
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 806865, 5 pages
http://dx.doi.org/10.1155/2013/806865

Research Article
The Existence of Multiple Solutions for Nonhomogeneous
Kirchhoff Type Equations in R3

Qi Zhang and Xiaoli Zhu

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

Correspondence should be addressed to Qi Zhang; zhangqi@sxu.edu.cn

Received 6 September 2013; Accepted 17 November 2013

Academic Editor: Csaba Varga

Copyright © 2013 Q. Zhang and X. Zhu.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We are concernedwith the existence ofmultiple solutions to the nonhomogeneousKirchhoff type equation−(𝑎+𝑏 ∫
R3
|∇𝑢|
2
)Δ𝑢+𝑢 =

|𝑢|
𝑝−1

𝑢 + ℎ(𝑥) in R3, where 𝑎, 𝑏 are positive constants, 𝑝 ∈ (1, 5), 0 ⩽ ℎ(𝑥) = ℎ(|𝑥|) ∈ 𝐶
1
(R3) ∩ 𝐿

2
(R3), we can find a constant

𝑚
𝑝
> 0 such that for all 𝑝 ∈ (1, 5) the equation has at least two radial solutions provided |ℎ|

2
< 𝑚
𝑝
.

1. Introduction and Main Result

In this paper, we consider the existence of multiple solutions
to the following nonhomogeneous Kirchhoff type equation:

−(𝑎 + 𝑏∫

R3
|∇𝑢|
2
)Δ𝑢 + 𝑢 = |𝑢|

𝑝−1
𝑢 + ℎ (𝑥) in R

3
, (1)

where 𝑎, 𝑏 are positive constants and 𝑝 ∈ (1, 5)⋅ℎ ∈ 𝐶
1
(R3)∩

𝐿
2
(R3) satisfies the following conditions:

(h
1
) 0 ⩽ ℎ(𝑥) = ℎ(|𝑥|) ∈ 𝐿

2
(R3) and |ℎ|

2
⩽ 𝑚
𝑝
, where

𝑚
𝑝
=
𝑝 − 1

2𝑝𝛾
2

(
𝑝 + 1

2𝑝𝛾
𝑝+1

𝑝+1

)

1/(𝑝−1)

, (2)

𝛾
𝑠
is the embedding coefficient of 𝐻1(R3) 󳨅→

𝐿
𝑠
(R3) and 𝑠 ∈ [2, 6];

(h
2
) (∇ℎ(𝑥), 𝑥) ∈ 𝐿

2
(R3), where (⋅, ⋅) denotes the usual

inner product in R3.

Recently, there have been many references about the
existence of nontrivial solutions to the following Kirchhoff
type equation by using variational method [1–5]:

−(𝑎 + 𝑏∫

R3
|∇𝑢|
2
)Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) in R

𝑁
, (3)

where 𝑎, 𝑏 are positive constants. 𝑉 : R𝑁 → R, 𝑓 ∈

𝐶(R𝑁 ×R,R), 𝑁 = 1, 2, 3. Amain tool to deal with problem
(3) is the mountain pass theorem. For this purpose, one
usually assumes that 𝑓(𝑥, 𝑡) is subcritical, superlinear at the
origin, and either 4-superlinear at infinity or satisfies the
following global Ambrosetti-Rabinowitz type condition (AR
in short):

(AR) there exists 𝜇 > 4 such that 0 < 𝜇𝐹(𝑥, 𝑡) =

∫
𝑡

0
𝑓(𝑥, 𝑠 ⩽ 𝑡𝑓(𝑥, 𝑡) for all 𝑥 ∈ R𝑁 and 𝑡 ∈ R.

Under the above assumptions, the mountain pass
geometry structure and the boundedness of Palais-
Smale sequence or Cerami sequence can be obtained.

