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We study an abstract elliptic Cauchy problem associated with an unbounded self-adjoint positive operator which has a continuous
spectrum. It is well-known that such a problem is severely ill-posed; that is, the solution does not depend continuously on the
Cauchy data. We propose two spectral regularization methods to construct an approximate stable solution to our original problem.
Finally, some other convergence results including some explicit convergence rates are also established under a priori bound
assumptions on the exact solution.

1. Introduction

Throughout this paper 𝐻 denotes a complex Hilbert space
endowedwith the inner product (⋅, ⋅), and the norm ‖⋅‖,L(𝐻)

stands for the Banach algebra of bounded linear operators on
𝐻.

Let𝐴 be a linear unbounded operator with dense domain
𝐷(𝐴). Assume that 𝐴 is self-adjoint, positive definite in 𝐻,
which has a continuous spectrum 𝜎(𝐴) = [𝛾, +∞[, 𝛾 =

inf(𝜎(𝐴)) > 0.
We consider the elliptic Cauchy problem (ECP) of finding

𝑢 : [0, 𝐿] → 𝐻 such that

𝑢𝑦𝑦 (𝑦) = 𝐴𝑢 (𝑦) , 0 < 𝑦 < 𝐿,

𝑢 (0) = 𝑓,

𝑢𝑦 (0) = 0,

(1)

where 𝑓 is some prescribed data in the Hilbert space𝐻.
This problem is an abstract version of Cauchy problem,

which generalizes Cauchy problem for second-order elliptic
partial differential equations in a cylindrical domain; for
example, we mention the following problem.

Example 1. An example of (1) is the Cauchy problem for the
modified Helmholtz equation in the infinite strip R × (0, 1)

[1]:

𝑢𝑦𝑦 (𝑥, 𝑦) + 𝑢𝑥𝑥 (𝑥, 𝑦) − 𝛾𝑢 (𝑥, 𝑦) = 0,

𝑥 ∈ R, 𝑦 ∈ (0, 𝐿) ,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑢𝑦 (𝑥, 0) = 0, 𝑥 ∈ R,

(2)

where the operator 𝐴𝛾 is given by

𝐴𝛾 = −
𝜕

2

𝜕𝑥2
+ 𝛾𝐼,

𝐷 (𝐴𝛾) = 𝐻
2
(R) ⊂ 𝐻 = 𝐿

2
(R) .

(3)

It is well known that this operator is self-adjoint with
continuous spectrum

𝜎 (𝐴𝛾) = 𝜎 (𝐴0) + 𝛾 = [0, +∞[ + 𝛾 = [𝛾, +∞[ . (4)

We note here that the discrete eigenfunctions expansion
method cannot be used, but we can use the Fourier diago-
nalization method to deal with this kind of problems.
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Such problem arises in many practical situations, non-
destructive testing techniques [2], geophysics [3], cardiology
[4], and other applications. There are many various mono-
graphs about the historical development of this topic, for
more details, we refer the reader to [5, 6]. Recently there has
been an excellent topic review [7] of this problem.

Because problem (1) is severely ill-posed; that is, a small
perturbation in the given Cauchy data may result in a very
large error on the solution. In order to overcome this insta-
bility character, the regularization methods are required.

Some regularizationmethods for the Cauchy problem for
elliptic equations have been proposed by many authors. For
instance: Tikhonov regularization method [8], the quasi-
reversibility method [9], the quasi-boundary-value method
[10–13], Kozlov-Maz’ya iteration method [14], and the molli-
fication method [15].

This work is mainly devoted to theoretical aspects of the
spectral regularizationmethods to problem (1) in the abstract
setting, by considering more general self-adjoint operators
when 𝐴 is positive and induces the elliptic case, that is, has
the following properties: for any 𝜆 ∈ (−∞, 0], the resolvent
𝑅(𝜆; 𝐴) = (𝐴 − 𝜆𝐼)

−1 exists and satisfies the estimates

∃𝑀 > 0 : ∀𝜆 ≥ 0,
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝜆𝐼)

−1󵄩󵄩󵄩󵄩󵄩
≤ 𝑀(1 + 𝜆)

−1
. (5)

In the case when 𝐴 is a linear positive self-adjoint oper-
ator with compact inverse, problem (1) has been treated by
a different method and there is a large literature in this
direction. However, in the case where 𝐴 has a continuous
spectrum the literatures are quite scarce.

In the present paper we shall use two spectral regulariza-
tionmethods to construct a stable solution to our original ill-
posed problem.

2. Preliminaries and Basic Results

In this section we present the notation and the functional
setting which will be used in this paper and prepare some
material which will be used in our analysis.

2.1. SpectralTheoremandProperties. By the spectral theorem,
for each positive self-adjoint operator 𝐴, there is a unique
right continuous family {𝐸𝜆}𝜆∈[0,∞[ : [0,∞[→ L(𝐻) of
orthogonal projection operators such that𝐴 = ∫

∞

0
𝜆𝑑𝐸𝜆 with

𝐷 (𝐴) = {V ∈ 𝐻 : ∫

∞

0

𝜆
2
𝑑 (𝐸𝜆V, V) < ∞} . (6)

In our case, we have𝐴 = ∫
∞

𝛾
𝜆𝑑𝐸𝜆 because𝐴 ≥ 𝛾𝐼, 𝛾 > 0.

Theorem 2 (see [16, Theorem 6, XII.2.5, pages 1196–1198]).
Let {𝐸𝜆, 𝜆 ≥ 𝛾 > 0} be the spectral resolution of the identity
associate to 𝐴 and let 𝜙 be a complex Borel function defined
𝐸-almost everywhere on the real axis. Then 𝜙(𝐴) is a closed
operator with dense domain. Moreover

(i) 𝐷(𝜙(𝐴)) := {V ∈ 𝐻 : ∫
∞

𝛾
|𝜙(𝜆)|

2
𝑑(𝐸𝜆V, V) < ∞},

(ii) (𝜙(𝐴)ℎ, 𝑦) = ∫∞

𝛾
𝜙(𝜆)𝑑(𝐸𝜆ℎ, 𝑦), ℎ ∈ 𝐷(𝜙(𝐴)), 𝑦 ∈ 𝐻,

(iii) ‖𝜙(𝐴)ℎ‖2 = ∫∞

𝛾
|𝜙(𝜆)|

2
𝑑(𝐸𝜆ℎ, ℎ), ℎ ∈ 𝐷(𝜙(𝐴)),

(iv) 𝜙(𝐴)∗ = 𝜙(𝐴). In particular, if 𝜙 is real Borel function,
then 𝜙(𝐴) is self-adjoint,

(v) the operator 𝜙(𝐴) is bounded if and only if 𝜙(𝜆) is
bounded on 𝜎(𝐴) = [𝛾, +∞[. In this case, ‖𝜙(𝐴)‖ =

sup
𝜆∈[𝛾,+∞[

|𝜙(𝜆)|.

We denote by 𝑆(𝑦) = 𝑒
−𝑦√𝐴

= ∫
∞

𝛾
𝑒
−𝑦√𝜆

𝑑𝐸𝜆 ∈ L(𝐻),
𝑦 ≥ 0, the 𝐶0-semigroup generated by −√𝐴. Some basic
properties of 𝑆(𝑦) are listed in the following theorem.

