological viewpoint, it is important to inves-
tigate the global dynamics of the disease transmission. In the
literature, many authors have researched various epidemic
models [1, 2], in which the stability analyses have been
carried out extensively. In the recent years, based on SIR
epidemic model, in order to investigate the spread of an
infectious disease transmitted by a vector,Wang et al. [3] have
considered the asymptotic behavior of the following delayed
SIR epidemic model:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑆 (1 −

𝑆

𝑘

) − 𝛽𝑆𝐼 (𝑡 − 𝜏) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆𝐼 (𝑡 − 𝜏) − (𝜇
1
+ 𝛾) 𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾𝐼 − 𝜇
2
𝑅.

(1)

Since nonlinearity in the incidence rates has been
observed in disease transmission dynamics, it has been
suggested that the standard bilinear incidence rate will be
modified into a nonlinear incidence rate bymany authors [4–
6]. In [7], incidence rate 𝛽𝑆𝐼(𝑡 − 𝜏) in (1) was replaced by

a nonlinear incidence rate of the form 𝛽𝑆𝐺(𝐼(𝑡 − 𝜏)) with the
following system:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑆 (1 −

𝑆

𝑘

) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇
1
+ 𝛾) 𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾𝐼 − 𝜇
2
𝑅.

(2)

In order to control the spread of epidemic, we consider
the new variable 𝑍:

𝑍 (𝑡) = ∫

𝑡

−∞

𝑆

1

𝑇

exp(−

1

𝑇

(𝑡 − 𝜏)) 𝑑𝜏, (3)

called information variable which summarizes information
about the current state of the disease, that is, depending
on current values of state variables, and also summarizes
information about past values of state variables.Many authors
have used this variable in their models (see, e.g., [8–10]).

In this paper, we consider the information variable 𝑍(𝑡),
nonlinear incidence rate of the form𝛽𝑆𝐺(𝐼(𝑡−𝜏)), and limited
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medical resources ℎ(𝐼) = 𝑏𝐼/(𝜔 + 𝐼). The model can be
described by the following system of equations:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑆 (1 −

𝑆

𝑘

) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇
1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼

,

𝑍 (𝑡) = ∫

𝑡

−∞

𝑆

1

𝑇

exp(−

1

𝑇

(𝑡 − 𝜏)) 𝑑𝜏,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾𝐼 − 𝜇
2
𝑅 +

𝑏𝐼

𝜔 + 𝐼

,

(4)

where 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) > 0 and 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) denote the
numbers of susceptible, infective, and recovered individuals
at time 𝑡, respectively. 𝑟 is the intrinsic growth rate of
susceptibles, 𝑘 is the carrying capacity of susceptibles, 𝛼 is
the saturation factor that measures the inhibitory effect, 𝛽 is
the transmission or contact rate, 𝜇

1
, 𝜇

2
are the natural death

rate of the infective and recovered individuals, 𝛾 is the natural
recovery rate, 𝜀 is the disease-related mortality, 𝑏 ≥ 0 is the
maximal medical resources supplied per unit time, and𝜔 > 0

is half-saturation constant. 𝑟, 𝑏, 𝜇
1
, 𝜇

2
, 𝛾, 𝛼, 𝛽, 𝑘, 𝜔 are all

positive.
We further assume that the function 𝐺 is continuous on

[0, +∞) and continuously differentiable on (0, +∞) satisfying
the following hypotheses:

(1) 𝐺(𝐼) is strictly monotone increasing on [0, +∞) with
𝐺(0) = 0;

(2) 𝐼/𝐺(𝐼) is monotone increasing on (0, +∞) with
lim

𝐼→0+
(𝐼/𝐺(𝐼)) = 1.

The organization of this paper is as follows. In Section 2,
we explore the existence of disease-free equilibria point
and the unique existence of the endemic equilibrium point.
In Section 3, we analyze the stability of the disease-free
equilibria. In Section 4, we obtain sufficient conditions under
which the endemic equilibrium 𝐸

∗ of system is locally
asymptotically stable. In Section 5, we also have discussed
the stability and direction of Hopf bifurcations. A numerical
analysis and a simple discussion are given to conclude this
paper in Section 6.

2. The Existence of Equilibria

The nonlinear integrodifferential system (4) can be trans-
formed into the following set of nonlinear ordinary differen-
tial questions:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑆 (1 −

𝑆

𝑘

) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇
1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼

,

𝑑𝑍 (𝑡)

𝑑𝑡

=

1

𝑇

(𝑆 − 𝑍) ,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾𝐼 − 𝜇
2
𝑅 +

𝑏𝐼

𝜔 + 𝐼

.

(5)

Since the dynamical behavior of the last equation of
the system (5), that is, the dynamics of 𝑅, depends only
the dynamics of 𝐼, we do not consider that equation in
our discussion. Here we will study the following nonlinear
ordination differential equations:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑆 (1 −

𝑆

𝑘

) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇
1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼

,

𝑑𝑍 (𝑡)

𝑑𝑡

=

1

𝑇

(𝑆 − 𝑍) .

(6)

For simplicity, we nondimensionalize system (6) by defining

𝑆 (𝑡̃) =

𝑆 (𝑡)

𝑘

, 𝐼 (𝑡̃) =

𝐼 (𝑡)

𝑘

, 𝑍 (𝑡̃) =

𝑍 (𝑡)

𝑘

,

𝑡̃ = 𝛽𝑘𝑡, 𝑇̃ = 𝛽𝑘𝑇, 𝜔̃ =

𝜔

𝑘

, 𝑟 =

𝑟

𝛽𝑘

,

𝐺 (𝐼 (𝑡̃)) =

𝐺 (𝐼 (𝑡))

𝑘

, 𝜇
1
=

𝜇
1

𝛽𝑘

, 𝜇
2
=

𝜇
2

𝛽𝑘

,

𝛾 =

𝛾

𝛽𝑘

, 𝜀 =

𝜀

𝛽𝑘

,
̃
𝑏 =

𝑏

𝛽𝑘
2
.

