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The purpose of this paper is to introduce and analyze modified hybrid steepest-descent methods for a general system of variational
inequalities (GSVI), with solutions being also zeros of an m-accretive operator A in the setting of real uniformly convex and 2-
uniformly smooth Banach space X. Here the modified hybrid steepest-descent methods are based on Korpelevich’s extragradient
method, hybrid steepest-descent method, and viscosity approximation method. We propose and consider modified implicit and
explicit hybrid steepest-descent algorithms for finding a common element of the solution set of the GSVI and the set A" (0) of zeros
of A in X. Under suitable assumptions, we derive some strong convergence theorems. The results presented in this paper improve,

extend, supplement, and develop the corresponding results announced in the earlier and very recent literature.

1. Introduction

Let X be a real Banach space whose dual space is denoted by

X*. The normalized duality mapping J : X — 2% is defined
by

J(x) = {x* e X" (x,x") = x| = ||x*||2}, Vx € X,
1

where (-,-) denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
J(x) is nonempty for each x € X. Let C be a nonempty
closed convex subset of X. A mapping T : C — C is called
nonexpansive if [Tx-Ty| < ||lx—y| forevery x, y € C. The set
of fixed points of T is denoted by Fix(T"). We use the notation
— to indicate the weak convergence and — to indicate the
strong convergence. A mapping A : C — X is said to be

(i) accretive if for each x, y € C there exists j(x — y) €
J(x — y) such that

(Ax - Ay, j(x-y)) =0 )

(i) a-strongly accretive if for each x, y € C there exists
j(x = y) € J(x — y) such that

(Ax = Ay, j(x-p)) = a|x -y, 3)

for some « € (0, 1);
(iii) B-inverse strongly accretive if for each x, y € C there
exists j(x — y) € J(x — y) such that

(Ax— Ay, j(x - y)) = BlAx - Ay|, 4)

for some f3 > 0;
(iv) A-strictly pseudocontractive [1] (see also [2]) if for
each x, y € C there exists j(x — y) € J(x —y) such that

(Ax = Ay, j(x =) < |x = y|* - Ax - y - (Ax - Ap)|
(5)
for some A € (0, 1).

It is worth emphasizing that the definition of the inverse
strongly accretive mapping is based on that of the inverse



strongly monotone mapping, which was studied by so many
authors; see, for example, [3-5]. Let U = {x € X : ||x|| = 1}
denote the unite sphere of X. A Banach space X is said to be
uniformly convex if for each € € (0, 2] there exists § > 0 such
thatforall x, y e U

||x—)’||2€:>MS1—8. (6)

It is known that a uniformly convex Banach space is reflexive
and strictly convex. A Banach space X is said to be smooth if
the limit

lim ||x + ty" — llxIl )
t—0 t

exists for all x, y € U; in this case, X is also said to have
a Gateaux differentiable norm. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for x, y €
U; in this case, X is also said to have a uniformly Frechet
differentiable norm. The norm of X is said to be the Frechet
differential if for each x € U this limit is attained uniformly
for y € U. In the meantime, we define a function p
[0,00) — [0,00) called the modulus of smoothness of X
as follows:

1
p@) = sup s (bl +lx =yl -1:
(8)
5y e X, Il =1,y =},

It is known that X is uniformly smooth if and only if
lim, _, ,p(7)/T = 0. Let g be a fixed real number with 1 < g <
2. Then a Banach space X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(z) < ct? forall 7 > 0.
As pointed out in [6], no Banach space is g-uniformly smooth
for g > 2. In addition, it is also known that J is single-valued
if and only if X is smooth, whereas if X is uniformly smooth,
then the mapping J is norm-to-norm uniformly continuous
on bounded subsets of X.

Let A be an operator with domain D(A) and range R(A)
in X is said to be accretive if for each x; € D(A) and y; €
Ax;(i = 1,2) there exists j(x, — x;) € J(x, — x;) such that

(32 =y j (%= %,)) 2 0. 9)

An accretive operator A is said to be m-accretive if R(I +
AA) = X forall A > 0. Denote by J, the resolvent of A; that is,
for each r > 0,

J, =T +rA)7" (10)

It is known that J, is a nonexpansive mapping from X to
C := D(A) which will be assumed convex. In 2008, Chen and
Zhu [7] derived the following strong convergence theorems
for viscosity approximation methods for accretive operators
in a uniformly smooth Banach space X.

Theorem CZ1. Let X be a uniformly smooth Banach space.
Suppose that A is an m-accretive operator in X such that
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C =D(A) is convex and f : C — C is a fixed contractive
map. For eacht € (0, 1), {x,,,} is defined by

Xin = tf (xt,n) + (1 - t) ]r,,xt,n' (H)
Thenast — 0, {x,,} converges strongly to a zero of A.

Theorem CZ2. Let X be a uniformly smooth Banach space.
Suppose that A is an m-accretive operator in X such that C =
D(A) is convex and f: C — Cis a fixed contractive map. The
sequence {x,} is defined by

Xn+1 = ‘an (xn) + (1 - ‘xn) ]rnxn’ Vn =0, (12)

where {«,,} and {r,} satisfy the following conditions:

(i) &, — 0, ZEZO &, = 00, and 2220 |“n+1 - (an <09,

(ii) r, > eforallnand Y o2 |1,y — 1l < 0.

Thenasn — oo, {x,} converges strongly to a zero of A.

In the meantime, Ceng et al. [8] derived some strong con-
vergence theorems of composite iterative schemes for zeros of
m-accretive operators in uniformly smooth Banach spaces.
Furthermore, motivated by strong convergence results for
hybrid steepest-descent methods in [9, 10], Ceng et al. [11]
established some strong convergence theorems for hybrid
steepest-descent methods for nonexpansive and m-accretive
operators in a uniformly smooth Banach space X. Subse-
quently, Ceng et al. [12] introduced hybrid viscosity approx-
imation method for finding zeros of m-accretive operators,
which combine viscosity approximation method with hybrid
steepest-descent method, and obtained the following strong
convergence theorems.

Theorem CASY1. Let X be a uniformly smooth Banach space,
let A be an m-accretive operator in X with A (0) #0, and
let f: X — C(= D(A)) be a contractive map. Assume
that F : X — X is O-strongly accretive and A-strictly
pseudocontractive with 8 + A > 1. For each t € (0,1) and each
integer n > 0, let {x, ,} be defined by

X = tf (xt,n) +(1-1) []rnxt,n - 9tF (‘xt,n)] > (13)

where{r,} C [g, 00) for somee > 0and {0, : t € (0,1)} c [0, 1)
with lim, ,,(6,/t) = 0. Then ast — 0,{x,,} converges
strongly to a zero p of A, which is a unique solution of the
variational inequality problem (VIP)

(1= ) pJ(p-u))y <0, VueA'(0). (14)

Theorem CASY2. Let X be a uniformly smooth Banach
space, let A be an m-accretive operator in X with A™(0) 0,
and let f :+ X — C(= D(A)) be a contractive map.
Assume that F : X — X is §-strongly accretive and A-
strictly pseudocontractive with § + A > 1. Given sequences

N ibnzor ttatnso i 10, 11 o 220, {Babsg in (0, 1], and {r, 1.2,
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in [e, 00) for some € > 0, suppose that there hold the following
conditions:

(i) lim,, _, B, =0and Y2, B, = o,
(i) lim,, _, oo (A,.14,)/ B, = O,
(iii) {e,,} C [a,b] for some a,b € (0, 1),

(iV) Zg;o |0‘n+1 - an' < 00, ;ZZO |/3n+1 - Bn' < 0o,
Zggo |An+1 - Anl < 00, Zn:O |/’ln+1 - /"n' < 00 and
Zn:O |rn+1 - rnl < 0.

Then for any given point x, € X, the sequence {x,} generated

by
Vn = Xy + (1 - (Xn) ]rn'xn’

Xny1 = ﬁnf (xn) + (1 - ﬁn) [Irnyn - AmunF (]r,,yn)] , (15)
Vn > 0,

converges strongly to a zero p of A, which is a unique solution
of the VIP as above.

On the other hand, Cai and Bu [13] considered the
following general system of variational inequalities (GSVT)
in a real smooth Banach space X, which involves finding
(x*, y*) € C x C such that

By +x" = y", J(x-x")) 20, VxeC,
(16)
(WByx™ +y" —x",J (x - y")) 20, VxeC,
where C is a nonempty, closed and convex subset of
X, B;,B, : C — X are two nonlinear mappings, and g,
and y, are two positive constants. Here the set of solutions
of GSVI (16) is denoted by GSVI (C, B;, B,). In particular, if
X = H, areal Hilbert space, then GSVI (16) reduces to the
following GSVI of finding (x*, y*) € C x C such that
By +x -y, x-x")>0, VxeC,
17)
(Byx" +y" —=x",x-y") >0, VxeC,
where p; and p, are two positive constants. The set of
solutions of problem (17) is still denoted by GSVI (C, B,, B,).
In particular, if B, = B, = A, then problem (17) reduces to
the new system of variational inequalities (NSVTI), introduced
and studied by Verma [14]. Further, if x* = y* additionally,
then the NSVI reduces to the classical variational inequality
problem (VIP) of finding x* € C such that
(Ax",x-x") >0, VxeC. (18)
The solution set of the VIP (18) is denoted by VI(C, A).
Variational inequality theory has been studied quite exten-
sively and has emerged as an important tool in the study of
a wide class of obstacle, unilateral, free, moving, equilibrium
problems. It is now well known that the variational inequal-
ities are equivalent to the fixed point problems, the origin
of which can be traced back to Lions and Stampacchia [15].
This alternative formulation has been used to suggest and
analyze projection iterative method for solving variational

inequalities under the condition that the involved operator
must be strongly monotone and Lipschitz continuous.