Theorem 3 (see [17, chapter 2, Theorem 6.13, page 74]). For
this family of operators one has:

(1) ‖𝑆(𝑦)‖ ≤ 1, ∀𝑦 ≥ 0;
(2) the function 𝑦 󳨃→ 𝑆(𝑦), 𝑦 > 0, is analytic;
(3) for every real 𝑟 ≥ 0 and 𝑦 > 0, the operator 𝑆(𝑦) ∈

L(𝐻,D(𝐴
𝑟/2
));

(4) for every integer 𝑘 ≥ 0 and 𝑦 > 0, ‖𝑆(𝑘)
(𝑦)‖ =

‖𝐴
𝑘/2
𝑆(𝑦)‖ ≤ 𝑐(𝑘)𝑦

−𝑘;
(5) for every 𝑥 ∈ D(𝐴

𝑟/2
), 𝑟 ≥ 0, one has 𝑆(𝑡)𝐴𝑟/2

𝑥 =

𝐴
𝑟/2
𝑆(𝑦)𝑥.

Theorem 4. For 𝑦 > 0, 𝑆(𝑦) is self-adjoint and one to one
operator with dense range (𝑆(𝑦) = 𝑆(𝑦)∗,R(𝑆(𝑦)) = 𝐻).

Proof. Let 𝜙𝑦 : [𝛾, +∞[→ R, 𝑠 󳨃→ 𝜙𝑦(𝑠) = 𝑒
−𝑦𝑠. Then by

virtue of (iv) of Theorem 2, we can write 𝑆(𝑦)∗ = 𝜙𝑦(𝐴) =

𝜙𝑦(𝐴) = 𝑒
−𝑦√𝐴

= 𝑆(𝑦).
Let ℎ ∈ 𝑁(𝑆(𝑦0)), 𝑦0 > 0, then 𝑆(𝑦0)ℎ = 0, which implies

that 𝑆(𝑦)𝑆(𝑦0)ℎ = 𝑆(𝑦 + 𝑦0)ℎ = 0, 𝑦 ≥ 0. Using analyticity,
we obtain that 𝑆(𝑦)ℎ = 0, 𝑦 ≥ 0. Strong continuity at 0 now
gives ℎ = 0. This shows that𝑁(𝑆(𝑦0)) = {0}.

Thanks to

𝑅 (𝑆 (𝑦0)) = 𝑁(𝑆 (𝑦0))
⊥
= {0}

⊥
= 𝐻, (7)

we conclude that 𝑅(𝑆(𝑦0)) is dense in𝐻.

Remark 5. For 𝑦 = 𝑝𝐿, 𝑝 ≥ 1, this Theorem ensures us that
𝑆(𝑝𝐿) is self-adjoint and one to one operator with dense range
𝑅(𝑆(𝑝𝐿)). Then we can define its inverse 𝑆(𝑝𝐿)−1

= 𝑒
𝑝𝐿√𝐴,

which is an unbounded self-adjoint strictly positive definite
operator in𝐻 with dense domain

𝐷(𝑆(𝑝𝐿)
−1
) = 𝑅 (𝑆 (𝑝𝐿))

= {ℎ ∈ 𝐻 :
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑝𝐿√𝐴

ℎ
󵄩󵄩󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

𝑒
2𝑝𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆ℎ

󵄩󵄩󵄩󵄩

2
< +∞} .

(8)

Definition 6 (Hilbert scales). Let 𝐵 be an unbounded self-
adjoint strictly positive definite operator in 𝐻. Following
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the definition in [18], one introduces theHilbert scale {G𝜃}𝜃≥0

according to definition

G0 = 𝐻, G𝜃 = 𝐷(𝐵
𝜃
) . (9)

Here G𝜃 is a Hilbert space with inner product (𝜉, 𝜁)𝜃 =

(𝐵
𝜃
𝜉, 𝐵

𝜃
𝜁) and norm ‖ 𝜉‖

2

𝜃
= (𝐵

𝜃
𝜉, 𝐵

𝜃
𝜉).

In our setting we take𝐵 = 𝑆(𝐿)−1
= 𝑒

𝐿√𝐴. In this case, one
has

G𝜃 = {ℎ ∈ 𝐻 : ‖ℎ‖
2

𝜃
=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝜃𝐿√𝐴

ℎ
󵄩󵄩󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

𝑒
2𝐿𝜃√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆ℎ

󵄩󵄩󵄩󵄩

2
< +∞} .

(10)

Following [15], one defines the following.

Definition 7 (mollification operator). For 𝛼 > 0 and 𝑝 ≥ 1,
one introduces the Yosida approximation of identity

𝑀𝛼 = (𝐼 + 𝛼𝑒
𝑝𝐿√𝐴

)

−1

= ∫

+∞

𝛾

(1 + 𝛼𝑒
𝑝𝐿√𝜆

)

−1

𝑑𝐸𝜆. (11)

Remark 8. The idea of themollificationmethod is very simple
and natural: if the data are given inexactly, then we try to
find a sequence of mollification operators which map the
improper data into well-posed classes of the problem (mollify
the improper data). Within these mollified data our problem
becomes well-posed.

Theorem 9. One has
(1) 𝑀𝛼 ∈ L(𝐻) and ‖𝑀𝛼‖ ≤ 1,
(2) for all ℎ ∈ 𝐻,𝑀𝛼ℎ ∈ G𝑝,
(3) for all ℎ ∈ 𝐻, lim𝛼→0‖𝑀𝛼ℎ − ℎ‖ = 0.

Proof. (1) ‖𝑀𝛼‖ = sup
𝜆≥𝛾

1/(1+𝛼𝑒
𝑝𝐿√𝜆

) = 1/(1+𝛼𝑒
𝑝𝐿√𝛾

) < 1.

(2) ‖𝑀𝛼ℎ‖
2

𝑝
= ∫

+∞

𝛾
(𝑒

𝑝𝐿√𝜆
/(1 + 𝛼𝑒

𝑝𝐿√𝜆
))

2

𝑑‖𝐸𝜆ℎ‖
2

≤

(1/𝛼)
2
‖ℎ‖

2
< ∞ ⇔𝑀𝛼ℎ ∈ G𝑝.

(3) Assume that ℎ ∈ G𝑝. Then

󵄩󵄩󵄩󵄩𝑀𝛼ℎ − ℎ
󵄩󵄩󵄩󵄩

2
= ∫

+∞

𝛾

(
1

1 + 𝛼𝑒𝑝𝐿√𝜆
− 1)

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆ℎ

󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

(
𝛼𝑒

𝑝𝐿√𝜆

1 + 𝛼𝑒𝑝𝐿√𝜆
)

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆ℎ

󵄩󵄩󵄩󵄩

2
≤ 𝛼

2
‖ℎ‖

2

𝑝
,

(12)

and thus, lim𝛼→0‖𝑀𝛼ℎ − ℎ‖ = 0.
Now for ℎ ∈ 𝐻, there exists ℎ𝜀 ∈ G𝑝 such that ‖ ℎ − ℎ𝜀 ‖≤

𝜀, 𝜀 > 0 (sinceG𝑝 is dense in𝐻 (see Remark 5)). We have
󵄩󵄩󵄩󵄩𝑀𝛼ℎ − ℎ

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑀𝛼ℎ −𝑀𝛼ℎ𝜀 +𝑀𝛼ℎ𝜀 − ℎ𝜀 + ℎ𝜀 − ℎ

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑀𝛼 (ℎ − ℎ𝜀)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑀𝛼ℎ𝜀 − ℎ𝜀

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ𝜀 − ℎ

󵄩󵄩󵄩󵄩

≤ 2𝜀 +
󵄩󵄩󵄩󵄩𝑀𝛼ℎ𝜀 − ℎ𝜀

󵄩󵄩󵄩󵄩 .

(13)

Thus, lim𝛼→0‖𝑀𝛼ℎ − ℎ‖ ≤ 2𝜀, ∀𝜀 > 0, and so lim𝛼→0‖𝑀𝛼ℎ −

ℎ‖ = 0.

Using the change of variables

𝑈(𝑦) =
1

2
(𝑢 (𝑦) − 𝐴

−1/2
𝑢

󸀠
(𝑦)) ,

𝑊 (𝑦) =
1

2
(𝑢 (𝑦) + 𝐴

−1/2
𝑢

󸀠
(𝑦)) .

