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We studied the approximate split equality problem (ASEP) in the framework of infinite-dimensional Hilbert spaces. Let 𝐻
1
, 𝐻
2
,

and 𝐻
3
be infinite-dimensional real Hilbert spaces, let 𝐶 ⊂ 𝐻

1
and 𝑄 ⊂ 𝐻

2
be two nonempty closed convex sets, and let 𝐴 :

𝐻
1
→ 𝐻

3
and 𝐵 : 𝐻

2
→ 𝐻

3
be two bounded linear operators. The ASEP in infinite-dimensional Hilbert spaces is to minimize

the function 𝑓(𝑥, 𝑦) = (1/2)‖𝐴𝑥 − 𝐵𝑦‖2
2
over 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝑄. Recently, Moudafi and Byrne had proposed several algorithms

for solving the split equality problem and proved their convergence. Note that their algorithms have only weak convergence in
infinite-dimensional Hilbert spaces. In this paper, we used the regularization method to establish a single-step iterative for solving
the ASEP in infinite-dimensional Hilbert spaces and showed that the sequence generated by such algorithm strongly converges
to the minimum-norm solution of the ASEP. Note that, by taking 𝐵 = 𝐼 in the ASEP, we recover the approximate split feasibility
problem (ASFP).

1. Introduction

Let 𝐶 ⊆ 𝑅
𝑁 and 𝑄 ⊆ 𝑅

𝑀 be closed, nonempty convex
sets, and let 𝐴 and 𝐵 be 𝐽 by 𝑁 and 𝐽 by 𝑀 real matrices,
respectively. The split equality problem (SEP) in finite-
dimensional Hilbert spaces is to find 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝑄

such that 𝐴𝑥 = 𝐵𝑦; the approximate split equality problem
(ASEP) in finite-dimensional Hilbert spaces is to minimize
the function 𝑓(𝑥, 𝑦) = (1/2)‖𝐴𝑥 − 𝐵𝑦‖

2

2
over 𝑥 ∈ 𝐶 and

𝑦 ∈ 𝑄. When 𝐽 = 𝑀 and 𝐵 = 𝐼, the SEP reduces to
the well-known split feasibility problem (SFP) and the ASEP
becomes the approximate split feasibility problem (ASFP).
For information on the split feasibility problem, please see [1–
9].

In this paper, we work in the framework of infinite-
dimensional Hilbert spaces. Let 𝐻

1
, 𝐻
2
, and 𝐻

3
be infinite-

dimensional real Hilbert spaces, let 𝐶 ⊂ 𝐻
1
and 𝑄 ⊂ 𝐻

2
be

two nonempty closed convex sets, and let 𝐴 : 𝐻
1
→ 𝐻
3
and

𝐵 : 𝐻
2
→ 𝐻
3
be two bounded linear operators.The ASEP in

infinite-dimensional Hilbert spaces is

to minimize the function 𝑓 (𝑥, 𝑦) = 1
2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐵𝑦
󵄩󵄩󵄩󵄩

2

2
(1)

over 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝑄.

Very recently, for solving the SEP,Moudafi introduced the
following alternating CQ-algorithms (ACQA) in [10]:

𝑥
𝑘+1

= 𝑃
𝐶
(𝑥
𝑘
− 𝛾
𝑘
𝐴
∗
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

𝑦
𝑘+1

= 𝑃
𝑄
(𝑦
𝑘
+ 𝛾
𝑘
𝐵
∗
(𝐴𝑥
𝑘+1

− 𝐵𝑦
𝑘
)) .