(7)

We note that 𝐺 also satisfies the hypotheses (1) and (2).
Dropping the ̃ for convenience of readers, system (6) can be
written in the following form:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑆 (1 − 𝑆) − 𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇
1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼

,

𝑑𝑍 (𝑡)

𝑑𝑡

=

1

𝑇

(𝑆 − 𝑍) .

(8)

The basic reproduction isR
0
= 1/(𝜇

1
+ 𝛾 + 𝜀 + 𝑏/𝜔).

Theorem 1. (1) The system (8) has a trivial equilibrium 𝐸
0
=

(0, 0, 0) and the disease-free equilibrium 𝐸
1
= (1, 0, 1).

(2) IfR
0
> 1, the system (8) has one endemic equilibrium

𝐸
∗
= (𝑆

∗
, 𝐼

∗
, 𝑍

∗
) except the disease-free equilibria 𝐸

0
and 𝐸

1
.

Proof. (1) Let 𝐼 = 0; we have 𝑆 = 𝑍 = 0, or 𝑆 = 𝑍 = 1; it is
not easy to find that the system has a trivial equilibrium and
the disease-free equilibria 𝐸

0
= (0, 0, 0) and 𝐸

1
= (1, 0, 1).

(2) If R
0

> 1, from the third question of (8), we have
𝑍
∗
= 𝑆

∗; from the second question of (8), we have

𝑆
∗
= 𝑍

∗
=

(𝜇
1
+ 𝛾 + 𝜀 + 𝑏/ (𝜔 + 𝐼

∗
)) 𝐼

∗

𝐺 (𝐼
∗
)

. (9)

Then substituting them into the first question of (8) yields

𝑟 [1 −

(𝜇
1
+ 𝛾 + 𝜀 + 𝑏/ (𝜔 + 𝐼

∗
)) 𝐼

∗

𝐺 (𝐼
∗
)

] − 𝐺 (𝐼
∗
) = 0. (10)
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Let 𝐹(𝐼) = 𝑟[1 − (𝜇
1
+ 𝛾 + 𝜀 + 𝑏/(𝜔 + 𝐼

∗
))𝐼/𝐺(𝐼)] − 𝐺(𝐼). By

hypothesis (2), we obtain

lim
𝐼→+0

𝐹 (𝐼) = 𝑟 [1 − (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔 + 𝐼
∗
)]

> 𝑟 [1 − (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

)] = 𝑟(1 −

1

𝑅
0

) > 0.

(11)

Since 𝐹(𝐼) is strictly monotone decreasing function on
(0, +∞), it suffices to show that 𝐹(𝐼) < 0 holds for 𝐼

sufficiently large. From (1), 𝐺(𝐼) is either unbounded above
or bounded above on [0, +∞).

First, we suppose that 𝐺(𝐼) is unbounded above. Then
there exists an 𝐼

1
> 0 such that 𝐺(𝐼

1
) = 𝑟, from which

we have 𝐹(𝐼) < 0 for all 𝐼 ≥ 𝐼
1
. Second we suppose that

𝐺(𝐼) is bounded above. Then, from (2), 𝐼/𝐺(𝐼) is unbounded
above on [0, +∞); that is, there exists an 𝐼

2
> 0 such that

𝜇
1
+ 𝛾 + 𝜀 + 𝑏/(𝜔 + 𝐼

2
) = 𝐺(𝐼

2
)/𝐼

2
. This yields 𝐹(𝐼) < 0 for

all 𝐼 > 𝐼
2
. Therefore, for the both cases, there exists a unique

endemic 𝐼∗ > 0 such that 𝐹(𝐼∗) = 0. By the second and third
equations of (8), there exists a unique endemic equilibrium
𝐸
∗ of system (8) ifR

0
> 1.

Second, we assumeR
0
≤ 1; then it is obvious that system

(8) has no equilibria. Hence the proof is complete.

3. The Stability Analysis of Disease-Free
Equilibrium Point

In this section, we will examine the local stability of the equi-
libria by analyzing the eigenvalues of the Jacobianmatrices of
(8) at the equilibria and using Routh-Hurwitz criterion.

Let 𝐸 = (𝑆, 𝐼, 𝑅) be the arbitrarily equilibrium point of
system (8); then the Jacobian matrix of (8) at 𝐸 is

𝐽 (𝑆, 𝐼, 𝑍) = (

(

𝑟(1 − 2𝑆) − 𝐺 (𝐼) −𝑆𝐺
󸀠
(𝐼) 𝑒

−𝜆𝜏
0

0 𝑍𝐺
󸀠
(𝐼) 𝑒

−𝜆𝜏
− (𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼)

2
) 𝐺(𝐼)

1

𝑇

0 −

1

𝑇

)

)

. (12)

Then the characteristic equation of the system (8) at equilib-
rium 𝐸 is

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆𝐸 − 𝐽 (𝐸)

󵄨
󵄨
󵄨
󵄨
󵄨

= (𝜆 +

1

𝑇

) [𝜆 + 𝐺 (𝐼) − 𝑟 (1 − 2𝑆)]

× [

[

𝜆 + 𝜇
1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼)

2

]

]

− [(𝜆 +

1

𝑇

) (𝜆 + 𝐺 (𝐼) − 𝑟 (1 − 2𝑆)) −

1

𝑇

𝐺 (𝐼)]

× 𝑍𝐺
󸀠
(𝐼) 𝑒

−𝜆𝜏
= 0.

(13)

Theorem 2. The trivial equilibrium 𝐸
0
of system (8) is always

unstable.

Proof. The characteristic equation (13) at 𝐸
0

= (0, 0, 0)

becomes as follows:

(𝜆 +

1

𝑇

) (𝜆 − 𝑟) (𝜆 + 𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

) = 0. (14)

Since (14) has a positive root 𝜆 = 𝑟 > 0, 𝐸
0
is unstable.

Theorem 3. The disease-free equilibrium 𝐸
1
of system (8) is

locally asymptotically stable if R
0

< 1 and it is unstable if
R

0
> 1.