(14)

Cauchy’s problem (1) reduces to the twoCauchy problems

𝑈
󸀠
(𝑦) = −𝐴

1/2
𝑈 (𝑦) , 0 < 𝑦 < 𝐿,

𝑈 (0) =
1

2
(𝑢 (0) − 𝐴

−1/2
𝑢

󸀠
(0)) =

1

2
𝑓,

(15)

𝑊
󸀠
(𝑦) = 𝐴

1/2
𝑊(𝑦) , 0 < 𝑦 < 𝐿,

𝑊 (0) =
1

2
(𝑢 (0) + 𝐴

−1/2
𝑢

󸀠
(0)) =

1

2
𝑓.

(16)

Thus, the solution of the original problem (1) can be written
in the form

𝑢 (𝑦) = 𝑈 (𝑦) +𝑊(𝑦) , 0 ≤ 𝑦 ≤ 𝐿. (17)

It is well known that the operator −𝐴1/2 generates a strongly
continuous analytic semigroup 𝑆−1/2(𝑦) = ∫

+∞

𝛾
𝑒
−𝑦√𝜆

𝑑𝐸𝜆. In
addition, the spectral radius of the semigroup ‖𝑆−1/2(𝑦)‖ < 1

for any 𝑦 > 0. Hence, it follows that the Cauchy problem (15)
is well-posed and its solution may be written in the form

𝑈 (𝑦) = 𝑆−1/2 (𝑦)𝑈 (0)

=
1

2
𝑒
−𝑦√𝐴

𝑓 =
1

2
∫

+∞

𝛾

𝑒
−𝑦√𝜆

𝑑𝐸𝜆𝑓.

(18)

As opposed to problem (15), Cauchy problem (15) (backward
parabolic equation) is not correctly posed, and its (unique)
formal solution is given by

𝑊(𝑦) = 𝑆+1/2 (𝑦)𝑊 (0)

=
1

2
𝑒
𝑦√𝐴

𝑓 =
1

2
∫

+∞

𝛾

𝑒
𝑦√𝜆

𝑑𝐸𝜆𝑓.

(19)

Remark 10 (see [19, page 375]). The uniqueness solvability of
problem (16) results from the logarithmic convexity of the
function 𝑦 󳨃→ ‖𝑊(𝑦)‖:

∀𝑦 ∈ [0, 𝐿] ,
󵄩󵄩󵄩󵄩𝑊 (𝑦)

󵄩󵄩󵄩󵄩 ≤ ‖𝑊 (0)‖
1−𝑦/𝐿

‖𝑊(𝐿)‖
𝑦/𝐿
. (20)

A useful characterization of the admissible set for which
problem (16) has a solution is as follows.

Lemma 11. Problem (16) has a solution 𝑊 ∈ 𝐶([0, 𝐿];𝐻) if
and only if 𝑓 ∈ G1, and its unique solution is represented by

𝑊(𝑦) = 𝑆+1/2 (𝑦)𝑊 (0) =
1

2
𝑒
𝑦√𝐴

𝑓 =
1

2
∫

+∞

𝛾

𝑒
𝑦√𝜆

𝑑𝐸𝜆𝑓.

(21)
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Proof. Suppose that problem (16) has a solution 𝑊 ∈

C([0, 𝐿];𝐻). Then

𝑊(𝑦) =
1

2
∫

+∞

𝛾

𝑒
𝑦√𝜆

𝑑𝐸𝜆𝑓. (22)

The function𝑊 ∈ C([0, 𝐿];𝐻) if and only if

sup
𝑦∈[0,𝐿]

󵄩󵄩󵄩󵄩𝑊(𝑦)
󵄩󵄩󵄩󵄩

2
=
1

4
∫

+∞

𝛾

𝑒
2𝑦√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
< ∞. (23)

Observing that the function 𝑦 󳨃→ ‖𝑊(𝐿)‖
2 is increasing, then

sup
𝑦∈[0,𝐿]

󵄩󵄩󵄩󵄩𝑊(𝑦)
󵄩󵄩󵄩󵄩

2
= ‖𝑊(𝐿)‖

2
=
1

4
∫

+∞

𝛾

𝑒
2𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
< ∞.

(24)

This last inequality is exactly equivalent to 𝑓 ∈ G1.

As a consequence, we have the following corollary.

Corollary 12. Problem (1) has a solution 𝑢 ∈ 𝐶([0, 𝐿];𝐻) if
and only if 𝑓 ∈ G1, and its unique solution is represented by

𝑢 (𝑦) = 𝑈 (𝑦) +𝑊(𝑦) =
1

2
∫

+∞

𝛾

(𝑒
𝑦√𝜆

+ 𝑒
−𝑦√𝜆

) 𝑑𝐸𝜆𝑓.

(25)

3. Regularization and Error Estimates

3.1. The Truncation Method. From (25) we can see that the
term 𝑒

𝑦√𝜆 is the cause of unstability. In order to overcome
the ill-posedness of problem (1), we modify the solution by
filtering the high frequencies using a suitable method and
instead consider (25) only for 𝜆 ≤ 𝛽(𝛿), where 𝛽(𝛿) is some
constant which satisfies lim𝛿→0𝛽(𝛿) = +∞.

According to spectral theory of self-adjoint operators
[20], for any bounded Borel set Δ 𝛽 = {𝛾 ≤ 𝑡 ≤ 𝛽} ⊆ 𝜎(𝐴) =

[𝛾, +∞[, we can define the orthogonal projection

1Δ𝛽
= ∫

+∞

𝛾

1Δ𝛽
(𝜆) 𝑑𝐸𝜆 = 𝐸𝛽,

∀ℎ ∈ 𝐻, ℎ𝛽 = 𝐸𝛽ℎ 󳨀→ ℎ, 𝛽 󳨀→ +∞.

(26)

To solve (1) in a stable way we approximate 𝑓 by its pro-
jection 𝑓𝛽, and instead of considering (1) with 𝑓 we take its
projected version

𝑢𝛽 (𝑦) = cosh (𝑦√𝐴)𝑓𝛽

=
1

2
∫

+∞

𝛾

(𝑒
𝑦√𝜆

+ 𝑒
−𝑦√𝜆

) 1[𝛾,𝛽]𝑑𝐸𝜆𝑓,

(27)

where 1[𝑎,𝑏] is the characteristic function of the interval [𝑎, 𝑏]
for 𝑎 < 𝑏. The quantity 𝛽 is referred to as a cut-off frequency.

Let 𝑓 (resp., 𝑓𝛿) be the exact (resp., the measured data) at
𝑦 = 0, such that ‖𝑓 − 𝑓𝛿‖ ≤ 𝛿.

The approximated solution V𝛿

𝛽
corresponding to the mea-

sured data 𝑓𝛿 is denoted by

V
𝛿

𝛽
(𝑦) =

1

2
∫

+∞

𝛾

(𝑒
𝑦√𝜆

+ 𝑒
−𝑦√𝜆

) 1[𝛾,𝛽]𝑑𝐸𝜆𝑓𝛿. (28)

For simplicity, we denote the solution of problem (1) by 𝑢(𝑦),
and the regularized solution associated to the data 𝑓𝛿 by
V𝛿

𝛽
(𝑦).
Our first main theorem is the following theorem.

Theorem 13. The solution defined in (27) depends continu-
ously inC([0, 𝐿];𝐻) on the data𝑓; that is, if 𝑢1

𝛽
and 𝑢2

𝛽
are two

regularized solutions corresponding to 𝑓1 and 𝑓2, respectively,
then one has

󵄩󵄩󵄩󵄩󵄩
𝑢

1

𝛽
(𝑦) − 𝑢

2

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑒

𝑦√𝛽 󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩 .
(29)

This inequality implies that the solution of the regularized
problem (27) depends continuously on the data 𝑓.