Recently, Ceng et al. [16] transformed problem (17) into a
fixed point problem in the following way.

Lemma 1 (see [16]). For given X,y € C,(X,) is a solution
of problem (17) if and only if X is a fixed point of the mapping
G : C — Cdefined by

G (x) = Pc [P (x = pyB,X) — 4 B P (x — py Byx)]
Vx € C,

(19)

wherey = Po(x—u,B,x) and P is the the projection of H onto
C.

In particular, if the mapping B, C — His f-
inverse strongly monotone for i = 1,2, then the mapping G is
nonexpansive provided p; € (0,2f;) fori = 1,2.

In 1976, Korpelevi¢ [17] proposed an iterative algorithm
for solving the VIP (18) in Euclidean space R":

Xn+1 = PC (xn - TA)/”) >
Vn >0,

Yn = PC (xn - TAxn) >
(20)

with 7 > 0 being a given number, which is known as
the extragradient method (see also [18]). The literature on
the VIP is vast, and Korpelevich’s extragradient method
has received great attention given by many authors, who
improved it in various ways; see, for example, [3, 13, 19-32]
and references therein, to name but a few.

In particular, whenever X is still a real smooth Banach
space, B, = B, = A, and x* = ", then GSVI (16) reduces
to the variational inequality problem (VIP) of finding x* € C
such that

(Ax*,J(x—=x")) =20, VxeC, (21)

which was considered by Aoyama et al. [33]. Note that VIP
(21) is connected with the fixed point problem for nonlinear
mapping (see, e.g., [34]), the problem of finding a zero point
of a nonlinear operator (see, e.g., [35]), and so on. It is clear
that VIP (21) extends VIP (18) from Hilbert spaces to Banach
spaces.

In order to find a solution of VIP (21), Aoyama et al.
[33] introduced the following iterative scheme for an accretive
operator A:

Xpir = 0%, + (1 —a,) o (x, - A,Ax,), Vn>1, (22)

where I is a sunny nonexpansive retraction from X onto C.
Then they proved a weak convergence theorem.

Beyond doubt, it is an interesting and valuable problem
of constructing some algorithms with strong convergence
for solving GSVI (16) which contains VIP (21) as a special
case. Very recently, Cai and Bu [13] constructed an iterative
algorithm for solving GSVI (16) and a common fixed point
problem of an infinite family of nonexpansive mappings in
a uniformly convex and 2-uniformly smooth Banach space.
They proved the strong convergence of the proposed algo-
rithm by virtue of the following inequality in a 2-uniformly
smooth Banach space X.



Lemma 2 (see [36]). Let X be a 2-uniformly smooth Banach
space. Then

I+ yI* < Ixl” +2 (3T () +2wy]’s Vx,y € X, (23)

where x is the 2-uniformly smooth constant of X and ] is the
normalized duality mapping from X into X*.

Define the mapping G : C — C as follows:

G(x)=Tc (I - B) (I - ,By)x, VxeC. (24)

The fixed point set of G is denoted by Q. Then their strong
convergence theorem on the proposed method is stated as
follows.

Theorem CB (see [13, Theorem 3.1]). Let C be a nonempty
closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space X. Let Il be a sunny nonexpansive
retraction from X onto C. Let the mapping B; : C — X be
o;-inverse strongly accretive with 0 < w; < o;/x* fori = 1,2.
Let f be a contraction of C into itself with coefficient p € (0, 1).
Let {S,},2, be an infinite family of nonexpansive mappings of
C into itself such that A = (;2, Fix(S;) N Q # 0, where Q) is the
fixed point set of the mapping G defined by (24). For arbitrarily
given x, € C, let {x,} be the sequence generated by

Xn+1 = ﬁnxn + (1 - /311) Snyn’
Yn = anf (xn) + (1 - (xn) Zn>

2z, = ¢ (u, — 4, Byu,), (25)

U, = 1_IC (xn - [’42B2xn) >
Vn > 1.

Suppose that {o,} and {3,,} are two sequences in (0, 1) satisfying

the following conditions:
(i) lim,, _, &, =0and Y2 o, = 00,
(ii) 0 < liminf, _, 3, <limsup, , B, < L.

Assume that Y. sup, plIS,..1x — S,x|l < co for any bounded
subset D of C, let S be a mapping of C into X defined by
Sx = lim, _, S,x for all x € C, and suppose that Fix(S) =
Moo, Fix(S,). Then {x,} converges strongly to p € A, which
solves the VIP:

((I=f)p. T (p~u)) <0,

It is easy to see that the iterative scheme in Theorem CB is
essentially equivalent to the following two-step iterative scheme:

Yn = (an (xn) + (1 - “n) Gxn’

Xn+1 = ﬁnxn + (1 - ﬁn) Snyn’
Vn > 1.

Yu € A. (26)

(27)

For the convenience of implementing the argument tech-
niques in [16], the authors [13] have used the following
inequality in a real smooth and uniform convex Banach space
X.
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Proposition 3 (see [37]). Let X be a real smooth and uniform
convex Banach space and let v > 0. Then there exists a strictly
increasing, continuous and convex function g : [0,2r] — R,
g(0) = 0, such that

g(lx-y) <lxl* -2¢x. 7 () +|y|>, VxyeB,
(28)

where B, = {x € X : | x| < r}.

Let C be a nonempty closed convex subset of a real
uniformly convex and 2-uniformly smooth Banach space X.
Let II; be a sunny nonexpansive retraction from X onto
Candlet f : C — C be a contraction with coefficient
p € (0,1). Motivated and inspired by the research going
on in this area, we introduce and analyze modified hybrid
steepest-descent methods for the GSVI (16), with solutions
being also zeros of an m-accretive operator A in X. Here
the modified hybrid steepest-descent methods are based on
Korpelevich’s extragradient method, hybrid steepest-descent
method, and viscosity approximation method. We propose
and consider modified implicit and explicit hybrid steepest-
descent algorithms for finding a common element of the
solution set of the GSVI (16) and the set A™'(0) of zeros of
A in X. Under suitable assumptions, we derive some strong
convergence theorems. The results presented in this paper
improve, extend, supplement, and develop the corresponding
results announced in the earlier and very recent literature
[12, 13, 16, 32].

2. Preliminaries

We list some lemmas that will be used in the sequel. Lemma 4
can be found in [38]. Lemma 5 is an immediate consequence
of the subdifferential inequality of the function (1/2)|| - 1%,

Lemma4. Let {a,} be asequence of nonnegative real numbers
such that

a,,<(1-b)a,+bgc, Yn=0, (29)

where {b,} and {c,} are sequences of real numbers satisfying the
following conditions:

() {b,} c [0, 1] and Y2 b, = 0o,

n=0 "n

(ii) either limsup, _, ¢, < 0or Y20 |b,c,| < co.

Then, lim a, =0.

n— 00

Lemma 5. In a real smooth Banach space X, there holds the
inequality

Il + 2 (3, ] () < x + y)

<lxl*+2(p.T (x+y)), VxyeX,

(30)

where ] : X — X" is the normalized duality mapping.
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Let D be a subset of C and let IT be a mapping of C into
D. Then IT is said to be sunny if

TIIT(x) +t(x—TI(x))] =TI (x), (31)

whenever T1(x) + t(x — II(x)) € Cforx € Candt > 0. A
mapping IT of C into itself is called a retraction if IT* = II. If a
mapping IT of C into itself is a retraction, then Il(z) = z for
every z € R(II), where R(IT) is the range of I1. A subset D of
C is called a sunny nonexpansive retract of C if there exists a
sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma 6 (see [39]). Let C be a nonempty closed convex subset
of a real smooth Banach space X. Let D be a nonempty subset
of C. Let I1 be a retraction of C onto D. Then the following are
equivalent:

(i) IT is sunny and nonexpansive,

(i) [11(x) = I < (x—y, JTI(x)-T1(y))), Vx,y € C,
(iii) (x —II(x), J(y - II(x))) <0, Vx € C, y € D.

It is well known that if X = H, a Hilbert space, then
a sunny nonexpansive retraction Il is coincident with the
metric projection from X onto C; that is, [Io = P.. If C
is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space X andif T : C — Cis
a nonexpansive mapping with the fixed point set Fix(T) # 0,
then the set Fix(T') is a sunny nonexpansive retract of C. The
following lemma follows easily from Lemma 6.

Lemma 7. Let C be a nonempty closed convex subset of a
smooth Banach space X. Let Il be a sunny nonexpansive
retraction from X onto C and let B;, B, : C — X be nonlinear
mappings. For given x*, y* € C,(x", y*) is a solution of GSVI
(16) if and only if x* = c(y* — wB,y"), where y* =
IIo(x" = pyByx™).