(2)

Then, he proved the weak convergence of the sequence
{𝑥
𝑘
, 𝑦
𝑘
} to a solution of the SEP provided that the solution

set Γ := {𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄;𝐴𝑥 = 𝐵𝑦} is nonempty and some
conditions on the sequence of positive parameters (𝛾

𝑘
) are

satisfied.
The ACQA involves two projections 𝑃

𝐶
and 𝑃

𝑄
and,

hence,might be hard to be implemented in the casewhere one
of them fails to have a closed-form expression. So, Moudafi
proposed the following relaxed CQ-algorithm (RACQA) in
[11]:

𝑥
𝑘+1

= 𝑃
𝐶𝑘
(𝑥
𝑘
− 𝛾𝐴
∗
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

𝑦
𝑘+1

= 𝑃
𝑄𝑘
(𝑦
𝑘
+ 𝛽𝐵
∗
(𝐴𝑥
𝑘+1

− 𝐵𝑦
𝑘
)) ,

(3)

where 𝐶
𝑘
, 𝑄
𝑘
were defined in [11], and then he proved the

weak convergence of the sequence {𝑥
𝑘
, 𝑦
𝑘
} to a solution of the

SEP.
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In [12], Byrne considered and studied the algorithms
to solve the approximate split equality problem (ASEP),
which can be regarded as containing the consistent case
and the inconsistent case of the SEP. There, he proposed a
simultaneous iterative algorithm (SSEA) as follows:

𝑥
𝑘+1

= 𝑃
𝐶
(𝑥
𝑘
− 𝛾
𝑘
𝐴
𝑇
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

𝑦
𝑘+1

= 𝑃
𝑄
(𝑦
𝑘
+ 𝛾
𝑘
𝐵
𝑇
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

(4)

where 𝜖 ≤ 𝛾
𝑘
≤ (2/𝜌(𝐺

𝑇
𝐺)) − 𝜖. Then, he proposed the

relaxed SSEA (RSSEA) and the perturbed version of the
SSEA (PSSEA) for solving the ASEP, and he proved their
convergence. Furthermore, he used these algorithms to solve
the approximate split feasibility problem (ASFP), which is
a special case of the ASEP. Note that he used the projected
Landweber algorithm as a tool in that article.

Note that the algorithms proposed byMoudafi and Byrne
have only weak convergence in infinite-dimensional Hilbert
spaces. In this paper, we use the regularization method to
establish a single-step iterative to solve the ASEP in infinite-
dimensional Hilbert spaces, and we will prove its strong
convergence.

2. Preliminaries

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively, and let 𝐾 be a nonempty closed
convex subset of𝐻. Recall that the projection from𝐻 onto𝐾,
denoted as 𝑃

𝐾
, is defined in such a way that, for each 𝑥 ∈ 𝐻,

𝑃
𝐾
𝑥 is the unique point in𝐾 with the property

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐾𝑥
󵄩󵄩󵄩󵄩 = min {󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐾} . (5)

The following important properties of projections are
useful to our study.

Proposition 1. Given that 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐾;

(a) 𝑧 = 𝑃
𝐾
𝑥 if and only if ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, for all 𝑦 ∈ 𝐾;

(b) ⟨𝑃
𝐾
𝑢 − 𝑃
𝐾
V, 𝑢 − V⟩ ≥ ‖𝑃

𝐾
𝑢 − 𝑃
𝐾
V‖2, for all 𝑢, V ∈ 𝐻.

Definition 2. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(a) nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻; (6)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive, or
equivalently,

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐻; (7)

alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇 can be
expressed as

𝑇 = (
1

2
) (𝐼 + 𝑆) , (8)

where 𝑆 : 𝐻 → 𝐻 is nonexpansive. It is well known that
projections are (firmly) nonexpansive.

Definition 3. Let 𝑇 be a nonlinear operator whose domain is
𝐷(𝑇) ⊆ 𝐻 and whose range is 𝑅(𝑇) ⊆ 𝐻.