Now we compute the difference between the original
solution 𝑢 = 𝑢(𝑦; 𝑓) and the approximate solution V𝛿

𝛽
=

V𝛿

𝛽
(𝑦; 𝑓𝛿).

Theorem 14. Let 𝑢 ∈ 𝐶([0, 𝐿];𝐻) be a solution of problem (1)
with the exact data 𝑓 ∈ 𝐻; then the following estimate holds:

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩
≤

2

𝑒(𝐿−𝑦)√𝛽
‖𝑢 (𝐿)‖ . (30)

Proof. From relations (25) and (27) we have

𝑢 (𝑦) − 𝑢𝛽 (𝑡) = ∫

+∞

𝛽

cosh (𝑦√𝜆) 𝑑𝐸𝜆𝑓

= ∫

+∞

𝛾

cosh (𝑦√𝜆) 1[𝛽,+∞]𝑑𝐸𝜆𝑓,

(31)

then

𝑢 (𝑦) − 𝑢𝛽 (𝑦)

= ∫

+∞

𝛾

cosh (𝑦√𝜆)

cosh (𝐿√𝜆)
1[𝛽,+∞] cosh (𝐿√𝜆) 𝑑𝐸𝜆𝑓,

󵄩󵄩󵄩󵄩󵄩
𝑢(𝑦) − 𝑢𝛽(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

≤ ∫

+∞

𝛾

(

cosh (𝑦√𝜆)

cosh (𝐿√𝜆)
1[𝛽,+∞])

2

cosh (𝐿√𝜆)
2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
.

(32)

Using the inequality

(

cosh (𝑦√𝜆)

cosh (𝐿√𝜆)
1[𝛽,+∞])

2

≤
4

𝑒2(𝐿−𝑦)√𝛽
,

∫

+∞

𝛽

cosh2
(𝐿√𝜆) 𝑑

󵄩󵄩󵄩󵄩𝐸𝜆𝑓
󵄩󵄩󵄩󵄩

2
≤ ‖𝑢(𝐿)‖

2
,

(33)
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we derive

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩

2

≤
4

𝑒2(𝐿−𝑦)√𝛽
‖𝑢 (𝐿)‖

2
. (34)

Using (29), (30) and the triangle inequality, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢𝛽 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤
2

𝑒(𝐿−𝑦)√𝛽
‖𝑢 (𝐿)‖ + 𝑒

𝑦√𝛽
𝛿.

(35)

This completes the proof.

Remark 15. If we choose √𝛽 = (1/𝐿) log(𝑀/𝛿), where
‖𝑢(𝐿)‖ = 𝑀, then we have the error bound

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩
≤ 3𝑀

(𝐿−𝑦)/𝐿
𝛿

𝑦/𝐿
. (36)

From (36) we see that (28) is an approximation of the
exact solution 𝑢(𝑦). The approximation error depends con-
tinuously on the measurement error for fixed 0 < 𝑦 < 𝐿.
However, as 𝑦 → 𝐿, the accuracy of the regularized solution
becomes progressively lower. Consequently, we have not any
information about the continuous dependence of the solution
if 𝑦 is close to 𝐿.

In the theory of ill-posed Cauchy problems, we can often
obtain continuous dependence on the data for the closed
interval [0, 𝐿] by assuming additional smoothness and using
a stronger norm.

Now we show two error estimates under the following
conditions:

(H1) 𝑢(𝐿) ∈ 𝐷(𝐴𝑝
),

(H2) 𝑢(𝐿) ∈ G𝑝, 𝑝 > 0.

Remark 16. In practice, we know that it is very difficult to
verify the conditions (H1) and (H2), so we give different
assumptions on the given data 𝑓 as follows:

𝑢 (𝐿) ∈ 𝐷 (𝐴
𝑝
) ⇐⇒ ∫

+∞

𝛾

𝜆
2𝑝cosh2

(𝐿√𝜆) 𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
< ∞

⇐⇒ ∫

+∞

𝛾

𝜆
2𝑝
𝑒
2𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
< ∞,

𝑢 (𝐿) ∈ G𝑝 ⇐⇒ ∫

+∞

𝛾

𝑒
2𝑝𝐿√𝜆cosh2

(𝐿√𝜆) 𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
< ∞

⇐⇒ ∫

+∞

𝛾

𝑒
2(1+𝑝)𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
< ∞

⇐⇒ 𝑓 ∈ G𝑝+1.

(37)

Theorem 17. If ∫
+∞

𝛾
𝜆

𝑝
𝑒
2𝐿√𝜆

𝑑‖𝐸𝜆𝑓‖
2

< 𝐸
2

1
(resp.,

∫
+∞

𝛾
𝑒
2(1+𝑞)𝐿√𝜆

𝑑‖𝐸𝜆𝑓‖
2
< 𝐸

2

2
), 𝑝 > 0, 𝑞 > 0, then one has the

following estimates:

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤ (
𝐿

𝑎
)

𝑝

𝐸1 log(
1

𝛿
)

−𝑝

+ 𝛿
1−𝑦𝑎/𝐿

, 0 < 𝑎 ≤ 1,

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑒

−𝑞√𝛽
𝐸2 + 𝑒

𝑦√𝛽
𝛿.

(38)

Proof. From the expansions

𝑢 (𝑦) = ∫

∞

𝛾

cosh (𝑦√𝜆) 𝑑𝐸𝜆𝑓,

𝑢𝛽 (𝑦) = ∫

∞

𝛾

cosh (𝑦√𝜆) 1[𝛾,𝛽]𝑑𝐸𝜆𝑓,

(39)

we have

𝑢 (𝑦) − 𝑢𝛽 (𝑦) = ∫

∞

𝛾

cosh (𝑦√𝜆) 1[𝛽,+∞]𝑑𝐸𝜆𝑓. (40)

Then

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩

2

= ∫

∞

𝛾

(𝜆
−𝑝/21[𝛽,+∞])

2

cosh2
(𝑦√𝜆) 𝜆

𝑝
𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ ∫

∞

𝛾

(𝜆
−𝑝/21[𝛽,+∞])

2

𝑒
2𝐿√𝜆

𝜆
𝑝
𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ 𝛽
−𝑝
∫

∞

𝛾

𝑒
2𝐿√𝜆

𝜆
𝑝
𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ √𝛽

−2𝑝

𝐸
2

1
.

(41)

UsingTheorem 17 and the triangle inequality, we can write

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢𝛽 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤ √𝛽

−𝑝

𝐸1 + 𝑒
𝑦√𝛽

𝛿.

(42)

By choosing √𝛽 = (𝑎/𝐿) log(1/𝛿), we obtain the desired
inequality.

Using the same techniques we have

𝑢 (𝑦) − 𝑢𝛽 (𝑦)

= ∫

∞

𝛾

𝑒
−𝑞√𝜆 cosh (𝑦√𝜆) 𝑒𝑞√𝜆1[𝛽,+∞]𝑑𝐸𝜆𝑓,

(43)
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hence

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩

2

= ∫

∞

𝛾

(𝑒
−𝑞√𝜆1[𝛽,+∞])

2

(cosh(𝑦√𝜆)𝑒2𝑞√𝜆
)

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ 𝑒
−2𝑞√𝛽

∫

∞

𝛾

𝑒
2𝑞√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑢(𝑦)

󵄩󵄩󵄩󵄩

2
≤ 𝑒

−2𝑞√𝛽
𝐸

2

2
.

(44)

Using (29) and the triangle inequality, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢𝛽 (𝑦)

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢𝛽 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤ 𝑒
−𝑞√𝛽

𝐸2 + 𝑒
𝑦√𝛽

𝛿.