In terms of Lemma 7, we observe that

x" =Tl [TTc (x* - uszx*) - BIlg (x* - P‘szx*)](> )
32

which implies that x* is a fixed point of the mapping G.
Throughout this paper, the set of fixed points of the mapping
G is denoted by Q.

Lemma 8 is the resolvent identity which can be found in
[40], and Lemma 9 can be found in [41].

Lemma 8. For A, yu > 0, there holds the identity

hx=], <§x+ (1 - %)]Ax), VxeX.  (33)

Lemma9. Assume thatc, > ¢; > 0. Then IIIClx—xII < 2||]02x—
x|| for all x € X.

Lemma 10 (see [42]). Let C be a nonempty closed convex
subset of a strictly convex Banach space X. Let {T,} >, be
a sequence of nonexpansive mappings on C. Suppose that

Mieo Fix(T,) is nonempty. Let {A,,} be a sequence of positive
numbers with Y 72, A,, = 1. Then a mapping S on C defined by
Sx = Y20 A T,x for x € C is defined well, nonexpansive, and
Fix(S) = (2, Fix(T,,) holds.

Let p be a mean if p is a continuous linear functional on
1% satisfying ||u]l = 1 = p(1). Then we know that p is a mean
on N if and only if

inf {a, :n € N} < p(a) <sup{a, :n €N} (34)

for every a = (aj,a,,...) € 1. According to time and
circumstances, we use y,(a,,) instead of y(a). A mean y on
N is called a Banach limit if and only if

HUn (an) = Un (anﬂ) (35)

for every a = (a;, a,,...) € I°°. We know that if ¢ is a Banach
limit, then

lim infa, < , (a,) < limsupa, (36)
for every a = (aj,a,,...) € I*°.Soifa = (aj,a,,...), b =

(b, b,,...) €1°,anda, — c(resp.,a,~-b, — 0),asn — 0o,
we have

b (@) = (@) = (resp., (a,) =, (b)) (37)

Further, it is well known that there holds the following
result.

Lemma 11 (see [43]). Let C be a nonempty closed convex
subset of a uniformly smooth Banach space X. Let {x,} be a
bounded sequence of X, let y be a mean on N, and let z € C.
Then

2 . 2
Aun"xn - Z“ - I)I/lelg A"in"xn - y" (38)
if and only if

Hn <y _Z’](xn - Z)> <0,
where ] is the normalized duality mapping of X.

Vy eC, (39)

Let C be a nonempty closed convex subset of a Banach
space X andlet T': C — C be a nonexpansive mapping with
Fix(T) # 0. Let E¢ be the set of all contractive self-mappings
onC.Fort e (0,1)and f € B, let x, € C be the unique fixed
point of the contraction x — tf(x) + (1 — t)Tx on C; that is,

x, =tf (x,) + (1 —t) Tx,. (40)

Lemma 12 (see [34]). Let X be a uniformly smooth Banach
space. Let C be a nonempty closed convex subset of X, let T' :
C — C be a nonexpansive mapping with Fix(T) # 0, and let
f € E¢. Then the net {x,} defined by x, = tf(x,) + (1 — t)Tx,
converges strongly to a point in Fix(T). If one defines a mapping
Q:Ec — Fix(T) by Q(f) := s —lim, _,,x,, forall f € B,
then Q(f) solves the VIP:

((T=-HQ(f).JQ(f)-u) <o,
Vf €Eq ue€Fix(T).

(41)



The following proposition will be used frequently
throughout this paper.

Proposition 13 (see [11]). Let X be a real smooth Banach space
andlet F: X — X be a mapping.

(i) If F is A-strictly pseudocontractive, then F is Lips-
chitzian with constant 1 + 1/A.

(ii) IfF is -strongly accretive and A-strictly pseudocontrac-
tive with 8 + A > 1, then I — F is contractive with
constant \/(1 = §)/A.

(iii) If F is 8-strongly accretive and A-strictly pseudocon-
tractive with § + A > 1, then, for any fixed number
7 € (0,1), I — 7F is contractive with constant 1 — (1 —

(L=-8)/M).

3. Main Results

In this section, we introduce our modified hybrid steepest-
descent schemes and show the strong convergence theorems.
We will need the following useful lemmas in the sequel.

Lemma 14 (see [13, Lemma 2.8]). Let C be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space X.
Let the mapping B; : C — X be «;-inverse strongly accretive.
Then, one has

"(I - wB)x— (I - #iBi)J’llz

< ||x - y”2 +2u; (/,tixz - oci) ||Bl-x - Biy”z, Vx,y € C,
(42)

fori = 1,2, where y; > 0. In particular, if 0 < y; < o;/x%, then
I — w;B; is nonexpansive fori = 1,2.

Lemma 15 (see [13, Lemma 2.9]). Let C be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space X.
Let I1 be a sunny nonexpansive retraction from X onto C. Let
the mapping B, : C — X be «;-inverse strongly accretive for
i=1,2.LetG: C — C be the mapping defined by

Gx =T [T¢ (x — ¢y Byx) — py By Tl (x — gy Byx)] 5 (43)
Vx € C.

If 0 < y; < o/ fori = 1,2, thenG : C — Cis nonexpansive.

Let X be a real smooth Banach space and let A be an
m-accretive operator in X such that C = D(A) is convex.
Let II; be a sunny nonexpansive retraction from X onto
C.Let F : X — X be §-strongly accretive and A-strictly
pseudocontractive with § + A > 1. Let the mapping B; :
C — X be a;-inverse strongly accretive for i = 1,2 and let
f:X — X be a contractive map with coeflicient p € (0, 1).
In this section, we will consider the problem of finding a point
peA= A1(0) N Q(#0), which is a unique solution of the
VIP:

((I=-H)pJ(p-u)) <0, Vuea, (44)

Abstract and Applied Analysis

where Q is the fixed point set of the mapping G = TI(I -
wBII(I — ,B,) with 0 < p; < «fx® fori = 1,2.
For each t € (0,1) and each integer n > 0, we choose a
number 0, € [0, 1) arbitrarily and then consider the following
mapping I}, : X — X defined as

Lx=tf (x)+(1-1)[G(J, x) - 6,FG(], x)], VxeX.
(45)

Then, I}, : X — X is a contractive map. Indeed, utilizing
Proposition 13(iii) and Lemma 15, we have for all x, y € X

T % = Ty
=|tf )+ -G (], x) - 6,FG(J, x)]
~tf (1) --0[G(,)-0FG (1, y)]|
<t|f @ -fO
+(1-0|(I-6,F)G(J, x)-(1-6,F)G(J, y)]

gtp||x-y||+(1_t)<1_et<1_J%))

<6 (,%)-60.)]

Stp||x—y||+(l—t)<1—9t<l—\/%))

X

%=1,

Stp||X—y||+(1—t)<1—6t<1—\]¥>>”x—y"

<tplx -y + (-0 ]x-y|

=(1-(-p)t)x-yl.
(46)

and henceT;, : X — Xiscontractive due to (1-p)t € (0,1).
By Banach’s Contraction Mapping Principle, there exists a
unique fixed point x, , of T, , in X; that is,

Xtn = tf (xt,n) + (1 - t) [G (]rnxt,n) - etFG (]rnxt,n)] .
(47)

Theorem 16. Let X be a uniformly convex and 2-uniformly
smooth Banach space and let A be an m-accretive operator in X
such that C = D(A) is convex. Let 1 be a sunny nonexpansive
retraction from X onto C. Let the mapping B; : C — X be «;-
inverse strongly accretive fori = 1,2, let f : X — Cbea
contractive map with coefficient p € (0,1), and let F : X —
X be &-strongly accretive and A-strictly pseudocontractive with
8 + A > 1. Assume that A = A™'(0) N Q+#0, where Q is
the fixed point set of the mapping G = IIo(I — u, B)II-(I -
tyBy) with 0 <y, < o,/ fori = 1,2. For each t € (0,1)
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and each integer n > 0, let {x,,} be defined by (47), where
{r,} c [e,00) for some e > 0and {0, : t € (0,1)} c [0,1) with
lim, ,,(0,/t) = 0. Then ast — 0,{x,,} converges strongly to
p € A, which is a unique solution of the VIP (44).

Proof. First let us show that for some a € (0,1), {x,, : t €
(0,a],n > 0} is bounded. Indeed, since {0, : t € (0,1)} ¢
[0, 1) with lim, _, ,(6,/t) = 0, there exists some a € (0,1) such
that 0 < 0,/t < 1 forallt € (0,a].