For example, in [5], when 𝑓 satisfies above assumptions
and the potential 𝑉 satisfies the following conditions:

(V) 𝑉 ∈ 𝐶(R𝑁,R), infR𝑁𝑉 > 0 and for each 𝑀 > 0,
meas{𝑥 ∈ R𝑁 : 𝑉(𝑥) ⩽ 𝑀} < ∞, wheremeas denotes
the Lebesgue measure,

which ensure the compact imbedding of 𝐸 = {𝑢 ∈ 𝐻
1
(R𝑁) :

∫
R𝑁

𝑉𝑢
2
< ∞} 󳨅→ 𝐿

𝑞
(R𝑁), 𝑞 ∈ [2, 2

∗
), the author obtained

the existence of a nontrivial solution to problem (3).
The existence of infinitely many solutions was considered

in [2, 3] respectively, by the fountain theorem and a variant
version of the fountain theorem, where 𝑓 is odd on 𝑡 ∈

R and is also subcritical, superlinear at the origin, and either
4-superlinear at infinity or satisfies AR condition or some
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conditions weaker than AR condition. In [2], 𝑁 = 2, 3, 𝑉 ≡

1 and in [3], 𝑁 = 3, 𝑉 ∈ 𝐿
∞

loc(R
3
) satisfies the condition (V).

The existence of ground state solutions to problem (3)
was also considered in [1, 4]. In [1], the authors studied
(3) under the conditions: 𝑁 = 3, a positive potential
satisfies 𝑉

∞
= lim inf

|𝑥|→∞
𝑉(𝑥) > 𝑉

0
= inf

𝑥∈R𝑁 >

0 ⋅ 𝑓(𝑥, 𝑡) = 𝑓(𝑡) ∈ 𝐶
1
(R,R) satisfies (AR), lim

𝑡→0

(𝑓(𝑡)/|𝑡|
3
) = 0, lim

𝑡→∞
(𝑓(𝑡)/|𝑡|

𝑞
) = 0 for some 𝑞 ∈

(3, 5) and 𝑓(𝑡)/𝑡
3 increases for all 𝑡 > 0. They obtained a

positive ground state solution by using the Nehari manifold.
Under the same condition of 𝑉 in [1], the authors in [4]

discussed the existence of multiple ground state solutions,
where 𝑓(𝑥, 𝑡) = 𝜆𝑓(𝑡)+ |𝑡|

4
𝑡, which contains a critical growth

term.
Recently, in [6], the authors studied the existence of a

positive solution for the following Kirchhoff equation:

(𝑎 + 𝜆∫

R3
[|∇𝑢|
2
+ 𝑏𝑢
2
]) (−Δ𝑢 + 𝑏𝑢) = 𝑓 (𝑢) in R

3
,

(4)

where 𝑁 ⩾ 3, 𝑎, 𝑏 > 0, 𝑓 is subcritical, superlinear at the
origin and infinity. In order to construct the mountain pass
geometry structure and obtain the bounded PS sequence,
they combined a truncation argument with a monotonicity
trick introduced by Jeanjean [7], and obtained that there
exists 𝜆

0
> 0 such that problem (4) has at least one positive

solution for 𝜆 ∈ (0, 𝜆
0
).

Motivated by the aformentioned references, we consider
the existence of multiple solutions to the nonhomogeneous
Kirchhoff equation (1), where 𝑝 ∈ (1, 5). By using the varia-
tional method, we obtain that the problem has at least two
positive radial solutions. Under proper assumptions on ℎ,
the problem has a local minimum around the origin with
negative energy by Ekeland variational principle. Note that
the term |𝑢|

𝑝−1
𝑢 is neither 4-superlinear nor satisfies AR

condition for 𝑝 ∈ (1, 3]. In order to obtain the bounded PS
sequence, we also use the indirect method in [7]. Meanwhile,
for 𝑤 ∈ 𝐻

1
(R3), we take a transform of 𝑤

𝑡
(⋅) = 𝑡𝑤(𝑡

−2
⋅) to

construct the mountain pass geometry structure. Finally, the
combination of Pohozaev identity with the method in [7]
obtains the bounded PS sequence. Therefore, we obtain the
second solution which has positive energy.