(45)

By choosing√𝛽 = (𝑎/𝐿) log(1/𝛿), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − V

𝛿

𝛽
(𝑦)

󵄩󵄩󵄩󵄩󵄩
≤ 𝛿

𝑎𝑞/𝐿
𝐸2 + 𝛿

1−𝑎𝑦/𝐿
. (46)

3.2. The Mollification Method. Now, we approximate the
original problem (1) by the sequence of problems

𝑢𝑦𝑦 = 𝐴𝑢, 0 < 𝑦 < 𝐿,

𝑢 (0) = 𝑓𝛼 = 𝑀𝛼𝑓,

𝑢𝑦 (0) = 0.

(47)

Theorem 18. If 𝑓 ∈ 𝐻 the approximate Cauchy problem (47)
admits a unique solution 𝑢𝛼, which depends continuously upon
the data 𝑓 with respect to uniform topology of 𝐶([0, 𝐿];𝐻).

Proof. From the representation

𝑢𝛼 (𝑦) = cosh (𝑦√𝐴)𝑓𝛼

= ∫

+∞

𝛾

cosh (𝑦√𝜆) (1 + 𝛼𝑒𝑝𝐿√𝜆
)

−1

𝑑𝐸𝜆𝑓,

(48)

we have

󵄩󵄩󵄩󵄩𝑢𝛼(𝑦)
󵄩󵄩󵄩󵄩

2
= ∫

+∞

𝛾

{
cosh(𝑦√𝜆)
1 + 𝛼𝑒𝑝𝐿√𝜆

}

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ ∫

+∞

𝛾

{
𝑒
𝐿√𝜆

1 + 𝛼𝑒𝑝𝐿√𝜆
}

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
.

(49)

(i) If 𝑝 = 1, we obtain

sup
𝑦∈[0,𝐿]

󵄩󵄩󵄩󵄩𝑢𝛼(𝑦)
󵄩󵄩󵄩󵄩

2
≤
1

𝛼

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 . (50)

(ii) If 𝑝 > 1, the function𝑀(𝑠) = 𝑒
𝐿𝑠
/(1 + 𝛼𝑒

𝑝𝐿𝑠
) with 𝑠 =

√𝜆 ≥ √𝛾 achieves its maximum at 𝑠∗ = (1/𝑝𝐿) log(1/
𝛼(𝑝 − 1)), 𝑝 > 1, from which we deduce

𝑀∞ = 𝑀(𝑠
∗
) = 𝑐 (𝑝) (

1

𝛼
)

1/𝑝

,

𝑐 (𝑝) = 𝑝
−1
(𝑝 − 1)

1−1/𝑝
≤ 1.

(51)

From this bound, we derive

sup
𝑦∈[0,𝐿]

󵄩󵄩󵄩󵄩𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩 ≤ (

1

𝛼
)

1/𝑝
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 . (52)

From the linear property of our problem, stability esti-
mate of problem (47) may be written precisely in the follow-
ing corollary.

Corollary 19. If 𝑢𝛼,1(𝑦; 𝑓1) (resp., 𝑢𝛼,2(𝑦; 𝑓2)) is the approxi-
mate solution corresponding to 𝑓1 (resp., 𝑓2), then

sup
𝑦∈[0,𝐿]

󵄩󵄩󵄩󵄩𝑢𝛼,1 (𝑦) − 𝑢𝛼,2 (𝑦)
󵄩󵄩󵄩󵄩 ≤ (

1

𝛼
)

1/𝑝
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩 . (53)

Remark 20. We have

𝑁(𝑠) =
𝑠
𝑟
𝑒
𝑇𝑠

1 + 𝛼𝑒𝑝𝑇𝑠
≤
1

𝛼
𝐾 (𝑠)

=
1

𝛼
𝑠
𝑟
𝑒
−(𝑝−1)𝑇𝑠

, 𝑝 > 1,

𝑠 = √𝜆 ≥ √𝛾.

(54)

It is easy to show that

𝐾 (𝑠) ≤ 𝐾(𝑠
∗
=

𝑟

𝐿 (𝑝 − 1)
)

= (
𝑟

𝐿 (𝑝 − 1)
)

𝑟

𝑒
−𝑟
= 𝜅 (𝑟, 𝑝, 𝐿) < ∞.

(55)

This remark shows that 𝑢𝛼(𝑦) ∈ 𝐷(𝐴
𝑟/2
) for all 𝑦 ∈ [0, 𝐿].

Proof. The inclusion 𝑢𝛼(𝑦) ∈ 𝐷(𝐴
𝑟/2
) is equivalent to

‖𝐴
𝑟/2
𝑢𝛼(𝑦)‖ < ∞. We have

󵄩󵄩󵄩󵄩󵄩
𝐴

𝑟/2
𝑢𝛼 (𝑦)

󵄩󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

𝜆
𝑟
{

cosh (𝑦√𝜆)

1 + 𝛼𝑒𝑝𝐿√𝜆
}

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ (
1

𝛼
)

2

∫

+∞

𝛾

{√𝜆
𝑟

𝑒
−(𝑝−1)𝐿√𝜆

}

2

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ (
1

𝛼
)

2

𝜅(𝑟, 𝑝, 𝐿)
2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2
< ∞,

(56)

where 𝜅(𝑟, 𝑝, 𝐿) = sup
𝜆≥𝛾

√𝜆
𝑟

𝑒
−(𝑝−1)𝐿√𝜆

= (
𝑟

(𝑝 − 1)𝐿
)

𝑟

𝑒
−𝑟.
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Theorem 21. If 𝑓 ∈ G1, then

sup
𝑦∈[0,𝐿]

󵄩󵄩󵄩󵄩𝑢 (𝑦) − 𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩 󳨀→ 0, 𝛼 󳨀→ 0. (57)

Proof. We compute

󵄩󵄩󵄩󵄩𝑢(𝑦) − 𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

(1 −𝑀𝛼 (𝜆))
2cosh2

(𝑦√𝜆) 𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ ∫

+∞

𝛾

(1 −𝑀𝛼 (𝜆))
2cosh2

(𝐿√𝜆) 𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ ∫

+∞

𝛾

(1 −𝑀𝛼 (𝜆))
2
𝑒
2𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑀𝛼) 𝑓

󵄩󵄩󵄩󵄩󵄩

2

,

(58)

where 𝑓 = 𝑒
𝐿√𝐴

𝑓 and ‖𝑓‖
2

= ∫
+∞

𝛾
𝑒
2𝐿√𝜆

𝑑‖𝐸𝜆𝑓‖
2
< ∞.

This implies that sup
𝑦∈[0,𝐿]

‖𝑢(𝑦) − 𝑢𝛼(𝑦)‖ ≤ ‖(𝐼 −𝑀𝛼)𝑓‖

and by virtue of (3) of Theorem 9, we conclude the desired
convergence.

The following technical lemmas play the key role in our
analysis and calculations.

Lemma 22. Let

[], +∞[ ∋ 𝑠 󳨃󳨀→ 𝑄 ({𝑎, 𝑟, 𝑞, 𝐿} ; 𝑠) =
1

𝛼𝑠𝑟 + 𝑎𝑒−𝑞𝐿𝑠
, (59)

where 𝑎 > 0, 𝛼 > 0, ] > 0, 𝑞 > 0, 𝐿 > 0, and 𝑟 ≥ 1. Then one
has

𝑄 ({𝑎, 𝑟, 𝑞, 𝐿} ; 𝑠) ≤
1

𝛼
(

𝑘1

log (𝑘2 (1/𝛼))
)

𝑟

, (60)

where 𝑘1(𝑟, 𝑞, 𝐿) = 𝑟𝑞𝐿, 𝑘2(𝑞, 𝑟, 𝐿, 𝑎) = 𝑞
𝑟
𝐿

𝑟−1
𝑎/𝑟.