Take p € A. Then utilizing Proposition 13, we have

% — Pl
<t|f (xgn) - pl+ -1
%[[6 (7, %) = 0.FG (T, x.,)] - o]
<tp|x, = pll + £ f (p) - p| + (1 =1)
x[|-6F)G (1, x.,) - (1-6F)G (], p)
+[(T-6.5)G(1,p) - o]
<tp|x, - pl+tf () - p+ (1 -1)

(1-0(1-52) Jlotrs) -G 00

+ (1 - t) et ||F (P)“
<tp |, - pl +t]f (p) - pf +(1-1)

<19<1J¥>>
+01E ()]
< tpl - ol + 17 (9) -l + -0

(1-0(1-\52) - st -t

<tpxe, = pl+£1f (p) = pll + (1 =) |, =

]r,,xt,n - ]r,,p“

+6,[F ()],
(48)
and, hence, for all ¢ € (0, a]
1 0,
b= pl = 72 (17 (0) =l + 1P ()
. (49)
<7 (17 (o) = pll + [F (R)I) -

Thus, this implies that {x; , : t € (0,a],n > 0} is bounded and
so are {f(x;,) : t € (0,al,n > 0}, {]rnxt)n :t € (0,al,n > 0},
and {G(],nxt’n) :t € (0,a],n=> 0}
Let us show that [|], x, , — G(J, x,,)| — Oast — 0.
Indeed, for simplicity we put g = IIo(I — u,B,)p, X;,, =
]rnxt,n’ Uy = HC(I - .MZBZ)X\MP and Vi = HC(I - ‘MlBl)ut,n'

Then it is clear that p = TIo(I — 4, B,)gand v,,, = G(X,,,) =
G(J,, x;,,). Taking into account x, , — p = £(f(x;,,) — p) + (1 -
G, x.,) — 6,FG(], x,,) - pl, we get

. - 2l
=t (f (xpn) = P ] (X = P))
+ (1= (G (J;,xn) = 2] (e = P))
~(1=1)6,(FG(J, x,,) -] (x0,, = P))
<t(f (xen) = £ (P).] (X0 = P))
+t(f(p) = p.T (%0, = P)) (50)
+ (1= |G (1, %) = P I (e = D)
+(1=0)6,|FG (1, x| 1] G = )]
< ptlxe, = ol + 15 () = Pl e — £
+ (1= 1) v, = pll %0 - £
+ 0, |Eve 5, = -
From Lemma 14 we have
s = al = IMe(X,, — 1:B:%,,) = Te(p - 1, Bop)|”
< ||% - p -~ w(Bo%,, — Bop)|
< ||5Et,n - P"2 =2 (“2 - Kz.“Z) "Bzft,n - BzPHZ’
”Vt,n - P”2 = ”HC(ut,n - i Byuy,) — (g - Mlqu)Hz
< Jue — - By, - By

= ””t,n - qllz =2 (“1 - KZP‘I) "Blut,n - 31‘1"2-
(51)

From the last two inequalities, we obtain
v, — P"2 < %, - P‘“2 -2 (“z - KZ.“z) |B.X.,, - BzP"2
=2 (0‘1 - Kzl/‘l) "Blut,n - qu"2
< [lxen - P“Z =24, (“2 - "2!"2) |B.X.,, - BzP"2
)

=2 (“1 - KZP’l 1By 24y, — qu||2,
(52)

which, together with (50), implies that
2
<. = 2l

< ptlxi, = pI* + £15 (2) = ol 1 =
+ (=0 Vi, = pl e =PI+ 6, [Fvil 15, -



< ptlxe = pI* + £ 1 (p) = Pl I — £
+ =03 (b= P+ D= 2I)
+ 0, [Fvel % = £
< ptlxe = pI* + £ 15 (p) = Pl |00 - £
#(0=0 2 {2 + - I
=2 (0‘2 - Kzﬂz) |B%,, - B,pl
~ 2 (@ =y ) | By~ Bug|}
+ 0, |Fvial %, - Pl
= (1=t (1=p)) % = 21" + 215 () = Pl I~ £
-(1-1) [#2 (“z - Kzﬂz) |B,%,,, - Bop|’
! (“1 - KZ.“l) 1B 4y, — qullz]
+ 0, |Fvial %, - Pl
<|xen =2 +£1f (2) = £l I~
~ (=1 [t (o =1, | B, %y, - B,p|’
! (“1 - "2.“1) 1B 14y, ~ 31‘1"2]

+06, HFVt,n" ||xt,n - P“ :

(53)
So it immediately follows that

(1-1) [.”2 (0‘2 - Kz["z) ||Bz55t,n - BZPHZ

T (0‘1 - Kz!h) B4, 31‘1”2] (54)
<t]f(p) = plllxen = ol + 0 [ Fvel I = 2l -
Since 0 < p; < o;/x* for i = 1,2, we have
tli_I}}) |B.%:,, = B,p|| = 0,

(55)

}LH}) |4, = Bygl = 0.
Utilizing Proposition 3 and Lemma 6, we have
et - 61“2 = e (%y = t2B2%) — T (p -~ .“2321’)"2
< (Xpp — BoX, — (P~ taByp) T (uh — q))

= <5C\t,n - Db ] (ut,n - q)>
+ty (Byp — ByX, ] (”t,n -q))

Abstract and Applied Analysis

1y~
< o= o+ it~

) (”'k\t,n Uy — (p - q)")]
+t [Bop = By%p | e — al -
(56)

which implies that

2 - 2 ~
u,—q|” < %, - - Xip—t,—(p-
" ) ‘1” ” t, P" 91(" t o (P ‘Z)”) (57)

+ 24, ”sz - Bz’?t,n" "”t,n - ‘1” .

In the same way, we derive

IV = oI
= |Tle(uy = Byt ) = T — B 9|
< (U — By, — (= B1q) ] (Vi = P))
= (U= 3T (Veu = P)) + i1 (B1q = Byttyn J (v, = P))

1
< 2 [l —al* + I~ 2P

-~ 9 (”ut,n “Vin t (P - q)“)]

+ | Big — Byuy,| "Vt,n -l

(58)
which implies that
"Vt,n - p"2 < "ut,n - q||2 9 (”ut,n ~Vin + (p - q)“) 59)
+ 241 |B1q = Byt v — -
Substituting (57) for (59), we get
Vi = 2I° < 12 = 2 = 91 (1% = 100 = (P = D))
— 9 (”ut,n - vt,n + (p - q)")
+ 24y |Bop = ByXy || [l —
+ 241 |B1q = Byt v - P
(60)

< "xt,n - PHZ ~— 91 (l|)?t,n Uy — (p- ‘I)")
) (“ut,n “Ven T (p- Q)")
+ 24, |Byp = BoXy || [|tae, — 4|

+2uy |Big - Bl“t,n” ”Vt,n -l
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which, together with (50), implies that + U ||qu - Blut,n" ||vt’n - p||

+ 0 [Fveal % - Pl

+ 0, [Fvu] |xe — £
(1=t (1= p)) %0, - oI’
+t]£(p) = pl % - 2l
= =030 (Fn = - (- D))

+ 6 (It = v + (- D)
+ (1= 1) [ty |Bop = By%p o 1, —

+ 1 |Big = By |7 — ]

+ 0, [Fvu] |xe — £
e = 21" +£1f (£) = Pl 10— £
-(1-1) % [91 (|%e = 1 = (P = 9)I))

+ G ([t = vew + (P~ D))
+ t |Bop = By 14— al
+ th | B1q = Byt |7, —

0 [Fvenl I - P

So it immediately follows that

1 ~
(1 - t) 5 [gl (”xt,n Uy~ (P - q)")

+ 9 (””t,n “Vin t (p- ‘1)“)]
<t|f(p) - pll . - Pl
+ thy |Bop = BoXy || 4, — 4

(B P"2 (62)
< pt|xe = oI + 15 (2) = Pl [0 — £ Hence, from (55) we conclude that
+ (0= 3 (o, = 2l + = 27) limg, (|%,, ~ (P = 9)) = 0.
+ 0, [Frpu| %, — Pl lim g, ([t = v, + (p = 9)]) = 0. (©9)
ptlxe, = pI” + £ () = ol I — 2 Utilizing the properties of g; and g,, we get
#(1=0 2 {2 + - I lim 1%,,, =, ~ (p - )] = 0,
- (64)
= 91 (|Zen =t~ (P~ D)) lim Juy,, = v, + (p - q)] = 0,
= 92 (Jugn = vin + (P = 9)]) which leads o
+ 2 |Bop = By s, — 120~ Vi
+ 2 |Bg = By, | i, — 2} < |Fup — e~ (p - q)| (65)

+ "ut,n Vit (P - Q)" — 0 ast—0.
That is,
1im |7, %= G (Jy, %) = Tim % = vesll = 0. (66)

Note that Fix(J, ) = A7'(0) foralln > 0 and that {x;,:te
(0,a], n > 0} is bounded and so are {f(x;,) : t € (0,a], n >
04, {J, xi,, : t € (0,a], n >0}, and{G(], x,,) : t € (0,a], n >
0}. Hence, we have

[ = G (1 %0)

_)0’

(67)

- tHf (%1) = G (Jp, %1) = (1=1) %FG )

ast — 0. Also, observe that

[t =1 el < e = G O o) 16 U ) = T e
(68)

This, together with (66) and (67), implies that
Jim o = xea = 0 (69)

Utilizing the nonexpansivity of G, we obtain from (67) and
(69) that

”xt,n - Gxt,n" ES “xt,n -G (]r,,xt,n)“
+6 (7 x0) = G|
< [t = G (1, %)

+

(70)

Jr Xen = xt’n” — 0, ast—0.
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Since ,, > ¢ for all , utilizing Lemma 9 we have
l]xtm - ]sxt,n“ <2 "xt’n - ]rnxt’n" — 0, ast— 0. (71)

For any integer n > 0, for simplicity put w; = x,, for all
t € (0,a]. Now let {t;} be a sequence in (0, a] that converges
to0ask — oo and define a function g on C by

gw) = pt,%"wtk - w||2, Yw € C, (72)

where p is a Banach limit. Define the set
Ki={weC:g(w)=min{g(y): yeC}}  (73)

and the mapping
Wx = (1-0) J.x + 0Gx,

Vx € C, (74)

where 0 is a constant in (0, 1). Then by Lemma 10, we know
that Fix(W) = Fix(J,) N Fix(G) = A. We observe that

[w, = W, | = |1 -6) (w, - Jw,) + 6 (w, - Gw,)|

(75)
<(1-0) ||wt - ]swt” +0 ||wt - th" .
So from (70) and (71) we obtain
lim ||wt - th" =0. (76)

n— 00

Since X is a uniformly smooth Banach space, K is a nonempty
bounded closed convex subset of C; for more details, see [43].
We claim that K is also invariant under the nonexpansive
mapping W. Indeed, noticing (76), we have for w € K

g Ww) = 3 |y, - Wl = s [Was, - Wl
(77)
1 2
< s fw, -] = g w).