Proof. For 𝐸
1
= (1, 0, 1), the characteristic equation (13) at 𝐸

1

becomes as follows:

(𝜆 +

1

𝑇

) (𝜆 + 𝑟) [𝜆 + (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

) − 𝑒
−𝜆𝜏

] = 0. (15)

It is clear that both 𝜆 = −1/𝑇 and 𝜆 = −𝑟 are all the negative
root of (15). Then the other root of (15) is determined as the
following equation:

𝜆 + (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

) − 𝑒
−𝜆𝜏

= 0. (16)

For the case R
0
< 1, we suppose on the contrary that 𝐸

1
is

not locally asymptotically stable; that is, Re ̃𝜆 > 0.Then, there
exists a root 𝜆 =

̃
𝜆, such that Re ̃𝜆 ≥ 0. However, from (16),

we obtain

Re ̃𝜆 = (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

) (R
0
𝑒
−Re 𝜆̃𝜏 cos (Im ̃

𝜆𝜏) − 1)

≤ (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

) (R
0
− 1) < 0,

(17)

which is a contradiction. Hence, if R
0
< 1, the disease-free

equilibrium 𝐸
1
of system (8) is locally asymptotically stable.

Now, we put

𝑃 (𝜆) = 𝜆 + (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔

) − 𝑒
−𝜆𝜏

= 0. (18)

For the caseR
0
> 1, we have𝑃(0) = 𝜇

1
+𝛾+𝜀+𝑏/𝜔−1 < 0

and lim
𝜆→+∞

𝑃(𝜆) = +∞; then 𝑃(𝜆) = 0 has at least one
positive root. Hence, 𝐸

1
is unstable if and only ifR

0
> 1. The

proof is complete.
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4. The Stability Analysis of the Endemic
Equilibrium Point

Theorem 4. If 𝜏 = 0, R
0

> 1, and 𝑟 − 𝐺
󸀠
(𝐼
∗
) >

𝑟𝑇𝐺(𝐼
∗
), then the positive equilibrium 𝐸

∗ of system (8) is
locally asymptotically stable.

Proof. The characteristic equation of (13) at 𝐸∗ becomes as
follows:

(𝜆 +

1

𝑇

) (𝜆 + 𝑟𝑆
∗
) [𝜆 + 𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
]

− [(𝜆 +

1

𝑇

) (𝜆 + 𝑟𝑆
∗
) −

1

𝑇

𝐺 (𝐼
∗
)]𝑍

∗
𝐺
󸀠
(𝐼

∗
) 𝑒

−𝜆𝜏
= 0.

(19)

The above equation can be rewritten as

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= 0, (20)

where 𝑃(𝜆) = 𝜆
3
+𝑏

1
𝜆
2
+𝑏

2
𝜆+𝑏

3
,𝑄(𝜆) = 𝑏

4
𝜆
2
+𝑏

5
𝜆+𝑏

6
, and

𝑏
1
=

1

𝑇

+ 𝑟𝑆
∗
+ 𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
,

𝑏
2
=

1

𝑇

𝑟𝑆
∗
+

1

𝑇

(𝜇
1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
)

+ 𝑟𝑆
∗
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
) ,

𝑏
3
=

1

𝑇

𝑟𝑆
∗
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
) ,

𝑏
4
= −𝑆

∗
𝐺
󸀠
(𝐼

∗
) ,

𝑏
5
= − 𝑆

∗
𝐺
󸀠
(𝐼

∗
) [

1

𝑇

+ 𝑟𝑆
∗
] ,

𝑏
6
= −

1

𝑇

𝑆
∗
𝐺
󸀠
(𝐼

∗
) (𝑟𝑆

∗
− 𝐺 (𝐼

∗
)) .

(21)

Let 𝐶 = 𝜇
1
+ 𝛾 + 𝜀 + 𝑏𝜔/(𝜔 + 𝐼

∗
)
2
− 𝑆

∗
𝐺
󸀠
(𝐼
∗
).

Then if 𝜏 = 0, (20) becomes 𝑃(𝜆) + 𝑄(𝜆) = 0; that is,

𝜆
3
+ 𝑎

1
𝜆
2
+ 𝑎

2
𝜆 + 𝑎

3
= 0, (22)

where

𝑎
1
= 𝑏

1
+ 𝑏

4
=

1

𝑇

+ 𝑟𝑆
∗
+ 𝐶,

𝑎
2
= 𝑏

2
+ 𝑏

5
=

1

𝑇

(𝑟𝑆
∗
+ 𝐶) + 𝑟𝑆

∗
𝐶,

𝑎
3
= 𝑏

3
+ 𝑏

6
=

1

𝑇

[𝑟𝑆
∗
𝐶 + 𝑆

∗
𝐺 (𝐼

∗
) 𝐺

󸀠
(𝐼

∗
)] .

(23)

Let 𝑟 − 𝐺
󸀠
(𝐼
∗
) > 𝑟𝑇𝐺(𝐼

∗
); we have 𝑎

1
> 0, 𝑎

3
> 0, and

𝑎
1
𝑎
2
− 𝑎

3
= (

1

𝑇

+ 𝑟𝑆
∗
+ 𝐶) [

1

𝑇

(𝑟𝑆
∗
+ 𝐶) + 𝑟𝑆

∗
𝐶]

−

1

𝑇

[𝑟𝑆
∗
𝐶 + 𝑆

∗
𝐺 (𝐼

∗
) 𝐺

󸀠
(𝐼

∗
)]

=

1

𝑇

(𝑟𝑆
∗
+ 𝐶) (

1

𝑇

+ 𝑟𝑆
∗
+ 𝐶)

+ (𝑟𝑆
∗
+ 𝐶) 𝑟𝑆

∗
𝐶 −

1

𝑇

𝑆
∗
𝐺 (𝐼

∗
) 𝐺

󸀠
(𝐼

∗
)

>

1

𝑇

(𝑟𝑆
∗
+ 𝐶) (

1

𝑇

+ 𝑟𝑆
∗
+ 𝐶)

+ (𝑟𝑆
∗
+ 𝐶) 𝑟𝑆

∗
𝐶 −

1

𝑇

𝑟𝑆
∗
𝐺 (𝐼

∗
)

=

1

𝑇
2
(𝑟𝑆

∗
+ 𝐶)

+

1

𝑇

(𝑟𝑆
∗
+ 𝐶) (𝑟𝑆

∗
+ 𝐶 + 𝑟𝑇𝑆

∗
𝐶)

−

1

𝑇

𝑟𝑆
∗
𝐺 (𝐼

∗
)

=

1

𝑇
2
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
)

+

1

𝑇

(𝑟𝑆
∗
+ 𝐶) (𝑟𝑆

∗
+ 𝐶 + 𝑟𝑇𝑆

∗
𝐶)

+

1

𝑇
2
𝑆
∗
(𝑟 − 𝐺

󸀠
(𝐼

∗
)) −

1

𝑇

𝑟𝑆
∗
𝐺 (𝐼

∗
) > 0.