Proof. Differentiating the expression and setting the deriva-
tive equal to zero, we find

𝑑

𝑑𝑠
𝑄 ({𝑎, 𝑟, 𝑞, 𝐿} ; 𝑠)

=
−1

(𝛼𝑠𝑟 + 𝑎𝑒−𝑞𝐿𝑠)
2
(𝛼𝑟𝑠

𝑟−1
− 𝑞𝑎𝑒

−𝑞𝐿𝑠
) = 0.

(61)

The function (𝑑/𝑑𝑠)𝑄({𝑎, 𝑟, 𝑞, 𝐿}; 𝑠) = 0 admits a unique solu-
tion

𝑠 = {𝑠 󳨃󳨀→ 𝛼𝑟𝑠
𝑟−1
} ∩ {𝑠 󳨃󳨀→ 𝑞𝑎𝑒

−𝑞𝐿𝑠
} . (62)

Therefore

𝑄 ({𝑎, 𝑟, 𝑞, 𝐿} ; 𝑠) ≤ 𝑄 ({𝑎, 𝑟, 𝑞, 𝐿} ; 𝑠)

≤
1

𝛼𝑠𝑟 + 𝑎𝑒−𝑞𝐿𝑠
≤

1

𝛼𝑠𝑟
.

(63)

We have

(𝛼𝑟𝑠
𝑟−1

− 𝑞𝑎𝑒
−𝑞𝐿𝑠

) = 0 ⇐⇒ 𝑠
𝑟−1
𝑒
𝑞𝐿𝑠

=
𝑞𝑎

𝑟𝛼
. (64)

By using the inequality (𝑒𝑡 ≥ 𝑡, 𝑡 ≥ 0), then for 𝑡 = 𝑞𝐿𝑠, we
obtain 𝑒𝑞𝐿𝑠

≥ 𝑞𝐿𝑠 and we can write

𝑞𝑎

𝑟𝛼
= 𝑠

𝑟−1
𝑒
𝑞𝐿𝑠

≤ 𝑒
𝑞𝐿𝑠
(
𝑒
𝑞𝐿𝑠

𝑞𝐿
)

𝑟−1

= (
1

𝑞𝐿
)

𝑟−1

𝑒
𝑟𝑞𝐿𝑠

, (65)

which implies that 𝑠 ≥ (1/𝑟𝑞𝐿) log((𝑞𝑟𝐿
𝑟−1

𝑎
/𝑟)(1/𝛼)). Hence,

we obtain

𝑄 ({𝑎, 𝑟, 𝑞, 𝐿} ; 𝑠) ≤
1

𝛼𝑠𝑟
≤
1

𝛼
(

𝑘1

log (𝑘2 (1/𝛼))
)

𝑟

, (66)

where 𝑘1(𝑟, 𝑞, 𝐿) = 𝑟𝑞𝐿, 𝑘2(𝑞, 𝑟, 𝐿, 𝑎) = 𝑞
𝑟
𝐿

𝑟−1
𝑎/𝑟.

Lemma 23. Let

[], +∞[ ∋ 𝑠 󳨃󳨀→ 𝑅 ({𝑝, 𝑞, 𝐿} ; 𝑠)

=
𝑒
𝑝𝐿𝑠

(1 + 𝛼𝑒𝑝𝐿𝑠) 𝑒𝑞𝐿𝑠
=

1

𝑒(𝑞−𝑝)𝐿𝑠 + 𝛼𝑒𝑞𝐿𝑠
,

(67)

where 𝑝 ≥ 1, 𝑞 > 0, 𝛼 > 0, ] > 0, and 𝐿 > 0. Then one has the
following.

If 1 ≤ 𝑝 ≤ 𝑞, then

𝑅 ({𝑝, 𝑞, 𝐿} ; 𝑠) ≤ 𝑒
−(𝑞−𝑝)𝐿𝑠

≤ 𝑒
−(𝑞−𝑝)𝐿]

≤ 1. (68)

If 0 < 𝑞 < 𝑝, 𝑝 ≥ 1, 0 < 𝛼 ≤ (𝑝 − 𝑞)/𝑞, then

𝑅 ({𝑝, 𝑞, 𝐿} ; 𝑠) ≤ 𝑘3(
1

𝛼
)

(𝑝−𝑞)/𝑝

,

𝑘3 (𝑝, 𝑞) =
𝑞

𝑝
(
𝑝 − 𝑞

𝑝
)

(𝑝−𝑞)/𝑝

≤ 1.

(69)

Proof. By a simple differential calculus, we show that the
function 𝑅({𝑝, 𝑞, 𝐿}; 𝑠) achieves its maximum at 𝑠 = (1/

𝑝𝐿) log((𝑝 − 𝑞)/𝛼𝑞). Consequently

𝑅 ({𝑝, 𝑞, 𝐿} ; 𝑠) ≤ 𝑅 ({𝑝, 𝑞, 𝐿} ; 𝑠) = 𝑘3(
1

𝛼
)

(𝑝−𝑞)/𝑝

. (70)

Now we assume the following a priori bounds hold:

𝑢 (𝐿) ∈ 𝐷 (𝐴
𝑟/2
)

⇐⇒ ∫

+∞

𝛾

√𝜆
2𝑟

𝑒
2𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
≤ 𝐸

2

1
< ∞,

(71)

𝑢 (𝐿) ∈ G𝑞

⇐⇒ ∫

+∞

𝛾

𝑒
2𝐿(1+𝑞)√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2
≤ 𝐸

2

2
< ∞.

(72)



8 Abstract and Applied Analysis

Theorem 24. Let 𝑢 (resp., 𝑢𝛼) be the solution of problem (1)
(resp., (47)) with the exact data 𝑓. If (71) (resp., (72)) is
satisfied, then one has the following error estimates:

󵄩󵄩󵄩󵄩𝑢 (𝑦) − 𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩 = 𝑂(

1

log(1/𝛼)
)

𝑟

, (73)

󵄩󵄩󵄩󵄩𝑢 (𝑦) − 𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩

= {
𝑂 (𝛼) , 𝑖𝑓 1 ≤ 𝑝 ≤ 𝑞,

𝑂 (𝛼
𝑞/𝑝
) , 𝑖𝑓 0 < 𝑞 < 𝑝, 𝑝 ≥ 1.

(74)

Proof. Putting

𝐵1 (𝜆) = {
𝑒
𝑝𝐿√𝜆

1 + 𝛼𝑒𝑝𝐿√𝜆
}

1

√𝜆
𝑟

=
1

√𝜆
𝑟

𝑒−𝑝𝐿√𝜆 + 𝛼√𝜆
𝑟 ≤ 𝐵2 (𝜆)

=
1

√𝛾
𝑟
𝑒−𝑝𝐿√𝜆 + 𝛼√𝜆

𝑟 ,

𝐵3 (𝜆) = {
𝑒
𝑝𝐿√𝜆

1 + 𝛼𝑒𝑝𝐿√𝜆
}

1

𝑒𝑞𝐿
√𝜆

=
1

𝑒(𝑞−𝑝)𝐿√𝜆 + 𝛼𝑒𝑞𝐿
√𝜆
.

(75)

Using the change of variables 𝑠 = √𝜆, we obtain the new
expressions

𝐵2 (𝑠) =
1

√𝛾
𝑟
𝑒−𝑝𝐿𝑠 + 𝛼𝑠𝑟

, (76)

𝐵3 (𝑠) =
1

𝑒(𝑞−𝑝)𝐿𝑠 + 𝛼𝑒𝑞𝐿𝑠
. (77)

By virtue of Lemma 22 (inequality (60) and Lemma 23
(inequalities (68) and (69)), we can write

𝐵2 (𝑠) ≤
1

𝛼
(

𝑘1

log (𝑘2 (1/𝛼))
)

𝑟

, (78)

where 𝑘1(𝑟, 𝑝, 𝐿) = 𝑟𝑞𝐿, 𝑘2(𝑝, 𝑟, 𝐿, √𝛾
𝑟
) = 𝑞

𝑟
𝐿

𝑟−1
√𝛾

𝑟
/𝑟.