Since every nonempty closed bounded convex subset of
uniformly smooth Banach space X has the fixed point prop-
erty for nonexpansive mappings and W is a nonexpansive
mapping of K, W has a fixed point in K, say p. Utilizing
Lemma 11, we get

Ui <x - p,](wtk - p)> <0, VxeC. (78)

Putting x = f(p) we have

Uy <f(p)—p,](wtk -p))<0, VxeC. (79

Abstract and Applied Analysis

Since w, —p = tk(f(wtk) -p+ Q1 - tk)[G(],nwtk) -
0, FG(J, w,,) — pl, we get

Jews, - o
=t (f (w,) = p.J (wy, - p))
+ (1=t (G (Jw,) = T (w, - p))
= (146, (FG (Jy,w,,).J (w, - p))
<t (f (w,) = £ (p).) (w0, - P))
+6.(f(p) - (w, ~ P)) (80)
+ (=66 (7, w) = P |7 (wr, - p)]
+ (1= 0, [FG (7w, )] |7 (s, - p)]
< ptylwy, = ol + 6 (f ()~ 7 (1, - )
# (1= 1) fw,, - o[
+6, |FG (7w, )| |, - 2]

It follows that

1
l-p

(f (p)=p.J (w, - P))

2
e = 2l =<

0 (81)
- 2 6 (0, - 1

Since lim, _, OO(Gtk /t;) = 0, from (79) and the boundedness of
sequences {FG(J, w, )}, {w,, }, it follows that

bl — ol

IN

1
Lo @ - 2w -0)

0
- 2 6 () o, -

L@ (- 9))

0
(2176 () - )] <0
(82)

Therefore, it is known that for any sequence {w, } in {w, :
t € (0,a]} there exists a subsequence which is still denoted
by {w, } that converges strongly to some fixed point p of W.
To prove that the net {w, : t € (0,a]} converges strongly to
past — 0, suppose that there exists another subsequence
{w,} ¢ {w,} such thatwy, — gqass, — 0, and then we also

have g € Fix(W) = A7H0) N Q =: A due to (76).
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Since the sets {w, —u : t € (0,a]} and {w, - f(w,) :
t € (0,a]} are bounded and the duality map ] is single-valued
and norm-to-norm uniformly continuous on bounded sets of
uniformly smooth Banach space X, foranyu € A = A™(0)n
Q, fromw, — g (s, — 0) we obtain

(1= fw, -(1-fa| —0 (s = 0),
(o, = £ (wy) T (w —u)) = (= ) 2T (9= u))]
= (= Nwy, = (1= £) g T (wy, —u))
+ (- T (w, -u)-T(g-u))|
<= ywy = = £af Jeo,, - 4]

+[{@-NaT(wy, -u)-T(@-uw)| —o,
(83)

as s, — 0. Therefore,

(1= e (@-w) = lim (w, = f(w,).] (w, -u)).
(84)

Sinceu e A=A (0)NQ,
% = [(1 = )t + tf e, D
= "(1 -G (]rnxt,n) +1tf (xt,n) —(1-Hu-tf (xt,n)

(1= 06,FGU, x,,.)|’

<[ =06 (J, %) ~ ] + 1= )6, |EG (%, |]]
<[ =0 e =] + (1 =08, |FG (J, x,,)|]”

= (1= )|, — ul* + 201 = )6, ||x,,, - u "FG (]rnxt)n)

+ (1= 126|FGU, x|

(85)
Utilizing Lemma 5, we have
e = [0 = Eu+ tf (e
= (1 = O)(x, — ) + tx, — f )| o)

> (1= )|, — v
+2t (1=1) (xpp = f (x0) 5T (X0 —10)) -
Consequently, from the last two inequalities we deduce that
2t (1 =1) (xpp = f (%00) 5 T (3, — 14))
<2(1- t)ZGt ||xm - u|| "FG (]rnxt,n)

(87)

2

>

+(1-1%6;|FGU, x.,,)

1

and hence

<xt,n - f (xt,n) ] (xt,n - u))
0
<=0 -l [FG U xn)] (g5
v -0 req, xf
2t r,tn .

Noticing (84), from lim, _, ,(6,/t) = 0 and the bounded-
ness of sequences {FG( I, X; )} 1%¢ ,}> we conclude that

(1-1)a.J(q-u)) <0. (89)
Interchanging p and u leads to

((I-f)aJ(q-p)) <0. (90)
Interchanging g and p leads to

(T=H)pJ(p-q) =<0 (o)
This implies that

((a-p)-(f@-f(p).J(p-q) =<0, (92
and hence

la-pl* < pla-pl"- (93)

Taking into account p € (0, 1), we obtain p = q. Furthermore,
by the careful analysis of the above proof, we can readily see
that p is also a unique solution of the VIP:

(T-f)pJ(p-u)) <0,
This completes the proof. O

Yu € A. (94)

Remark 17. In the assertion of Theorem 16, “ast — 0, {x,,}
converges strongly to p € A;” this p does not depend on #.
Indeed, it is known that there holds the condition that {r,} ¢
[e, 00) for some € > 0. Moreover, in the proof of Theorem 16
it can be readily seen that p is first found out as a fixed point
of the nonexpansive self-mapping W of K. This shows that p
depends on neither 7 nor ¢.

Theorem 18. Let X be a uniformly convex and 2-uniformly
smooth Banach space and let A be an m-accretive operator in X
such that C = D(A) is convex. Let 1. be a sunny nonexpansive
retraction from X onto C. Let the mapping B, : C — X be
o;-inverse strongly accretive fori = 1,2, f : X — Cbea
contractive map with coefficient p € (0,1), and let F : X —
X be §-strongly accretive and A-strictly pseudocontractive with
8+ > 1. Assume that A = A~ (0)NQ # 0, where Q is the fixed
point set of the mapping G = I1-(I — pu, B))II-(I — u,B,) with
0 < p; < a;/x” fori = 1,2. Given sequences {1}, {p,}>, in
[0, 1], {oe, )20 {Batoeg in (0,11, and {r,}72, in [e, 00) for some
€ > 0, suppose that there hold the following conditions:

(1) hmnaooﬁn =0and ZECZ)O ﬁ" =00,
(ii) hmn—»oo()tn!’tn)/ﬁn =0,
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(iii) {e,,} C [a,b] for some a,b € (0, 1),

(IV) Zn =0 |an+1 - an' < 00, OZO;“;O |ﬁn+1 - ﬁn' < 0o,
Zn oA = Aul < 00, 200 e — | < 00 and
Z =0 |rﬂ+1 rnl < ©0.

Then for any given point x, € X, the sequence {x,} generated
by

Yn = G Xy + (1 - an) G (]rnxn) >
Xn+1 = ﬁnf (xn) (1 - ﬁn) [G (]rnyn) - /\munFG (]r,,yn)] >
Vn >0,
(95)

converges strongly to p € A, which is a unique solution of the
VIP (44).

Proof. First, let us show that {x,,} is bounded. Indeed, taking
a fixed u € A arbitrarily, we have

(- a)6lr5) ]
) 00x) 1]
—ul+(1-a,) Xy — u“ (96)

< 0ty [l = uf + (1 - ) [, —

Iy = ull =

<a, |x, —ul+(1-

<, ||xn

=[x, - u]

So |y, — ull < llx,, — ull for all n > 0. Thus, by Proposition 13
(iii), we have

||xn+1 _u"
= ||ﬁnf (xn) + (1 - ﬁn) [G (]rnyn) - )‘nﬂnFG (]rnyn)] - u”
< ﬁn ||f (xn) - u” + (1 - /jn)

X n(I_HnF)G(]rnyn)+(1_An)G(]rnyn)_u”

< Buplln =l + B, f )~
+(1=B) [A |(T =, F)G (T, 3,) - o
=26 (7,2) -]
< Bupllxn =l + B f )~
+(1-B,) = o) G (1, 3) = (I =, F)
+ A, (1 =y, F) e =

=[G (r ) = ]

Abstract and Applied Analysis

< Bnp "xn - u” + ﬁn ||f (u) - u”

18 |1 (1 (1452 I -

+ A, |Full + (1 - ||G (] yn) u" l

= Bupllxn —ull + B f () - u

=m0 | (1-h (152 0.