(a) 𝑇 is said to be monotone if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (9)

(b) Given a number 𝛽 > 0, 𝑇 is said to be 𝛽-strongly
monotone if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (10)

(c) Given a number 𝐿 > 0, 𝑇 is said to be 𝐿-Lipschitz if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (11)

Lemma 4 (see [13]). Assume that 𝑎
𝑛
is a sequence of nonneg-

ative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (12)

where 𝛾
𝑛
, 𝛿
𝑛
are sequences of real numbers such that

(i) 𝛾
𝑛
⊂ (0, 1) and ∑∞

𝑛=0
𝛾
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑∞

𝑛=1
𝛾
𝑛
|𝛿
𝑛
| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Next, wewill state and prove ourmain result in this paper.

3. Regularization Method for the ASEP

Let 𝑆 = 𝐶 × 𝑄. Define

𝐺 = [𝐴 −𝐵] ,

𝜔 = [
𝑥

𝑦
] .

(13)

The ASEP can now be reformulated as finding 𝜔 ∈ 𝑆

with minimizing the function ‖𝐺𝜔‖ over 𝜔 ∈ 𝑆. Therefore,
solving the ASEP (1) is equivalent to solving the following
minimization problem (14).

The minimization problem

min
𝜔∈𝑆

𝑓 (𝜔) =
1

2
‖𝐺𝜔‖
2 (14)

is generally ill-posed. We consider the Tikhonov regulariza-
tion (for more details about Tikhonov approximation, please
see [8, 14] and the references therein)

min
𝜔∈𝑆

𝑓
𝜀
(𝜔) =

1

2
‖𝐺𝜔‖
2
+
1

2
𝜀‖𝜔‖
2
, (15)

where 𝜀 > 0 is the regularization parameter. The regulariza-
tionminimization (15) has a unique solutionwhich is denoted
by𝜔
𝜀
. Assume that theminimization (14) is consistent, and let

𝜔min be its minimum-norm solution; namely, 𝜔min ∈ Γ (Γ is
the solution set of the minimization (14)) has the property

󵄩󵄩󵄩󵄩𝜔min
󵄩󵄩󵄩󵄩 = min {‖𝜔‖ : 𝜔 ∈ Γ} . (16)

The following result is easily proved.
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Proposition 5. If the minimization (14) is consistent, then the
strong lim

𝜀→0
𝜔
𝜀
exists and is the minimum-norm solution of

the minimization (14).

Proof. For any 𝜔 ∈ Γ, we have

𝑓 (𝜔) +
𝜀

2

󵄩󵄩󵄩󵄩𝜔𝜀
󵄩󵄩󵄩󵄩

2

≤ 𝑓 (𝜔
𝜀
) +

𝜀

2

󵄩󵄩󵄩󵄩𝜔𝜀
󵄩󵄩󵄩󵄩

2

= 𝑓
𝜀
(𝜔
𝜀
) ≤ 𝑓
𝜀
(𝜔) = 𝑓 (𝜔) +

𝜀

2
‖𝜔‖
2
.

(17)

It follows that, for all 𝜀 > 0 and 𝜔 ∈ Γ,
󵄩󵄩󵄩󵄩𝜔𝜀
󵄩󵄩󵄩󵄩 ≤ ‖𝜔‖ . (18)

Therefore, 𝜔
𝜀
is bounded. Assume that 𝜀

𝑗
→ 0 is such

that 𝜔
𝜀𝑗
⇀ 𝜔
∗. Then, the weak lower semicontinuity of 𝑓

implies that, for any 𝜔 ∈ 𝑆,

𝑓 (𝜔
∗
) ≤ lim inf
𝑗→∞

𝑓(𝜔
𝜀𝑗
)

≤ lim inf
𝑗→∞

𝑓
𝜀𝑗
(𝜔
𝜀𝑗
)

≤ lim inf
𝑗→∞

𝑓
𝜀𝑗
(𝜔)

= lim inf
𝑗→∞

[𝑓 (𝜔) +

𝜀
𝑗

2
‖𝜔‖
2
]

= 𝑓 (𝜔) .