(24)

By using the Routh-Hurwitz theorem, 𝜆 has negative real
part for 𝜏 = 0. So the positive equilibrium 𝐸

∗ is locally
asymptotically stable.

In the following, we investigate the existence of purely
imaginary roots 𝜆 = 𝑖𝜔 (𝜔 > 0) to (19). Equation (19) takes
the form of a third-degree exponential polynomial in 𝜆, with
all the coefficients of 𝑃 and 𝑄 depending on 𝜏. Beretta and
Kuang [11] established a geometrical criterion which gives the
existence of purely imaginary root of a characteristic equation
with delay dependent coefficients.

Now we let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (20) from which
we have that

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= −𝑖𝜔
3
− 𝑏

1
𝜔
2
+ 𝑏

2
𝜔𝑖 + 𝑏

3

+ (−𝑏
4
𝜔
2
+ 𝑏

5
𝜔𝑖 + 𝑏

6
) (cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏))

= −𝑏
1
𝜔
2
+ 𝑏

3

− [𝑏
4
𝜔
2 cos (𝜔𝜏) − 𝑏

5
𝜔 sin (𝜔𝜏) − 𝑏

6
cos (𝜔𝜏)]

+ 𝑖 [−𝜔
3
+ 𝑏

2
𝜔 + 𝑏

4
𝜔
2 sin (𝜔𝜏)

+𝑏
5
𝜔 cos (𝜔𝜏) − 𝑏

6
sin (𝜔𝜏) ] = 0.

(25)

Hence, we have that

−𝑏
1
𝜔
2
+ 𝑏

3
= 𝑏

4
𝜔
2 cos (𝜔𝜏) − 𝑏

5
𝜔 sin (𝜔𝜏) − 𝑏

6
cos (𝜔𝜏)

= (𝑏
4
𝜔
2
− 𝑏

6
) cos (𝜔𝜏) − 𝑏

5
𝜔 sin (𝜔𝜏) ,
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𝜔
3
− 𝑏

2
𝜔 = 𝑏

4
𝜔
2 sin (𝜔𝜏) + 𝑏

5
𝜔 cos (𝜔𝜏) − 𝑏

6
sin (𝜔𝜏)

= (𝑏
4
𝜔
2
− 𝑏

6
) sin𝜔𝜏 + 𝑏

5
𝜔 cos (𝜔𝜏) .

(26)

From (26), it follows that

cos (𝜔𝜏) =
𝑏
5
𝜔 (𝜔

3
− 𝑏

2
𝜔) + (𝑏

3
− 𝑏

1
𝜔
2
) (𝑏

4
𝜔
2
− 𝑏

6
)

(𝑏
4
𝜔
2
− 𝑏

6
)
2
+ (𝑏

5
𝜔)

2
,

(27a)

sin (𝜔𝜏) =

(𝜔
3
− 𝑏

2
𝜔) (𝑏

4
𝜔
2
− 𝑏

6
) − 𝑏

5
𝜔 (𝑏

3
− 𝑏

1
𝜔
2
)

(𝑏
4
𝜔
2
− 𝑏

6
)
2
+ (𝑏

5
𝜔)

2
.

(27b)

By the definitions of 𝑃(𝜆),𝑄(𝜆) is as in (20), and applying the
property (1), (27a) and (27b) can be written as

sin (𝜔𝜏) = Im 𝑃 (𝑖𝜔)

𝑄 (𝑖𝜔)

, cos (𝜔𝜏) = −Re 𝑃 (𝑖𝜔)

𝑄 (𝑖𝜔)

, (28)

which yields |𝑃(𝑖𝜔)|2 = |𝑄(𝑖𝜔)|
2.

Assume that𝐷 ∈ 𝑅
0
+ is the set where 𝜔𝜏 is a positive root

of

𝐹 (𝜔) = |𝑃 (𝑖𝜔)|
2
− |𝑄 (𝑖𝜔)|

2
. (29)

From

|𝑃 (𝑖𝜔)|
2

=

󵄨
󵄨
󵄨
󵄨
󵄨
−𝑖𝜔

3
− 𝑏

1
𝜔
2
+ 𝑏

2
𝜔𝑖 + 𝑏

3

󵄨
󵄨
󵄨
󵄨
󵄨

2

=

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑏

3
− 𝑏

1
𝜔
2
) + (𝑏

2
𝜔 − 𝜔

3
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

= 𝜔
6
+ (𝑏

2

1
− 2𝑏

2
) 𝜔

4
+ (𝑏

2

2
− 2𝑏

1
𝑏
3
) 𝜔

2
+ 𝑏

2

3
,

|𝑄 (𝑖𝜔)|
2

=

󵄨
󵄨
󵄨
󵄨
󵄨
(−𝑏

4
𝜔
2
+ 𝑏

5
𝜔𝑖 + 𝑏

6
) (cos (𝜔𝜏) − sin (𝜔𝜏))

󵄨
󵄨
󵄨
󵄨
󵄨

2

= (𝑏
6
− 𝑏

4
𝜔
2
)

2

+ (𝑏
5
𝜔)