Consider

𝐵3 (𝑠) ≤

{

{

{

1, if 1 ≤ 𝑝 ≤ 𝑞,

(
1

𝛼
)

(𝑝−𝑞)/𝑝

, if 0 < 𝑞 < 𝑝, 𝑝 ≥ 1.
(79)

We have

󵄩󵄩󵄩󵄩𝑢(𝑦) − 𝑢𝛼(𝑦)
󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

{
𝛼𝑒

𝑝𝐿√𝜆

1 + 𝛼𝑒𝑝𝐿√𝜆
}

2

cosh2
(𝑦√𝜆) 𝑑

󵄩󵄩󵄩󵄩𝐸𝜆𝑓
󵄩󵄩󵄩󵄩

2

≤ 𝛼
2
∫

+∞

𝛾

{𝐵2 (𝜆)}
2
√𝜆

2𝑟

𝑒
2𝐿√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ 𝛼
2
(sup

𝑠≥√𝛾

𝐵2 (𝑠))

2

𝐸
2

1
,

󵄩󵄩󵄩󵄩𝑢(𝑦) − 𝑢𝛼(𝑦)
󵄩󵄩󵄩󵄩

2

= ∫

+∞

𝛾

{
𝛼𝑒

𝑝𝐿√𝜆

1 + 𝛼𝑒𝑝𝐿√𝜆
}

2

cosh2
(𝑦√𝜆) 𝑑

󵄩󵄩󵄩󵄩𝐸𝜆𝑓
󵄩󵄩󵄩󵄩

2

≤ 𝛼
2
∫

+∞

𝛾

{𝐵3 (𝜆)}
2
𝑒
𝐿(1+𝑞)√𝜆

𝑑
󵄩󵄩󵄩󵄩𝐸𝜆𝑓

󵄩󵄩󵄩󵄩

2

≤ 𝛼
2
(sup

𝑠≥√𝛾

𝐵3 (𝑠))

2

𝐸
2

2
.

(80)

Using (78) and (79), we derive

󵄩󵄩󵄩󵄩𝑢 (𝑦) − 𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝛼

1

𝛼
(

𝑘1

log (𝑘2 (1/𝛼))
)

𝑟

= 𝑂(
1

log (1/𝛼)
)

𝑟

,

󵄩󵄩󵄩󵄩𝑢 (𝑦) − 𝑢𝛼 (𝑦)
󵄩󵄩󵄩󵄩 ≤ {

𝛼, if 1 ≤ 𝑝 ≤ 𝑞,
𝛼

𝑞/𝑝
, if 0 < 𝑞 < 𝑝, 𝑝 ≥ 1.

(81)

Combining (53), (73), and (74) with the help of triangle
inequality

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢

𝛿

𝛼
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢 (𝑦) − 𝑢𝛼 (𝑦)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑢𝛼 (𝑦) − 𝑢

𝛿

𝛼
(𝑦)

󵄩󵄩󵄩󵄩󵄩
= Δ 1 + Δ 2,

(82)

we deduce the following corollary.

Corollary 25. Let 𝑢(𝑦; 𝑓) (resp., 𝑢𝛿

𝛼
(𝑦; 𝑓𝛿)) be the solution of

problem (1) (resp., (47)) with the exact data𝑓 (resp., the inexact
data 𝑓𝛿) such that ‖𝑓−𝑓𝛿‖ ≤ 𝛿. If (71) (resp., (72)) is satisfied,
then one has the following error estimates:

(𝑐𝑎𝑠𝑒 𝑟 ≥ 1)

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢

𝛿

𝛼
(𝑦)

󵄩󵄩󵄩󵄩󵄩
= 𝑂 (𝜃1 (𝛼)) + (

1

𝛼
)

1/𝑝

𝛿,

(83)
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(𝑐𝑎𝑠𝑒 1 ≤ 𝑝 ≤ 𝑞)

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢

𝛿

𝛼
(𝑦)

󵄩󵄩󵄩󵄩󵄩
= 𝑂 (𝜃2 (𝛼)) + (

1

𝛼
)

1/𝑝

𝛿,

(84)

(𝑐𝑎𝑠𝑒 0 < 𝑞 < 𝑝, 𝑝 ≥ 1)

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑦) − 𝑢

𝛿

𝛼
(𝑦)

󵄩󵄩󵄩󵄩󵄩
= 𝑂 (𝜃3 (𝛼)) + (

1

𝛼
)

1/𝑝

𝛿,

(85)

where

𝜃1 (𝛼) = 𝑂(
1

log (1/𝛼)
)

𝑟

,

𝜃2 (𝛼) = 𝑂 (𝛼) , 𝜃2 (𝛼) = 𝑂 (𝛼
𝑞/𝑝
) .

(86)

If we choose 𝛼 = 𝛼(𝛿) = 𝛿𝑝/𝜔 with 𝜔 > 1, then we have

𝛿(
1

𝛿𝑝/𝜔
)

1/𝑝

= 𝛿
(𝜔−1)/𝑤

, (87)

𝜃1 (𝛼) = 𝑂(
1

log (1/𝛿𝑝/𝜔)
)

𝑟

, (88)

𝜃2 (𝛼) = 𝛿
𝑝/𝜔

, 𝜃3 (𝛼) = 𝑂 (𝛿
𝑞/𝜔
) . (89)

3.3. Example: Cauchy Problem for the Modified Helmholtz
Equation. In this paragraph, we give a concrete example to
see how to apply the theoretical results developed in this
study.

Let us consider theCauchy problem (modifiedHelmholtz
equation) in the infinite strip R × (0, 1):

𝑢𝑦𝑦 (𝑥, 𝑦) + 𝑢𝑥𝑥 (𝑥, 𝑦) − 𝛾𝑢 (𝑥, 𝑦) = 0,

𝑥 ∈ R, 𝑦 ∈ (0, 1) ,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑢𝑦 (𝑥, 0) = 0, 𝑥 ∈ R,

(90)

where 𝛾 is a real positive constant.
Let 𝑢̂(𝜉, 𝑦) = (F𝑢)(𝜉, 𝑦) be the Fourier transform of 𝑢(𝑥,

𝑦):

𝑢̂ (𝜉, 𝑦) =
1

√2𝜋
∫
R

𝑒
−𝑖𝜉𝑥

𝑢 (𝑥, 𝑦) 𝑑𝑥. (91)

With the help of the Fourier transformation, problem (1) can
be transformed to an equivalent problem in the frequency
domain:

𝑢̂𝑦𝑦 (𝜉, 𝑦) − 𝜉
2
𝑢̂ (𝜉, 𝑦) − 𝛾𝑢̂ (𝜉, 𝑦) = 0,

𝜉 ∈ R, 𝑦 ∈ (0, 1) ,

𝑢̂ (𝜉, 0) = 𝑓 (𝜉) , 𝑢̂𝑦 (𝜉, 0) = 0, 𝜉 ∈ R.

(92)

It is easy to check that the formal solution of problem (92) has
the form

𝑢̂ (𝜉, 𝑦) = cosh (𝑦√(𝜉2 + 𝛾))𝑓 (𝜉) , (93)

or equivalently, the formal solution of problem (90) is given
by

𝑢 (𝑥, 𝑦) = (F
−1
𝑢̂) (𝑥, 𝑦)

=
1

√2𝜋
∫
R

𝑒
𝑖𝑥𝜉
𝑢̂ (𝜉, 𝑦) 𝑑𝜉

=
1

√2𝜋

∫
R

𝑒
𝑖𝑥𝜉 cosh (𝑦√(𝜉2 + 𝛾))𝑓 (𝜉) 𝑑𝜉.