(19)

This means that 𝜔∗ ∈ Γ. Since the norm is weak lower
semicontinuous, we get from (18) that ‖𝜔∗‖ ≤ ‖𝜔‖ for all 𝜔 ∈
Γ; hence, 𝜔∗ = 𝜔min. This is sufficient to ensure that 𝜔

𝜀
⇀

𝜔min. To obtain the strong convergence, noting that (18) holds
for 𝜔min, we compute

󵄩󵄩󵄩󵄩𝜔𝜀 − 𝜔min
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜔𝜀
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝜔
𝜀
, 𝜔min⟩ +

󵄩󵄩󵄩󵄩𝜔min
󵄩󵄩󵄩󵄩

2

≤ 2 (
󵄩󵄩󵄩󵄩𝜔min

󵄩󵄩󵄩󵄩

2

− ⟨𝜔
𝜀
, 𝜔min⟩) .

(20)

Since 𝜔
𝜀
⇀ 𝜔min, we get 𝜔𝜀 → 𝜔min in norm. So, we

complete the proof.

Next we will state that 𝜔min can be obtained by two steps.
First, observing that the gradient

∇𝑓
𝜀
= ∇𝑓 + 𝜀𝐼 = 𝐺

𝑇
𝐺 + 𝜀𝐼 (21)

is (𝜀+‖𝐺‖2)-Lipschitz and 𝜀-stronglymonotone, themapping
𝑃
𝑆
(𝐼 − 𝛾∇𝑓

𝜀
) is a contraction with coefficient

√1 − 𝛾 (2𝜀 − 𝛾(‖𝐺‖
2
+ 𝜀)
2

) (≤ √1 − 𝜀𝛾 ≤ 1 −
1

2
𝜀𝛾) , (22)

where

0 < 𝛾 ≤
𝜀

(‖𝐺‖
2
+ 𝜀)
2
. (23)

Indeed, observe that

󵄩󵄩󵄩󵄩𝑃𝑆 (𝐼 − 𝛾∇𝑓𝜀) (𝑥) − 𝑃𝑆 (𝐼 − 𝛾∇𝑓𝜀) (𝑦)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛾∇𝑓𝜀) (𝑥) − (𝐼 − 𝛾∇𝑓𝜀) (𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 2𝛾 ⟨∇𝑓
𝜀
(𝑥) − ∇𝑓

𝜀
(𝑦) , 𝑥 − 𝑦⟩

+ 𝛾
2󵄩󵄩󵄩󵄩∇𝑓𝜀 (𝑥) − ∇𝑓𝜀 (𝑦)

󵄩󵄩󵄩󵄩

2

≤ (1 − 2𝛾𝜀 + 𝛾
2
(𝜀 + ‖𝐺‖

2
)
2

)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

= [1 − 𝛾 (2𝜀 − 𝛾(𝜀 + ‖𝐺‖
2
)
2

)]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜀𝛾)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(24)

Note that 𝜔
𝜀
is a fixed point of the mapping 𝑃

𝑆
(𝐼 − 𝛾∇𝑓

𝜀
)

for any 𝛾 > 0 satisfying (23) and can be obtained through the
limit as 𝑛 → ∞ of the sequence of Picard iterates as follows:

𝜔
𝜀

𝑛+1
= 𝑃
𝑆
(𝐼 − 𝛾∇𝑓

𝜀
) 𝜔
𝜀

𝑛
. (25)

Secondly, letting 𝜀 → 0 yields 𝜔
𝜀
→ 𝜔min in norm. It is

interesting to knowwhether these two steps can be combined
to get𝜔min in a single step.The following result shows that for
suitable choices of 𝛾 and 𝜀, the minimum-norm solution𝜔min
can be obtained by a single step, motivated by Xu [8].

