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Although differential transformmethod (DTM) is a highly efficient technique in the approximate analytical solutions of fractional
differential equations, applicability of this method to the system of fractional integro-differential equations in higher dimensions
has not been studied in detail in the literature. The major goal of this paper is to investigate the applicability of this method to the
system of two-dimensional fractional integral equations, in particular to the two-dimensional fractional integro-Volterra equations.
We deal with two different types of systems of fractional integral equations having some initial conditions. Computational results
indicate that the results obtained by DTM are quite close to the exact solutions, which proves the power of DTM in the solutions
of these sorts of systems of fractional integral equations.

1. Introduction

The subject of the present paper is to investigate the applica-
bility of the differential transform method to the systems of
the two-dimensional Volterra integro-differential equations
of the second kind. To the best of our knowledge, the
Volterra-integro differential equations considered in this
paper was not studied with any method in the literature.
Therefore, solving a new equation with differential transform
method is our main purpose in this paper. For this pro-
pose, we consider the system of two-dimensional fractional
Volterra integro-differential equations in the form of
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where 𝛼, 𝛽 is a parameter describing the fractional deriva-
tive. If 0 < 𝛼, 𝛽 ≤ 1, then the resulting system of frac-
tional integro-differential equations is known as a system of
the two-dimensional fractional Volterra integro-differential
equations of the second kind.

Fractional calculus basically deals with a generalization
of the concept of the ordinary and partial derivative (or
differentiation) and integration to arbitrary order including
a fractional order. Although the origin of the subject dates
back to almost a hundred years ago, recently, this subject has
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been broadly employed in the various fields of engineering
and science. Fractional calculus has a broad range of applica-
tion areas including nonlinear control theory, mathematical
biology, plasma physics and fusion, computational fluid
mechanics, and images processing.

Integral equations are useful and significant equations in
many applications. Problems in which integral equations are
encountered include electromagnetic waves, radiative energy
transfer, and the oscillation problems. The Volterra integral
equations are a special sort of integral equations which
are significantly important and useful equations having
broad application areas in different branches of science. The
Volterra integral equations were first introduced by Volterra
and then studied by Lalescu in his thesis.TheVolterra integral
equations find application in many different areas including
sorption kinetics, demography, viscoelasticmaterials, oscilla-
tion of a spring, financial mathematics, stochastic dynamical
systems, and mathematical biology.

Fractional differential equations (e.g., see [1, 2]) and
fractional integral equations (e.g., see [3]) are a significant
research area of recent times. The organization of this paper
might be briefly summarized as describing the problem, the
DTM method, and applying the method to the problem.
Having defined the problem previously, next, we describe the
differential transform method shortly.

2. Differential Transform Method

The DTM constructs analytical solutions of fractional dif-
ferential equations in an iterative way in the form of poly-
nomials. DTM is different from the traditional higher order
Taylor series techniques which usually demand symbolic
computations.

Consider a function of two variables 𝑢(𝑥, 𝑦), and suppose
that it can be represented as a product of two single-variable
functions as 𝑢(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦). Now, using the properties
of DTM, it is not hard to show that the function 𝑢(𝑥, 𝑦) can
be represented as
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the spectrum of 𝑢(𝑥, 𝑦). The generalized two-dimensional
differential transform of the function 𝑢(𝑥, 𝑦) is given by
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Theproofs of someof these properties can be found in [4].
The application of DTM was successfully extended to obtain
analytical approximate solutions to some other differential
equations of fractional order. Interested reader can take a look
at the related papers at [5–7]. As a related work, we can show
the work by Bandrowski et al. who studied the numerical
solutions of the fractional perturbed Volterra equations in
[8]. Next, we illustrate the application of DTM to the systems
of fractional integral equations.

3. Computational Applications

Example 1. Consider the system of integro-differential equa-
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Substituting initial conditions into the equations, we obtain
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where 𝑢
𝑁
and V
𝑁
are approximate solutions of 𝑢 and V.

For the special case (𝛽 = 1), we can reproduce the
series solution of Example 2 and the solution in a closed form
𝑢(𝑥, 𝑡) = 𝑥𝑒

𝑡 and V(𝑥, 𝑡) = 𝑡𝑒
−𝑡.

4. Conclusions

Theapplication of the differential transformmethod has been
successfully employed to obtain the approximate analytical
solutions for two classes of systems of the two-dimensional
fractional Volterra integro-differential equations of the sec-
ond kind.Themethod was used in a direct way without using
linearization, perturbation, or restrictive assumptions. When
𝛼 = 1 and 𝛽 = 1, we conclude that our approximate solutions
are in good agreement with the exact values.
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