+ A, |Full :|
- Bupll, -l + 1 0 -

(=) [ (1 At (1 - J?)) |50r30) |

) ()

< Buplxn —ull + B f () -

+(1—ﬂn)max{NG(]rnyn)—u",<l— \]1%6> ||Fu||]>

< Puplxn —ull + Bl f () -

+(1—ﬁn)max{||yn—u||,<1— J%) ||Fu||}

< ﬁnp "xn - u” + ﬁn ”f (u) - u”

+(1—ﬂn)max{llxn—ull,(1— Jlg—8> ||Fu||}

<Blf —ul+(1-(1-p)B,)

xmax{”xn—u",(l— Jﬂ) ||Fu||}

I/ <u> u]
—, +a

=(1-p)B————+(1-(1-p)B)

— -1
xmax{”xn—u",(l—\]l;—6> ||Fu||}
— -1
Smax{"xn—u",w,<l—\j%> ||FU||]’~

(97)
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By induction,

6 =l

< max {”xo -

Thus, {x,} is bounded and so is {y,}. Because G and I,
are nonexpansive for all n > 0, f is contractive, and F is

Lipschitzian, 17, x,}, 1, yub {GU. x,)b (GU, y)b {f Gn)h
and {FG(]Tn y,)} are bounded. From conditions (i), (ii) we

have
G (Jy, )
<Bullf () =G (I, 74)
+(1=-B) |G (T, 3.) -
=B f (<) =G (T, )]

+ (1 - /311) An#n “FG ]r,,yn)

— -1
ulLW(*J%) ||Fu||},

Vn > 0.
(98)

||xn+1 -

(7, 3n)

AmunFG (]rnyn) -G

— 0 asn— oo.
(99)

Now, we claim that

- xn" — 0 asn— oo. (100)

"xn+1

In order to prove (100), we estimate |x,,,, — x| first. From

(95) we have

n+1

Vn = CnXy + (1 —(XH)G(L,”X”),

(101)
Yn-1 = Oy Xy (1 - ‘xn—l) G(]rn,lxn—l) :
Simple calculations show that
Yn = Vn1 = (1 - (xn) (G (]rnxn) - G(]n K- 1))
+ o, (xn - xnfl) (102)
+ (xn—l -G (]rn,lxn—l)) (‘Xn - “n—l) .
It follows that
||yn_yn—1" < (1_“11) “G(]rnxn) (]r 1 Xp— 1)“
+ ot |2, = x|
+ “xn—l ] xn 1 || |06 n—ll
(103)
S(I—OC) r Xn ] xnl"

+ ot |2, = x|

+ “xn—l ] xn 1 || |06 n—ll .

13

On the other hand, if r,_;, < 7,
identity in Lemma 8

Tn1 Th-1
]rnxnzjrn_l ( xn+<1_ ]rnxn >
Tn Tn

we get

using the resolvent

(104)

||]rnxn - ]rn,lanl "

7’n—l rn—l
- ]r,H < Xy + (1 - ]rnxn - ]rn,lxn—l
Ty Ty

Ve Ty
< “||xn—xn,1||+(1—"—‘) J 6|
rfl ri’l
Ty = Ty
Sllxﬂ_xn—1l|+ - r Xp =X nl"
1
< ||xn - x,HH + - |rn =T | |[Jr, Xn = X1 |
(105)
Ifr, < r,_;, itis easy to see that
TonXn = Jr % |
) (106)
< ||xn_1 - xn" + . |rn_1 - rn| ],Hxn_1 =X, -
So combining the above cases we obtain
Irnxn - Irn,lxn—l '
Yoy — T
S ||xn_1 _xn” + M
€ (107)
xsup {1, =0 [+ 20 =}
n=1
Vn>1.
In the similar way we can derive
- ]’n—ly”_ln
Ty — T
<y - il # L
€ (108)
Xsup{"]rnyn_yn—l — _yn"}’
n=1
Vn > 1.
Therefore, we have
Trn = To Xnct| < ucs = all + |1y = 1l Mo 109
109
- ]r,,,lyn%" < ”yn% - yn” + |rn71 - rnl M,

for alln > 1, where supnzl{(l/s)(H]rnxn

x,)} < M and sup,. {(1/e)(I], ¥, -
v,D} < M, for some M, > 0.

n 1"+"]r 1 nl
Yn- 1" + ”]n,lyn 17
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Substituting (109) for (103), we obtain

"yn - yn—l" < (1 - (xn)

]rnxn - ]rn,lxn—l

+ oty [ x, — x|
Xn-1 7~ G (]rnflxn71)|
< (1 - (Xn) ("xn -

+ o, ||x, = x|

+

|06n - ‘xn—ll

”n—1|Mo)

Sl 11 - (110)

+ "xn—l -G (]rn,lxn—l)” |‘xn - (xn—1|
= "xn - xn—ln
+ Ml (|rn - rn71| + |‘Xn - (xn71|) >

where sup,,_{M,, [x,
M, > 0.
In the meantime, it follows from (95) that

- G(],nxn)ll} < M, for some constant

Xn+1 = ﬁnf (xn) + (1 - [;n) [G (]rnyn) - AnAMnFG (]rnyn)] >
Xn = ﬁn—lf(xn—l) + (1 - ﬁn—l)

x [G (]rn—1y”_1) - /\n—l."in—lFG (]Tn—ly"—l)] . -
11

Simple calculations show that

= (B = Bur) f (x1) + B (f (x,
+ (Baor = Ba) (I = Ayt 1 F) G
+(1=B) [T = 20, F) G (T,

~(I=Asttys F)G (], 3 )]
= (B = Bur) f (x1) + B (f (x) = f (x1))
+ (B = Ba) T =Xyt s F)G (], ¥s)
+(1=B) [(T= 2, F) G (T,, )
~ (1= X, F)G (T, V)

+ (An—l.“n—l - /\n[’ln) FG (]rn,lyn—l)] :
(112)

n

)= f(x41))
(] Yn- 1)
)

Abstract and Applied Analysis

It follows from Proposition 13(iii) and (109) that

1 = %l
< 1By = Bucal 1 Gen) + Bl () = f ()
1Bt = Bal | = Aac b )G (1, 3t )| + (1= B,)
< [|(T = Xt F) G (J,, 3) = (T = At F) G (. vt )|
+ Pocsttis = Lt [FG (1, 3]
< 1B = Buctl 1f Cenct) + Bup I =
1Bt = Bl | (T = At s F) G (U, 3 )|

+u—ﬁ»[<l—Aﬂ%<l‘Jl%§>>

<G (1,,3) = G (7., 31|

+ |/\n.un - An—l“n—1| “FG (]rn_lyn—l)“ }

< |Bn - ﬁnfll ”f (xnfl)" + ﬁnp "xn - xnflu
+ Iﬁn—l - :8n| ”(I - /\n—ltun—lF)G (]rn,lyn—l)”

+u—ﬁ»[<1—*ﬁ%<l‘Jz%E>>

- ]rn_lyn—l

+ |/\n.un - An—l.”ln—l| “FG (]rn_lyn—l)“ :I

< |ﬁn - ﬁn—ll ”f (xn—l)" + ﬁnp "xn - xn—l"

+ Iﬁn—l - ﬁn| (I - /\n—lﬂn—lF)G(Irn,lyn—l)”

+u-ﬁ»[<1-Aﬁ%<l‘Jl%§>>

rnl MO)

X ("yn—l - yn" + |rn—1 -

+ |/\mun - An—l“n—1| “FG (]rn,lyn—l)“ }

< ﬁnp "xn - xn—l" + |ﬁn - IBn—ll
x ("f (xn—l)” + “(I - )tn—ll’ln—lF) G(]rn,lyn—l)”)
+ (1 - ﬁn) ”yn—l - yn” + |rn—1 - 7’n| MO

+ |/\n."ln - An—l"tn—ll “FG (]rn,lyn—l)”
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< Bap % = xesl| + By = Baca | My
+ (1= B) et = Yl + |1y = 1l My
Aty = Acr e | M,

= Bup 1% = X + (1 = B) [0 = 2|
+ My (|By = Bua| + [Ath = Aa |

+ |rn - rn—ll) >
113)

where sup,.o{ll f (x, )| + 11 = A, FYGU, y )l IFGU,, y,)ll;
M,, M} < M, for some M, > 0.
Substituting (110) for (113), we get
1 = x|
< Bup %0 = x0a || + (1= Ba) |70 = yuca |
+ M, (|By = Bua| + Aty = At
+ |1 = 1)
< Bup = x| + (1= B,)
x [, = %l + My (|1, = 1| + o, — o1 ])]
+ My (B = Buca | + bty = At + 1 = 1))
< (1= (1=p) B) %, = x|
+2M, (|, = oty + By = B

+ |An - /\n—1| + |."in - Mn—l' + |rn - rn—l” .
(114)

Since it follows from conditions (i) and (iv) that Y2 (1 -
p)B, = 0o and

o]
ZZMZ H‘xn - ‘anll + |/3n - ﬂnfll + |/\n - Anfll
n=0

(115)
|t =t | + |1 = 70 [] < 00,
Lemma 4 is applicable to (114) and we obtain
Jim lx,, - x| = 0. (116)
By condition (iii) and (95), we have
19 =l
=(1-a,) |G, x,) - %,
<-a(|6(,%)-6 ()
(117)

+ "G (]fnyﬂ) - xn+1|' + "xn+1 - xn")

< (=) (|~ 7)1 + |G (s, 30) = %o

+ "xnﬂ - xn" ) >

15
which implies that
l1-a
"yn - xn" < a (“G (]rnyn) - xn+1.| + “xm—l - xn”) .
(118)
This together with (99)-(100) implies that
lim |x, - y,| = 0. (119)

n— 00

So we obtain

"xn -G (]r,,xn) < "xn - yn" +

3u=G )]
s "xn - yn" Ty, "xn -G (]rnxn)" (120)

< ||xn - yn" +blx, - G(],nxn)

>

which implies that
1
- —|x, - 121
oGO s gl
and hence
lim_|x, -G (J, x,)| = 0. (122)
Next let us show that lim, _, lx, = J, x,I = 0 and
lim, _, llx, — Gx,| = 0.