Theorem 6. Assume that the minimization problem (14) is
consistent. Define a sequence 𝜔

𝑛
by the iterative algorithm

𝜔
𝑛+1

= 𝑃
𝑆
(𝐼 − 𝛾

𝑛
∇𝑓
𝜀𝑛
) 𝜔
𝑛
= 𝑃
𝑆
((1 − 𝜀

𝑛
𝛾
𝑛
) 𝜔
𝑛
− 𝛾
𝑛
𝐺
𝑇
𝐺𝜔
𝑛
) ,

(26)

where 𝜀
𝑛
and 𝛾
𝑛
satisfy the following conditions:

(i) 0 < 𝛾
𝑛
≤ 𝜀
𝑛
/(‖ 𝐺‖

2
+ 𝜀
𝑛
)
2 for all (large enough) 𝑛;

(ii) 𝜀
𝑛
→ 0 and 𝛾

𝑛
→ 0;

(iii) ∑∞
𝑛=1
𝜀
𝑛
𝛾
𝑛
= ∞;

(iv) (|𝛾
𝑛+1

− 𝛾
𝑛
| + 𝛾
𝑛
|𝜀
𝑛+1

− 𝜀
𝑛
|)/(𝜀
𝑛+1
𝛾
𝑛+1
)
2
→ 0.

Then,𝜔
𝑛
converges in norm to theminimum-norm solution

of the minimization problem (14).

Proof. Note that for any 𝛾 satisfying (23), 𝜔
𝜀
is a fixed point

of the mapping 𝑃
𝑆
(𝐼 − 𝛾∇𝑓

𝜀
). For each 𝑛, let 𝑧

𝑛
be the unique

fixed point of the contraction

𝑇
𝑛
:= 𝑃
𝑆
(𝐼 − 𝛾

𝑛
∇𝑓
𝜀𝑛
) . (27)

Then, 𝑧
𝑛
= 𝜔
𝜀𝑛
, and so

𝑧
𝑛
󳨀→ 𝜔min in norm . (28)

Thus, to prove the theorem, it suffices to prove that

󵄩󵄩󵄩󵄩𝜔𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (29)
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Noting that 𝑇
𝑛

has contraction coefficient of (1 −

(1/2)𝜀
𝑛
𝛾
𝑛
), we have

󵄩󵄩󵄩󵄩𝜔𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑇𝑛𝜔𝑛 − 𝑇𝑛𝑧𝑛
󵄩󵄩󵄩󵄩

≤ (1 −
1

2
𝜀
𝑛
𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝜔𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

≤ (1 −
1

2
𝜀
𝑛
𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝜔𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩 .

(30)

We now estimate
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛 − 𝑇𝑛−1𝑧𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛 − 𝑇𝑛𝑧𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛−1 − 𝑇𝑛−1𝑧𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 −
1

2
𝜀
𝑛
𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛−1 − 𝑇𝑛−1𝑧𝑛−1

󵄩󵄩󵄩󵄩 .

(31)

This implies that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩 ≤

2

𝜀
𝑛
𝛾
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛−1 − 𝑇𝑛−1𝑧𝑛−1
󵄩󵄩󵄩󵄩 . (32)

However, since 𝑧
𝑛
is bounded, we have, for an appropriate

constant𝑀 > 0,
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛−1 − 𝑇𝑛−1𝑧𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝑆
(𝐼 − 𝛾

𝑛
∇𝑓
𝜀𝑛
) 𝑧
𝑛−1

− 𝑃
𝑆
(𝐼 − 𝛾

𝑛−1
∇𝑓
𝜀𝑛−1
) 𝑧
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝛾

𝑛
∇𝑓
𝜀𝑛
) 𝑧
𝑛−1

− (𝐼 − 𝛾
𝑛−1
∇𝑓
𝜀𝑛−1
) 𝑧
𝑛−1

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝛾
𝑛
∇𝑓
𝜀𝑛
(𝑧
𝑛−1
) − 𝛾
𝑛−1
∇𝑓
𝜀𝑛−1

(𝑧
𝑛−1
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(𝛾
𝑛
−𝛾
𝑛−1
) ∇𝑓
𝜀𝑛
(𝑧
𝑛−1
)+𝛾
𝑛−1
(∇𝑓
𝜀𝑛
(𝑧
𝑛−1
)−∇𝑓
𝜀𝑛−1

(𝑧
𝑛−1
))
󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩∇𝑓 (𝑧𝑛−1) + 𝜀𝑛𝑧𝑛−1
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛−1

󵄨󵄨󵄨󵄨𝜀𝑛 − 𝜀𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑧𝑛−1
󵄩󵄩󵄩󵄩

≤ (
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 + 𝛾𝑛−1
󵄨󵄨󵄨󵄨𝜀𝑛 − 𝜀𝑛−1

󵄨󵄨󵄨󵄨)𝑀.