2

= 𝑏
2

4
𝜔
4
+ (𝑏

2

5
− 2𝑏

4
𝑏
6
) 𝜔

2
+ 𝑏

2

6
,

(30)

we have 𝐹(𝜔) = 𝜔
6
+𝑎

1
𝜔
4
+𝑎

2
𝜔
2
+𝑎

3
, where 𝑎

1
= 𝑏

2

1
−2𝑏

2
−𝑏

2

4
,

𝑎
2
= 𝑏

2

2
− 2𝑏

1
𝑏
3
− 𝑏

2

5
+ 2𝑏

4
𝑏
6
, 𝑎

3
= 𝑏

2

3
− 𝑏

2

6
, and, for 𝜏 ∈ 𝐷, 𝜔𝜏

is not defined. Then, for all 𝜏 in𝐷, 𝜔𝜏 satisfied 𝐹(𝜔) = 0.
Let 𝜔2

= ℎ; then we have that

𝐹 (ℎ) = ℎ
3
+ 𝑎

1
ℎ
2
+ 𝑎

2
ℎ + 𝑎

3
= 0. (31)

Assume that 𝐹(𝜔) has only one positive real root; we
denote by ℎ

+ this positive real root. Thus, (29) has only one
positive real root 𝜔 = √ℎ

+. And the critical values of 𝜏

and 𝜔(𝜏) are impossible to solve explicitly, so we will use
the procedure described in Beretta and Kuang [11] and Song
et al. [12]. According to this procedure, we define 𝜃(𝜏) ∈

[0, 2𝜋) such that sin 𝜃(𝜏) and cos 𝜃(𝜏) are given by the right-
hand sides of (27a) and (27b), respectively, with 𝜃(𝜏) given by
(19).

And the relation between the argument 𝜃 and𝜔(𝜏) in (28)
for 𝜏 > 0must be

𝜔 (𝜏) = 𝜃 + 2𝑛𝜋, 𝑛 = 0, 1, 2, . . . . (32)

Hence we can define the maps 𝜏
𝑛
: 𝐷 → 𝑅

+0
given by

𝜏
𝑛
=

𝜃 (𝜏) + 2𝑛𝜋

𝜔 (𝜏)

, 𝜏
𝑛
> 0, 𝑛 = 1, 2, . . . , (33)

where a positive root𝜔(𝜏) of (31) exists in𝐷. Let us introduce
the functions

𝑆
𝑛 (𝜏) : 𝐷 󳨀→ 𝑅, 𝑆

𝑛 (𝜏) = 𝜏 −

𝜃 (𝜏) + 2𝑛𝜋

𝜔 (𝜏)

,

𝑛 = 0, 1, 2, . . . ,

(34)

which are continuous and differentiable in 𝜏. Thus, we give
the following theoremwhich is due to Beretta and Kuang [11].

Theorem 5. Assume that𝜔(𝜏) is a positive root of (19) defined
for 𝜏 ∈ 𝐷, 𝐷 ⊆ 𝑅

+0
, and, at some 𝜏∗ ∈ 𝐷, 𝑆

𝑛
(𝜏

∗
) = 0 for some

𝑛 ∈ 𝑁
0
. Then a pair of simple conjugate pure imaginary roots

𝜆 = ±𝑖𝜔 exists at 𝜏 = 𝜏
∗ which crosses the imaginary axis from

left to right if

𝛿 (𝜏
∗
) = sign {𝐹

󸀠

𝜔
(𝜔𝜏

∗
, 𝜏

∗
)} sign{

d𝑆
𝑛
(𝜏)

d𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏∗

} . (35)

Applying Theorems 2 and 3 and the Hopf bifurcation
theorem for functional differential equation [13], we can
conjecture the existence of a Hopf bifurcation as stated in
Theorem 6.

Theorem6 (a conjecture). For system (2), there exists 𝜏∗ ∈ 𝐷,
such that the equilibrium 𝐸

∗ is asymptotically stable for 0 ≤

𝜏 < 𝜏
∗, and it becomes unstable for 𝜏 staying in some tight

neighborhood of 𝜏∗, with a Hopf bifurcation occurring when
𝜏 = 𝜏

∗.

5. Stability and Direction of Hopf Bifurcations

In this section, we will study the direction of the Hopf
bifurcation and stability of bifurcating periodic solutions by
using the normal theory and center manifold theorem due to
Hassard et al. [14]. Letting 𝑢

1
= 𝑆−𝑆

∗, 𝑢
2
= 𝐼−𝐼

∗, 𝑢
3
= 𝑍−𝑍

∗,
𝑢̃
𝑖
(𝑡) = 𝑢

𝑖
(𝜏𝑡) (𝑖 = 1, 2, 3), 𝜏 = ] + 𝜏

∗, and dropping the bars
for simplification of notations, system (8) becomes functional
differential equations in 𝐶 = 𝐶([−1, 0],R3

) as

𝑢
󸀠

1
(𝑡) = (𝜏

∗
+ ])

× [𝑟 (1 − 2𝑆
∗
) 𝑢

1
(𝑡) − 𝐺 (𝐼

∗
) 𝑢

1
(𝑡)

−𝑆
∗
𝐺
󸀠
(𝐼

∗
) 𝑢

2
(𝑡 − 1) − 𝐺

󸀠
(𝐼

∗
) 𝑢

1
(𝑡) 𝑢

2
(𝑡 − 1)] ,

𝑢
󸀠

2
(𝑡) = (𝜏

∗
+ ])

× [𝐺
󸀠
(𝐼

∗
) 𝑢

3
(𝑡) 𝑢

2
(𝑡 − 1) + 𝐺 (𝐼

∗
) 𝑢

3
(𝑡)
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Figure 1: (a)–(d) showed that the equilibrium 𝐸
1
of system (8) with initial condition 𝑆(0) = 3; 𝐼(0) = 1;𝑍(0) = 1; 𝑅

0
= 0.3745 < 1; and 𝑇 = 4

is locally asymptotically stable.

+ 𝑍
∗
𝐺
󸀠
(𝐼

∗
) 𝑢

2 (𝑡 − 1) − (𝜇
1
+ 𝛾 + 𝜀) 𝑢

2 (𝑡)

−

𝑏𝜔

(𝜔 + 𝐼
∗
)
2
𝑢
2
(𝑡) +

𝑏𝜔

(𝜔 + 𝐼
∗
)
3
𝑢
2

2
(𝑡) − ⋅ ⋅ ⋅ ] ,

𝑢
󸀠

3
(𝑡) =

1

𝑇

(𝜏
∗
+ ]) (𝑢

1 (𝑡) − 𝑢
3 (𝑡)) .