Indeed, for simplicity, put v = Ilo(u - p, Byu), X, = J, x,,,
u, = I-(X, - u,B,%,) and v, = I1-(u,, — y; Byu,,). Then u =
(v = wByv), and v, = GX,, = G(], x,,) for alln > 0. It is
clear from (95) that

7, - u"z < a,||x, - u”2 +(1-a,) |GU, x,) - u"2

(123)
2 2
= oty ="+ (1= @,) v — "

Utilizing Lemma 14, we have
ee,, - V"2 = [Mc(®, - B, X,) — T (u - Mszu)llz
£ "’?n —u—ph(BX, - Bzu)"2

< ||9?n - u”2 - 2u, (a2 - szz) ||Bzy?n - Bzu”Z,
(124)

v, = ul* = |0, - 1 By,) = Te(v = py By)|°
< ||un —v—u(Byu, - Blv)"2

< ||un - v||2 -2 (oc1 - szl) ||B1un - BIVHZ.
(125)

Substituting (124) for (125), we obtain
v, = ull® < 1%, - ul* - 20, (“2 - Kzl‘z) |B,%, - Byul*
~2py (o, =1y ) | By, = By’
< %0 = u]* = 2015 (o = €11, ) | B, %, — Byu||®

-2y (“1 - Kz#l) ”Blun - BIVHZ’
(126)
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which, together with (123), implies that

= ul’
< = ul* + (1= ) v, -
< an"xn - u"2 + (1 - (xn)
x [”xn - ”‘“2 -2, (“2 - Kz,“z) |B,%,, - Bzu“z
5 5 (127)
-2 (“1 —K .”1) “Blun - BIV" ]
= ”xn - ”“2 -2 (1 - an)
X [!"2 (0‘2 - Kzﬂz) ||BZ5En - Bz”llz

+ U (“1 - Kz.”l) “Blun - BIV||2] :

It immediately follows that

2 (1 - “n) [!/‘2 (“2 - KZP‘z) “Bzfn - Bz”"2
T (0‘1 - KZMI) ”Blun - B1V"2] 128)

< ey =l =y =l

< (e = wall -y = ull) e = 32l

Since {x,} and {y,} are bounded and 0 < y; < oc,-/;c2 fori =
1, 2, we deduce from (119) and condition (iii) that

Jlim [[B,X,, — Byul| =0,
(129)
Jim [[Byu, - Byv| = 0.

Utilizing Proposition 3 and Lemma 6, we have
oo =1
= M (®, - 12Ba%,) = T = B

— (u—Byu), J (1, —v))

= <2n -u,] (un - V)> ) <BZP - 325571’] (un - V)>

< (X, — thB,X,

1 = ~
< L0y~ ol + =l - 01 (15, = - (a9
+ Byt = By, | 1, ],
(130)
which implies that
2 = 2 -
u, —v| < |x,—u| - X,—u,—(u-v)
et =" < 120 -l - g1 (] ) W

+ 2/"2 "Bzu - Bzx\n" "un - V" .

Abstract and Applied Analysis

In the same way, we derive
Iv, - ul?
= [M1c, — 1 Byu,) ~ (v — By
< (i, ity ~ (v = 1 Byv) ] (1, - )
= (=] (1)) + iy (B Byt ] (v, - )
< 2 [t =P+ 1 =l = 2 it =, + = )]

N R |

(132)
which implies that
2 2
v, —ul|” < lu, - V|| - U, — v, +u—-v)
v = ul” < flu, =" - 9> (] ) 53)
+ 24y |Byv = Byu, || ||v,, — v -
Substituting (131) for (133), we get
v =l < 1% = ul” - g1 (|2 = 0, — =)
= g5 ([l = v + =)
+ 244y | Byut = By %, || |4, — v
+ 244y |Byv = By || [|v,, — v
5 (134)
< e = ul” - 91 (1% = 1, = @ =9)])
= 92 (s = v+ @ =)
+ 24, |Byu — By%, || |, — v
+ 24y |Byv = By, || ||v,, — v »
which, together with (123), implies that
Iy —ull’
< a,|x, - u||2 +(1-a,) v, - u”z
< o, —ul* + (1 - )
X [“xn - u"2 91 (an —u, — (U - v)")
= 5 ([ = v + =)
+ 2!"2 "Bzu - Bzfn" "un - V" (135)

+ 2u [Bry = Buuy| v, = u]
= ou o - (1 - @)
x[g1 (%, - v, = @ =)
+ g5 (Ju, = vy + =)
+2(1 - aty) (12 | By = By, | [~ v

+ ¢ [Byy = Byuay | v, = ul]) -
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It immediately follows that
(1= a,) [g (1% = up = @ =)
+ 0 (fu = v + w=)|)]

< o =l =y =

+2(1-a,) (4, |Byu = By, || [, - v (136)
+ i |Byv = By ||, = ul])

< (low = ull + 1y = ) s = 22
+ 24 | Byt = By % | i = ]
+ 244y |Bv = Byagy | v, —u

Since {x,}, {y,}, {u,,}, and {v,,} are bounded, we deduce from
(119), (129), and condition (iii) that

nlLr%ogl (I, —u, = @ -w)) =0,
(137)
Jim g, ([Ju, = v, + - w)) =0.
Utilizing the properties of g, and g,, we get
lim ||X, - u, - (u-v)|| =0,
n— 00
(138)

tim fJu, — v, + (@ -v)| =0,
which hence yields

||9?n - vn” < ||3?,, —u, —(u- v)||

+|u, = v, + (u-v)| — 0 asn— oo.

(139)
That is,
Jim ], x, -G (],nxn)" = lim ||, -v,[=0. (40)
Note that

[ =] <

Xn — G (]rnxn)" + ||G (]rnxn> - ]r,,xn
(

So from (122) and (140) we have

Jim [, =7, = 0. (142)
which, together with (122), leads to
Ix, - Gx,| < |x. - G (), %) + |G (T, x.) - G|
< % -G (%) (143)
+ |7 % - x| — 0 asn— co.
That is,
Jim fx, - Gx, | = 0. (144)
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In addition, utilizing Lemma 9 we obtain from {r,} C [e, 0c0)
that

I, = Texall < 2|0 = J1, %] (145)
which, together with (142), implies that
Jim|lx, — Jox,[| = 0. (146)
Define a mapping
Wx=(1-0)].x+60Gx, VxeC, (147)

where 6 is a constant in (0, 1). Then by Lemma 10, we know
that Fix(W) = Fix(J,) N Fix(G) = A. We observe that

|, = Wx,|| = (1 = 6) (x, - J.x,) + 0 (x,, — Gx,,)|

(148)
< (1-6) [x, = Jox, | + 0 x, - Gx, |-
So from (144) and (146) we obtain
Jimlx, = W, || = 0. (149)
Now, we claim that
limsup (f (p) = p.J (x, = p)) <O, (150)

where p = s — lim, _, ;x,, with x, being the fixed point of
the contraction x — tf(x) + (1 — )Wx of C into itself
(due to Lemma 12). Then x, solves the fixed point equation
x, = tf(x,) + (1 — t)Wx,. Thus we have

e =l = (1 =) (Wox, = x,,) +£ (f () = )] (15D)
By Lemma 5 we conclude that
I =l = 0= W, = x,) + (£ (x) - )|
< (1- 12 |Wx, - x, ]
+ 26 (f (%) = % T (%, = %))
< (1= 17 ([ W, = Wi, | + Wi, = x,)°
+2t (f (%) = %, T (%, = x,))
< (1= 17 (lx, = x) + W, = x,])°
+2t (f (x,) = %, T (%, = x,,))
= (=0 [[lxe = xl” + 2] = x| [Wox, = x|
+ ws, - x,°]
+2t (f (x,) = x,, T (x, — x,))
+ 2t (x, = %, ] (%, = x,,))
= (1-2t+8) |x, %, + £, 0

26 (f (%) = %0 T (%, = x,)) + 2t %, — x|,
(152)
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where
Fo@® = A= 0 (2]x, = x| + %, - Wa,|)

x ||x, - Wx,|| — 0,

(153)
as n — Q.