(33)

Combining (30), (32), and (33), we obtain

󵄩󵄩󵄩󵄩𝜔𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 ≤ (1 −

1

2
𝜀
𝑛
𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝜔𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩 + (
1

2
𝜀
𝑛
𝛾
𝑛
)𝛽
𝑛
, (34)

where

𝛽
𝑛
=
4𝑀(

󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1
󵄨󵄨󵄨󵄨 + 𝛾𝑛−1

󵄨󵄨󵄨󵄨𝜀𝑛 − 𝜀𝑛−1
󵄨󵄨󵄨󵄨)

(𝜀
𝑛
𝛾
𝑛
)
2

󳨀→ 0. (35)

Now applying Lemma 4 to (34) and using the conditions
(ii)–(iv), we conclude that ‖𝜔

𝑛+1
−𝑧
𝑛
‖ → 0; therefore, 𝜔

𝑛
→

𝜔min in norm.

Remark 7. Note that 𝜀
𝑛
= 𝑛
−𝛿 and 𝛾

𝑛
= 𝑛
−𝜎with 0 < 𝛿 < 𝜎 < 1

and 𝜎 + 2𝛿 < 1 satisfy the conditions (i)–(iv).

Remark 8. We can express the algorithm (26) in terms of 𝑥
and 𝑦, and we get

𝑥
𝑛+1

= 𝑃
𝐶
((1 − 𝜀

𝑛
𝛾
𝑛
) 𝑥
𝑛
− 𝛾
𝑛
𝐴
𝑇
(𝐴𝑥
𝑛
− 𝐵𝑦
𝑛
)) ,

𝑦
𝑛+1

= 𝑃
𝑄
((1 − 𝜀

𝑛
𝛾
𝑛
) 𝑦
𝑛
+ 𝛾
𝑛
𝐵
𝑇
(𝐴𝑥
𝑛
− 𝐵𝑦
𝑛
)) .

(36)

And we can obtain that the whole sequence (𝑥
𝑛
, 𝑦
𝑛
)

generated by the algorithm (36) strongly converges to the
minimum-norm solution of the ASEP (1) provided that the
ASEP (1) is consistent and 𝜀

𝑛
and 𝛾
𝑛
satisfy the conditions (i)–

(iv).

Remark 9. Now, we apply the algorithm (36) to solve the
ASFP. Let 𝐵 = 𝐼; the iteration in (36) becomes

𝑥
𝑛+1

= 𝑃
𝐶
((1 − 𝜀

𝑛
𝛾
𝑛
) 𝑥
𝑛
− 𝛾
𝑛
𝐴
𝑇
(𝐴𝑥
𝑛
− 𝑦
𝑛
)) ,

𝑦
𝑛+1

= 𝑃
𝑄
((1 − 𝜀

𝑛
𝛾
𝑛
) 𝑦
𝑛
+ 𝛾
𝑛
(𝐴𝑥
𝑛
− 𝑦
𝑛
)) .

(37)

This algorithm is different from the algorithms that have
been proposed to solve the ASFP, but it does solve the ASFP.

In this paper, we considered the ASEP in infinite-
dimensional Hilbert spaces, which has broad applicability in
modeling significant real-world problems. Then, we used the
regularization method to propose a single-step iterative and
showed that the sequence generated by such an algorithm
strongly converges to the minimum-norm solution of the
ASEP (1). We also gave an algorithm for solving the ASFP in
Remark 9.
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