(36)

Then system (36) is equivalent to

𝑢
󸀠
(𝑡) = 𝐿]𝑢 (𝑡) + 𝑓 (], 𝑢 (𝑡)) , (37)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡), 𝑢

3
(𝑡))

𝑇
∈ R3 and 𝐿] : 𝐶 → R3,

𝑓 : R × 𝐶 → R3 are given, respectively, by

𝐿] (𝜙)

= (𝜏
∗
+ ])

×(

𝑟 (1 − 2𝑆
∗
) − 𝐺 (𝐼

∗
) 0 0

0 − (𝜇
1
+ 𝛾 + 𝜀) −

𝑏𝜔

(𝜔 + 𝐼
∗
)
2

𝐺 (𝐼
∗
)

1

𝑇

0 −

1

𝑇

)
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Figure 2: (a)–(d) showed that equilibrium 𝐸
∗ of system (8) with initial condition 𝑆(0) = 2; 𝐼(0) = 2; 𝑍(0) = 4.5; 𝑅

0
= 3.0303 > 1; and

𝜏 = 1.56 < 𝜏
∗ is locally asymptotically stable; that is, the trajectory converges to the positive equilibrium at 𝜏 = 1.56.

×(

𝜙
1 (0)

𝜙
2
(0)

𝜙
3
(0)

) + (𝜏
∗
+ ])(

0 −𝑆
∗
𝐺
󸀠
(𝐼

∗
) 0

0 𝑆
∗
𝐺
󸀠
(𝐼

∗
) 0

0 0 0

)(

𝜙
1 (−1)

𝜙
2
(−1)

𝜙
3
(−1)

) ,

(38)

𝑓 (], 𝜙)

= (𝜏
∗
+ ])

×

{
{
{

{
{
{

{

(

−𝐺
󸀠
(𝐼

∗
) 𝜙

1
(0) 𝜙

2
(−1)

𝐺
󸀠
(𝐼

∗
) 𝜙

3
(0) 𝜙

2
(−1)

0

) + (

0

𝑏𝜔

(𝜔 + 𝐼
∗
)
3
𝜙
2

2
(0)

0

) + ⋅ ⋅ ⋅

}
}
}

}
}
}

}

.

(39)

By the Riesz representation theorem, there exists a function
𝜂(𝜃, ]) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿] (𝜙) = ∫

0

−1

𝑑𝜂 (𝜃, ]) 𝜙 (𝜃) , for 𝜃 ∈ 𝐶. (40)

In fact, we can choose

𝜂 (𝜃, ])

= (𝜏
∗
+ ])

×(

𝑟 (1 − 2𝑆
∗
) − 𝐺(𝐼

∗
) 0 0

0 − (𝜇1 + 𝛾 + 𝜀) −
𝑏𝜔

(𝜔 + 𝐼
∗
)
2

𝐺(𝐼
∗
)

1

𝑇
0 −

1

𝑇

)

×𝛿 (𝜃) − (𝜏
∗
+ ])(

0 −𝑆
∗
𝐺
󸀠
(𝐼
∗
) 0

0 𝑆
∗
𝐺
󸀠
(𝐼
∗
) 0

0 0 0

)𝛿 (𝜃 + 1) ,

(41)

where 𝛿 denote the Dirac delta function. For 𝜙 ∈ 𝐶([−1, 0],

R3
), define
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𝐴 (]) 𝜙 =

{
{
{
{

{
{
{
{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝜃, ]) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (]) (𝜙) = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (], 𝜙) , 𝜃 = 0.

(42)

Then system (37) is equivalent to

𝑢̇ (𝑡) = 𝐴 (]) 𝑢
𝑡
+ 𝑅 (]) 𝑢

𝑡
, (43)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜓 ∈ 𝐶([0, 1], (R3
)
∗
), define

𝐴
∗
𝜓 (𝑠) =

{
{

{
{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝜓 (−𝑡) 𝑑𝜂 (𝑡, 0) , 𝑠 = 0,

(44)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩

= 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜎=0

𝜓 (𝜎 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜎) 𝑑𝜎,

(45)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then 𝐴(0) and 𝐴
∗ are adjoint

operators. By the discussion in (20), we know that ±𝑖𝜔∗
𝜏
∗

are eigenvalues of 𝐴(0). Hence, they are also eigenvalues of
𝐴
∗. We first need to compute the eigenvectors of 𝐴(0) and

𝐴
∗ corresponding to 𝑖𝜔

∗
𝜏
∗ and −𝑖𝜔

∗
𝜏
∗, respectively.

Suppose that 𝑞(𝜃) = (1, 𝑞
1
, 𝑞

2
)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗
𝜃 is the eigenvectors

of 𝐴(0) corresponding to 𝑖𝜔
∗
𝜏
∗; then 𝐴(0)𝑞(𝜃) = 𝑖𝜔

∗
𝜏
∗
𝑞(𝜃).

Then, from the definition of 𝐴(0) and (38), (40), (41), and
𝑞(−1) = 𝑞(0)𝑒

−𝑖𝜔
∗
𝜏
∗

, we have

(

𝑟(1 − 2𝑆
∗
) − 𝐺(𝐼

∗
) −𝑆

∗
𝐺
󸀠
(𝐼
∗
) 0

0 𝑆
∗
𝐺
󸀠
(𝐼
∗
) − (𝜇

1
+ 𝛾 + 𝜀) −

𝑏𝜔

(𝜔 + 𝐼
∗
)
2

𝐺(𝐼
∗
)

1

𝑇
0 −

1

𝑇

)

×(

1

𝑞
1
(0)

𝑞
2
(0)

) = 𝑖𝜔
∗
(

1

𝑞
1
(0)

𝑞
2
(0)

) .