(94)

Putting Θ(𝜉) = √(𝜉2 + 𝛾). Then Θ(𝜉) → +∞ as |𝜉| →
+∞. From this remark, it is easy to see that a small pertur-
bation in the data 𝑓(𝜉) may cause a dramatically large error
in the solution 𝑢̂(𝜉, 𝜉). In addition, the magnifying factor is
Θ(𝜉) ∼ 𝑒

|𝜉|, hence, the problem is severely ill-posed.
Since the data 𝑓(⋅) are based on (physical) observations

and are not known with complete accuracy, we assume that 𝑓
and 𝑓𝛿 satisfy

󵄩󵄩󵄩󵄩𝑓 − 𝑓𝛿

󵄩󵄩󵄩󵄩 ≤ 𝛿, (95)

where 𝑓 and 𝑓𝛿 belong to 𝐿2
(R), 𝑓𝛿 denotes the measured

data, and 𝛿 denotes the noise level.
For this problem, we define the regularized solutions with

noisy data 𝑓𝛿:

𝑢
𝛿

𝑁
(𝑥, 𝑦)

=
1

√2𝜋
∫
R

𝑒
𝑖𝑥𝜉 cosh (𝑦√(𝜉2 + 𝛾))𝑓𝛿 (𝜉) 1[−𝑁,𝑁] (𝜉) 𝑑𝜉

=
1

√2𝜋

∫

𝑁

−𝑁

𝑒
𝑖𝑥𝜉 cosh (𝑦√(𝜉2 + 𝛾))𝑓𝛿 (𝜉) 𝑑𝜉,

(96)

where 1[−𝑁,𝑁] is the characteristic function of the interval
[−𝑁,𝑁]. Consider

𝑢
𝛿

𝛼
(𝑥, 𝑦)

=
1

√2𝜋
∫
R

𝑒
𝑖𝑥𝜉
(

cosh (𝑦√(𝜉2 + 𝛾))

1 + 𝛼𝑒
𝑝√(𝜉2+𝛾)

)𝑓𝛿 (𝜉) 𝑑𝜉,

(97)

where 𝑝 ≥ 1. The quantities 𝛼 = 𝛼(𝛿) and𝑁 = 𝑁(𝛿) are the
parameters which were defined in Sections 3.1 and 3.2.

4. The Nonlocal Boundary Value Problem
Method and Some Extensions

In this section we give the connection between the molli-
fication method and the nonlocal boundary value problem
method; also we give some extensions to our investigation.
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4.1.TheNonlocal Boundary Value ProblemMethod. Consider
the following problem:

𝑃 (𝑎 (𝑎 ≥ 1) ; 𝛼, 𝛽)

{{

{{

{

𝑢𝑦𝑦 = 𝐴𝑢, 0 < 𝑦 < 𝑎𝐿,

𝑢 (0) + 𝛼𝑢 (𝑎𝐿) + 𝛽𝐴
−1/2

𝑢𝑦 (𝑎𝐿) = 𝑓,

𝑢𝑦 (0) = 0.

(98)

(i) The case 𝛽 = 0 coincides with the method treated by
Hào et al. in [10].

(ii) In the case 𝛼 = 𝛽, the solution of 𝑃(𝑎; 𝛼, 𝛼) is 𝑢𝛼(𝑦) =

cosh(𝑦√𝐴)(𝐼 + 𝛼𝑒𝑎𝐿)−1
𝑓 coincides with the solution

resulting from the mollification method.
(iii) The error estimates obtained in our analysis by using

themollificationmethod are similar to those obtained
in [8, 10].

This shows that our study framework is more general and
includes many results obtained in this direction.

4.2. Generalization. Let us consider

𝑃

{{

{{

{

𝑢𝑦𝑦 = 𝐴𝑢, 0 < 𝑦 < 𝐿,

𝑢 (0) = 𝑓,

𝑢𝑦 (0) = 0,

(99)

where𝐴 is a self-adjoint, linear unbounded operator in𝐻 and
changes the sign with 0 ∈ 𝜌(𝐴) (𝐴−1 exists and𝐴−1

∈ L(𝐻)).
We assume𝜎(𝐴) =]−∞, −𝛾]∪[𝛾, +∞[, 𝛾 > 0.The spectral

theory of self-adjoint operators enables us to write

ℎ = ∫
R

𝑑𝐸𝜆ℎ = ∫

−𝛾

−∞

𝑑𝐸𝜆ℎ + ∫

+∞

𝛾

𝑑𝐸𝜆ℎ

= ℎ− + ℎ+, ℎ ∈ 𝐻;

(100)

that is, the Hilbert space 𝐻 decomposes into the direct
sum𝐻 = 𝐻− ⊕ 𝐻+, and

𝐴 = ∫
R

𝜆𝑑𝐸𝜆

= ∫

−𝛾

−∞

𝜆𝑑𝐸𝜆 + ∫

+∞

𝛾

𝜆𝑑𝐸𝜆 = 𝐴− + 𝐴+.

(101)

This decomposition gives us two problems: one is elliptic
(ill-posed) and the other is hyperbolic (well-posed). Consider

Elliptic Problem
{{

{{

{

𝑈𝑦𝑦 = 𝐴+𝑈, 0 < 𝑦 < 𝐿,

𝑈 (0) = 𝑓+,

𝑈𝑦 (0) = 0,

Hyperbolic Problem
{{

{{

{

𝑉𝑦𝑦 = 𝐴−𝑉, 0 < 𝑦 < 𝐿,

𝑉 (0) = 𝑓−,

𝑉𝑦 (0) = 0.

(102)

The formal solution of problem (99) is

𝑢 (𝑦) = 𝑈 (𝑦) + 𝑉 (𝑦) ,

𝑈 (𝑦) = cosh (𝑦√𝐴+)𝑓+,

𝑉 (𝑦) = cos(𝑦√−𝐴−)𝑓−.

(103)

We define

𝑢𝛼 = cos(𝑦√−𝐴−)𝑓−

+ cosh (𝑦√𝐴+) (𝐼 + 𝛼𝑒
𝑝𝐿𝐴+)

−1

𝑓+

= ∫

−𝛾

−∞

cos (𝑦√−𝜆) 𝑑𝐸𝜆𝑓

+ ∫

+∞

𝛾

cosh (𝑦√𝜆) (1 + 𝛼𝑒𝑝𝐿√𝜆
)

−1

𝑑𝐸𝜆𝑓,

V𝛼 = cos(𝑦√−𝐴−)𝑓− + cosh (𝑦√𝐴+)𝐸𝛽𝑓+

= ∫

−𝛾

−∞

cos (𝑦√−𝜆) 𝑑𝐸𝜆𝑓

+ ∫

+∞

𝛾

cosh (𝑦√𝜆) 1[𝛾,𝛽]𝑑𝐸𝜆𝑓.

(104)

We follow the same methodology developed in the previous
Sections 3.1 and 3.2, we show that 𝑢𝛼 and V𝛼 are two stable
approximations to problem (99), and we establish the same
results of error estimates.

Remark 26. We define the mollification operator𝑀𝛼 = (𝐼 +

𝛼Θ𝑝(𝐴))
−1, where Θ𝑝 : [𝛾, +∞[→ ∞ satisfies

∀𝜆 ∈ [𝛾, +∞[ , Θ𝑝 (𝜆) ≥ 𝑒
𝑝𝐿√𝜆

, 𝑝 ≥ 1. (105)

Under certain conditions on Θ𝑝(⋅) and with the help of a
technical calculation, we can extend the results obtained in
Section 3.2.
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