It follows from (152) that

t 2 1
<xt - f (xt) v (xt - xn)> < E”xt - xn" + an (t) . (154)
Lettingn — oo in (154) and noticing (153), we derive

limsup (x, - £ ()] (¥~ x,)) < My (159

where M, > 0 is a constant such that ||x, — x,||* < M, for all
t € (0,1) and n > 0. Taking t — 0 in (155), we have

lim sup lim sup {(x, — f (x,),J (x;, — x,,)) < 0.

t—0 n—

(156)

On the other hand, we have
(f(p)=p:J(x,-p))

=(f(p)-p.J(x, = p)) = {f (P) - P, T (x, = x,))
+{f(p) = T (%, = %)) = {f (P) = % ] (%, — x,))
+{f (p) = x0T (3, = x,)) = (f (%) = x0T (%, = %))
+(f (%) = %00 T (%, = X,))

=(f(p)=pJ (= p) =T (x, = x,))
+{xp = poJ (3= %)) + (F () = (%), ] (0 = x0))
+(f (x) = x0T (3, = %)) -

(157)
It follows that
liﬂs&l’p (f(p)-pJ(x,—P))
< hrllllso%p (f(p)-p.J(x,—p)—T(x,—x,))
+ % = ptimsup x, - x| (158)

+plp = x.[lim sup [x, - x|
+limsup { f (x;) = x,. ] (x,, — x,)) .
n— 00

Taking into account that x, — past — 0, we have from
(156)

hrfrisol(l,p (f(p)-p.J(x,—p))
= lirtnjE)Jp lirrlrlsolip (f(p)-pJ(x,—p))

< limsuplimsup (f (p) = p,J (x,, = p) = J (x, = x,)) -
t—0 n— 0o
(159)

Abstract and Applied Analysis

Since X has a uniformly Frechet differentiable norm, the
duality mapping ] is norm-to-norm uniformly continuous
on bounded subsets of X. Consequently, the two limits are
interchangeable and hence (150) holds. It is clear from (150)
that

lim sup (f (p) = T (%41 = P)) <0 (160)

Finally, let us show that x, — pasn — 00. We observe
that

G0, x) -l

Iy = 2l” < @l - I + (1 - o)
< o, = pl* + (1= ) |, - pIf (161)

= Jx. - ol

and hence

e
=B, (f (x.) = £ (p))
+(1=B)[G (T, 3n) = 2attnFG (T, y) - P
+B,(f (p)-p)I’
< B, (f () = f ()
+ (=B [G U y) = Mt FG (1)~ o[
+ 2B, {f () = P T (X1 = P))
< B fG) - FPI
+ (1= B)[GU, 3 - At FGU, ) - o
+ 2B, {f () = P> T (X1 = P))
= Bl S - £
+(1=B) (1= A, F)G (T, )
(I~ Ayt EYp — Aty Fp||
+ 2B, {f () = P T (X1 = P))
< Bupllxa - ol
+(1=B) [T = A, F) G (T, ) = (T = A1, F) p|
Aot [Fp] ]
+ 2B, {f () = P-T (X1 = P))
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< ﬁnp"xn - P”Z + (1 - ﬁn)

o[ (=m0 (152 Y1

2
+ Aths | Fp| }

+2B,(f (p) = P T (xps1 = P))
< Buplx, - ol
+(1=B) (197 = 2l + Auttn |Fp])’
+2B,(f (p) = ] (Xp1 = P))
< Bupllx. - pl’
+ (1= B,) (1 = pll + At | Fp])*
+2B,(f (p) = P T (xps1 = P))
= Buplx, - pl’
+(1=B.) [0 = pI* + Aot | Fp]
% (2]x, = pll + Aueta [ F)]
+2B,(f (p) = P T (xXps1 = P))
<(1-(1-p)B) Ix. -l
+ Aty [Ep| 21, = Pl + A, | Ep])
+2B,(f (p) = -] (xXp1 = P))
=(1-(1=p) B Ixu - 2l

c(1-p)B, {A};ﬂn 1Fpll (2 ]x, - Ii",: Aty |Fp])

. 2<f(p)—p>f(xn+1—p)>}.
1-p

(162)

Taking into account (160) and conditions (i), (ii), we obtain
that 7> (1 — p)f, = 0o and

Fopll (2 — F
lim sup { Aty [EPN 2|1, — Pl + Ao | Fp])
n— 00 ﬁn 1- P

(163)

L 20 P) = P (xns —p))} -0

1-p

Therefore, applying Lemma 4 to (162), we infer that

im e, pl =o. .

n— 00

This completes the proof. O
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Remark 19. As pointed out in [12, Remark 3.2], the sequences

{A,} {m,}> and {B,} can be taken, which satisfy the conditions
in Theorem 18. As a matter of fact, put A, = (1 + n)>/®, y, =
L,and B, = (1 + n)_z/3 for all n > 0. Then there hold the

following statements:
(i) lim,, _, 3, =0and Y 2, 3, = 0o,
(i) lim,, _, (A, ¢,,)/ B, = O,

(iii) Y20 lli%” = Bl < 00, X201 — Al
and zn:O |."ln+l - nunl < 0.

< 00,

By the careful analysis of the proof of Theorem 18, we can
obtain the following result. Because its proof is much simpler
than that of Theorem 18, we omit its proof.

Theorem 20. Let X be a uniformly convex and 2-uniformly
smooth Banach space and let A be an m-accretive operator in X
such that C = D(A) is convex. Let I1 be a sunny nonexpansive
retraction from X onto C. Let the mapping B; : C — X be «;-
inverse strongly accretive fori = 1,2, let f : X — Cbea
contractive map with coefficient p € (0,1), and let F : X —
X be §-strongly accretive and A-strictly pseudocontractive with
8+ A > 1. Assume that A = A™1(0) N Q +0, where Q is the
fixed point set of the mapping G = I1o(I — p,; B))I1-(I — 4, B,)
with 0 < y; < a/x* for i = 1,2. Given sequences {A,,}°>, in
[0, 1], {e,} 200 {But e in (0,11, and {r,},2, in [€, 00) for some

n=0

€ > 0, suppose that there hold the following conditions:
(i) lim,, _, B, =0and Y2, B, = oo,

(i) lim,, , oA, /By = 0and Y20 (A, — Al < 00,
(iil) {a,} C [a, b] for some a,b € (0, 1),

(iV) Z%O |(Xn+1 - (xn| < 00, ZZZO |ﬁn+1 - ﬁnl < 00, and
Zn:O |rn+1 - rnl < 0.

Then for any given point x, € X, the sequence {x,} generated
by

Vn = Xy + (1 _“H)G(]rn‘xn)’

Xne1 = /3nf (xn) + (1 - /';n) [yn - A F (yn)] >
Vn >0,

(165)

converges strongly to p € A, which is a unique solution of the
VIP (44).

Remark 21. Our Theorems 16-20 improve, extend, supple-
ment, and develop Cai and Bu [13, Theorem 3.1] and Ceng
et al. [12, Theorems 3.1-3.3] in the following aspects.

(i) The problem of finding a point p € AN0) N Q in
our Theorems 16-20 is very different from everyone of
both the problem of finding a point p € ), Fix(S,)NQ
in Cai and Bu [13, Theorem 3.1] and the problem
of finding a point p € A'(0) in Ceng et al. [12,
Theorems 3.1-3.3]. There is no doubt that our problem
of finding a point p € A™'(0) N Q is more general
than the problem of finding a point p € A™'(0) in [12,
Theorems 3.1-3.3].
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(ii) Compared with the choice of iterative parameters
in [12, Theorems 3.1-3.3], the choice of iterative
parameters in our Theorems 16-20 is the same as that
in [12, Theorems 3.1-3.3].

(iii) The iterative schemes in [12, Theorems 3.1-3.3] are
extended to develop the iterative schemes in our
Theorems 16-20 by virtue of the iterative scheme
of [13, Theorems 3.1]. The iterative schemes in our
Theorems 16-20 are more advantageous and more
flexible than the iterative schemes of [12, Theorems
3.1-3.3] because they involve solving two problems:
the GSVI (16) and the problem of finding zeros of an
m-accretive operator.

(iv) The iterative schemes in our Theorems 16-20 are
very different from everyone in both [13, Theorem
3.1] and [12, Theorems 3.1-3.3] because the iterative
scheme in our Theorem 16 is implicit and because the
mapping G in [13, Theorem 3.1] and the mapping J,
in [12, Theorems 3.1-3.3] are replaced by the same
composite mapping G o J, in the iterative schemes of
our Theorems 16-20.

(v) Cai and Bu’s proof in [13, Theorem 3.1] depends on
the argument techniques in [16], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 2), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 3). Because the composite
mapping G o ], appears in the iterative schemes in
our Theorems 16-20, the proof of our Theorems 16—
20 depends on the argument techniques in [16], the
inequality in 2-uniformly smooth Banach spaces (see
Lemma 2), the inequality in smooth and uniform
convex Banach spaces (see Proposition 3), and the
properties of the resolvent of an m-accretive oper-
ator (see Lemmas 8 and 9), the Banach limit (see
Lemma 11) and the strongly accretive and strictly
pseudocontractive mapping (see Proposition 13).
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