(46)

We obtain

𝑞
1
=

𝑟 − 2𝑟𝑆
∗
− 𝐺 (𝐼

∗
) − 𝑖𝜔

∗

𝑆
∗
𝐺
󸀠
(𝐼
∗
)

, 𝑞
2
=

1

1 + 𝑇𝑖𝜔
∗
. (47)

Similarly, we can obtain the eigenvector 𝑞
∗
(𝑠) =

𝐷(1, 𝑞
∗

1
, 𝑞

∗

2
)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗

of 𝐴∗ corresponding to −𝑖𝜔
∗
𝜏
∗, where

𝑞
∗

1
=

𝑆
∗
𝐺
󸀠
(𝐼

∗
)

𝑆
∗
𝐺
󸀠
(𝐼
∗
) − (𝜇

1
+ 𝛾 + 𝜀) − 𝑏𝜔/(𝜔 + 𝐼

∗
)
2
+ 𝑖𝜔

∗
,

𝑞
∗

2
= 𝑇 [−𝑖𝜔 − 𝑟 (1 − 2𝑆

∗
) + 𝐺 (𝐼

∗
)] .

(48)

In order to assure that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), ̄𝑞(𝜃)⟩ = 0, we
need to determine the value of𝐷. By (45), we have

⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐷 (1, 𝑞
∗

1
, 𝑞

∗

2
) (1, 𝑞

1
, 𝑞

2
)
𝑇

− ∫

0

−1

∫

𝜃

𝜎=0

𝐷(1, 𝑞
∗

1
, 𝑞

∗

2
) 𝑒

−𝑖𝜔
∗
𝜏
∗
(𝜎−𝜃)

𝑑𝜂

× (𝜃) (1, 𝑞
1
, 𝑞

2
)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗
𝜎
𝑑𝜎

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞

2
𝑞
∗

2

−∫

0

−1

(1, 𝑞
∗

1
, 𝑞

∗

2
) 𝜃𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
𝑑𝜂 (𝜃) (1, 𝑞

1
, 𝑞

2
)
𝑇
}

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞

2
𝑞
∗

2
+ 𝜏

∗
𝑞
1
𝑆
∗
𝐺
󸀠
(𝐼

∗
) (−1 + 𝑞

∗

1
) 𝑒

−𝑖𝜔
∗
𝜏
∗

} .

(49)

Therefore, we can choose𝐷 as

𝐷 =

1

1 + 𝑞
1
𝑞
∗

1
+ 𝑞

2
𝑞
∗

2
+ 𝜏

∗
𝑞
1
𝑆
∗
𝐺
󸀠
(𝐼
∗
) (−1 + 𝑞

∗

1
) 𝑒

−𝑖𝜔
∗
𝜏
∗
.

(50)

We use the way of [14] and similarly way of [3]; we obtain that
the coefficients are

𝑔
20

= 2𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺

󸀠
(𝐼

∗
) 𝑞

1
+ 2𝜏

∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼
∗
)
3
𝑞
2

1
,

𝑔
11

= 2𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺

󸀠
(𝐼

∗
)Re {𝑞

1
}

+ 2𝜏
∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼
∗
)
3

󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨

2
;

𝑔
02

= 2𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺

󸀠
(𝐼

∗
) 𝑞

1
+ 2𝜏

∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼
∗
)
3
𝑞
2

1
;

𝑔
21

= 𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺

󸀠
(𝐼

∗
)

+ [𝑊
(1)

20
(0) 𝑞

1
+ 2𝑞

1
𝑊

(1)

11
(0) + 𝑊

(2)

20
(0) + 2𝑊

(2)

11
(0)]

+ 2𝜏
∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼
∗
)
3
[𝑞

1
𝑊

(2)

20
(0) + 2𝑞

1
𝑊

(2)

11
(0)] ,

(51)

where

𝑊
20

(𝜃) =

𝑖𝑔
20

𝜔
∗
𝜏
∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃

+

𝑖𝑔
02

3𝜔
∗
𝜏
∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ [𝑊
20

(0) +

𝑔
20

𝑖𝜔
∗
𝜏
∗
𝑞 (0) +

𝑔
02

3𝑖𝜔
∗
𝜏
∗
𝑞 (0)] 𝑒

2𝑖𝜔
∗
𝜏
∗
𝜃
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(b) Time series of 𝐼(𝑡) of the system

2000 4000 6000 8000 10000 12000 14000

0

1

2

3

4

5

t

Z
(t
)

(c) Time series of 𝑍(𝑡) of the system

0.5
1

1.5
2

2.5
3

10
20

30
40

50
60

0
5
10
15
20
25
30

S(
t)I(t)

Z
(t
)

(d)

Figure 3: (a)–(d) showed that equilibrium 𝐸
∗ of system (8) with initial condition 𝑆(0) = 2; 𝐼(0) = 2; 𝑍(0) = 4.5; 𝑅

0
= 3.0303 > 1; and

𝜏 = 2.56 > 𝜏
∗ is unstable, that is, a periodic behavior at 𝜏 = 2.56.

≜

𝑖𝑔
20

𝜔
∗
𝜏
∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
+

𝑖𝑔
02

3𝜔
∗
𝜏
∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
∗
𝜏
∗
𝜃
,

𝑊
11

(𝜃) =

𝑖𝑔
11

𝜔
∗
𝜏
∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃
+ 𝐸

2
.

(52)

Besides, 𝐸
1
, 𝐸

2
are satisfied with the following equation:

(

2𝑖𝜔
∗
− 𝑟 (1 − 2𝑆

∗
) + 𝐺 (𝐼

∗
) 𝑆

∗
𝐺
󸀠
(𝐼

∗
) 0

0 2𝑖𝜔
∗
− 𝑆

∗
𝐺
󸀠
(𝐼

∗
) + (𝜇

1
+ 𝛾 + 𝜀) +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2

−𝐺 (𝐼
∗
)

−

1

𝑇

0 2𝑖𝜔
∗
+

1

𝑇

)𝐸
1

= 2𝜏
∗
𝐺
󸀠
(𝐼

∗
) 𝑞

1
(−1, 1, 0)

𝑇
+ 2𝜏

∗ 𝑏𝜔

(𝜔 + 𝐼
∗
)
3
𝑞
2

1
(0, 1, 0)

𝑇
,
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(

−𝑟 (1 − 2𝑆
∗
) + 𝐺 (𝐼

∗
) 𝑆

∗
𝐺
󸀠
(𝐼

∗
) 0

0 −𝑆
∗
𝐺
󸀠
(𝐼

∗
) + (𝜇

1
+ 𝛾 + 𝜀) +

𝑏𝜔

(𝜔 + 𝐼
∗
)
2

−𝐺 (𝐼
∗
)

−

1

𝑇

0

1

𝑇

)𝐸
2

= 2𝜏
∗
𝐺
󸀠
(𝐼

∗
) 𝑞

1
(−1, 1, 0)

𝑇
+ 2𝜏

∗ 𝑏𝜔

(𝜔 + 𝐼
∗
)
3
𝑞
2

1
(0, 1, 0)

𝑇
.

(53)

Thus, we can determine 𝑊
20
(𝜃) and 𝑊

11
(𝜃) from (52).

Furthermore, we can compute 𝑔
21

by (51). Thus we can
compute the following values:

𝑐
1
(0) =

𝑖

2𝜔
∗
𝜏
∗
(𝑔

20
𝑔
11

− 2
󵄨
󵄨
󵄨
󵄨
𝑔
11

󵄨
󵄨
󵄨
󵄨

2
−

󵄨
󵄨
󵄨
󵄨
𝑔
02

󵄨
󵄨
󵄨
󵄨

3

) +

𝑔
21

2

,

]
2
= −

Re {𝑐
1
(0)}

Re {𝑑𝜆 (𝜏
∗
) /𝑑𝜏}

,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Re {𝑐
1
(0)} + ]

2
Re {𝑑𝜆 (𝜏

∗
) /𝑑𝜏}

𝜔
∗
𝜏
∗

.

(54)

By the result of Hassard et al. [14], we have the following.

Theorem 7. In (54), the following results hold:

(i) the sign of ]
2
determines the directions of the Hopf

bifurcation: if ]
2

> 0 (]
2

< 0), then the Hopf bifur-
cation is supercritical (subcritical) and the bifurcating
periodic solutions exist for 𝜏 > 𝜏

∗
(𝜏 < 𝜏

∗
);

(ii) the sign of 𝛽
2
determines the stability of the bifurcating

periodic solutions: the bifurcating periodic solutions are
stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0);

(iii) the sign of 𝑇
2
determines the period of the bifurcating

periodic solutions: the period is increasing (decreasing)
if 𝛽

2
> 0 (𝛽

2
< 0).

6. Numerical Simulations

To demonstrate the theoretical results obtained from this
paper, letting𝐺(𝐼(𝑡−𝜏)) = 𝐼(𝑡−𝜏)/(1+𝛼𝐼(𝑡−𝜏)), we will give
some numerical simulations. We consider the hypothetical
set of parameter values as follows.

(1) Consider 𝜇
1
= 0.1; 𝑟 = 3; 𝑏 = 1; 𝛾 = 0.05; 𝑇 = 4;

𝜀 = 0.02; 𝛼 = 0.2; 𝜔 = 0.4. By directly computing, we
obtain 𝑅

0
= 0.1786 < 1. According to Theorem 4, we

know that the disease-free equilibriumof system (8) is
locally asymptotically stable for this case (see Figures
1(a)–1(d)).

(2) Consider 𝜇
1
= 0.01; 𝑟 = 3; 𝑏 = 0.1; 𝛾 = 0.05; 𝑇 = 10;

𝜀 = 0.02; 𝛼 = 0.2; 𝜔 = 0.4; 𝜏 = 1.56. By directly
computing, we obtain 𝑅

0
= 3.0303 > 1. According to

Theorem 4,we know that the disease-free equilibrium

of system (8) is locally asymptotically stable for this
case (see Figures 2(a)–2(d)).

(3) Consider 𝜇
1

= 0.01; 𝑟 = 3; 𝑏 = 0.1; 𝛾 = 0.05;
𝑇 = 10; 𝜀 = 0.02; 𝛼 = 0.2; 𝜔 = 0.4, 𝜏 = 2.56.
By directly computing, we obtain 𝑅

0
= 3.0303 > 1.

According to Theorem 6, we know that the disease-
free equilibrium of system (8) is unstable for this case
(see Figures 3(a)–3(d)).

7. Conclusion

In this paper, we formulate and analyze a new delayed epi-
demic model with information variable and limited medical
resources, the conditions for Hopf bifurcation to occur are
derived. By analyzing the model, we have found the existence
of disease-free equilibria𝐸

0
and𝐸

1
andhave a unique positive

equilibrium 𝐸
∗. The basic reproduction numberR

0
changes

the stability of the disease-free equilibrium. When R
0

<

1, we discuss the stability of the disease-free equilibrium
by analyzing the corresponding characteristic equations and
constructing a Lyapunov functional, respectively. The con-
clusion reveals that the disease dies out and when R

0
> 1,

we also get the sufficient criteria of stability switch at the
positive equilibrium. Using the time delay (i.e., incubation
time) as a bifurcation parameter, the local stability of the
endemic equilibrium is investigated, and the conditions for
Hopf bifurcation to occur are derived. Using the normal
form theory and the center manifold theorem introduced by
Hassard et al., we have studied the direction and stability
of the bifurcating periodic solutions. Our theoretical results
show that the time delay 𝜏 must be responsible for the
observed regular cycles of disease incidence.

Lastly, a numerical simulation provided that whenR
0
is

less than 1, the disease-free equilibrium is stable andwhileR
0

ismore than 1, the disease-free equilibrium is unstable; that is,
the endemic equilibrium exists (see Figure 1). Further, for 𝜏 >

0, there will exist 𝜏∗ ∈ 𝐼, such that the endemic equilibrium
is asymptotically stable for 0 < 𝜏 < 𝜏

∗ (see Figure 2) and
becomes unstable for 𝜏 staying in some right neighborhood of
𝜏
∗, with a Hopf bifurcation occurring when 𝜏 = 𝜏

∗. If 𝜏 > 𝜏
∗,

the endemic equilibrium is unstable (see Figure 3).
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