Let 𝐻1(R3) be the usual Sobolev space equippedwith the
inner product and norm

(𝑢, V) = ∫

R3
[𝑎∇𝑢 ⋅ ∇V + 𝑢V] , ‖𝑢‖ = (𝑢, 𝑢)

1/2
. (5)

We denote by | ⋅ |
𝑠
the usual 𝐿𝑠(R3) norm. Then, we have

that 𝐻1(R3) 󳨅→ 𝐿
𝑠
(R3) continuously for 𝑠 ∈ [2, 6]. Hence,

there exists 𝛾
𝑠
such that

|𝑢|
𝑠
⩽ 𝛾
𝑠 ‖𝑢‖ , 𝑢 ∈ 𝐻

1
(R
3
) . (6)

Let 𝐻 = 𝐻
1

𝑟
(R3) be the subspace of 𝐻1(R3) containing

only the radial functions. Then the imbedding 𝐻 󳨅→

𝐿
𝑠
(R3) is compact for 𝑠 ∈ (2, 6) [8, Corollary 1.26, page 18].

Let D1,2(R3) be the completion of 𝐶∞
0
(R3) with respect to

the norm ‖ 𝑢‖D1,2 = (∫
R3
|∇𝑢|
2
)
1/2.

Define the energy functional 𝐽 : 𝐻1(R3) → R by

𝐽 (𝑢) =
1

2
∫

R3
[𝑎|∇𝑢|

2
+ 𝑢
2
] +

𝑏

4
(∫

R3
|∇𝑢|
2
)

2

−
1

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

− ∫

R3
ℎ𝑢.

(7)

By 𝑝 ∈ (1, 5), ℎ ∈ 𝐿
2
(R3), we have 𝐽 ∈ 𝐶1(𝐻1(R3),R). And,

for any 𝑢, V ∈ 𝐻1(R3),

(𝐽
󸀠
(𝑢) , V) = ∫

R3
[𝑎∇𝑢 ⋅ ∇V + 𝑢V]

+ 𝑏 (∫

R3
|∇𝑢|
2
)∫

R3
∇𝑢 ⋅ ∇V

− ∫

R3
|𝑢|
𝑝−1

𝑢V − ∫
R3
ℎV.

(8)

Furthermore, by (h
1
), ℎ(𝑥) = ℎ(|𝑥|), the functional 𝐽 is

also a 𝐶1 functional defined on 𝐻. By standard argument,
the weak solution of (1) is corresponding to the critical point
of the functional 𝐽 on 𝐻.

Our main result is as follows.

Theorem 1. Let 𝑝 ∈ (1, 5) and ℎ satisfy (h1)-(h2). Then, prob-
lem (1) has at least two nontrivial radial solutions 𝑢

0
and V

0
,

satisfying 𝐽(𝑢
0
) < 0 < 𝐽(V

0
).

The paper is organized as follows. In Section 2, we give
the existence of the negative energy solution 𝑢

0
.The existence

of positive energy solution V
0
and the proof ofTheorem 1 are

given in Section 3.

2. Existence of Negative Energy Solution

In this section, we give the existence of the negative energy
solution. In order to obtain our first solution, we need the
following preliminaries.

Lemma 2. Let 𝑝 ∈ (1, 5) and ℎ satisfy (h1). Then, there
exists 𝜌, 𝛼 > 0 such that 𝐽|

𝜕𝐵𝜌
⩾ 𝛼, where 𝐵

𝜌
= {𝑢 ∈ 𝐻 :‖

𝑢 ‖< 𝜌}.

Proof. For 𝑢 ∈ 𝐻, by (7), the Hölder inequality and the
Sobolev inequality imply that

𝐽 (𝑢) ⩾
1

2
‖𝑢‖
2
−

1

𝑝 + 1
𝛾
𝑝+1

𝑝+1
‖𝑢‖
𝑝+1

−
󵄨󵄨󵄨󵄨ℎ|2

󵄨󵄨󵄨󵄨 𝑢|2

⩾ ‖𝑢‖ (
1

2
‖𝑢‖ −

1

𝑝 + 1
𝛾
𝑝+1

𝑝+1
‖𝑢‖
𝑝
− 𝛾
2|ℎ|2) .

(9)

Set

𝑔 (𝑡) =
1

2
𝑡 −

1

𝑝 + 1
𝛾
𝑝+1

𝑝+1
𝑡
𝑝
, 𝑡 ⩾ 0, (10)
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since 𝑝 > 1, by calculating directly, we see that max
𝑡⩾0
𝑔(𝑡) =

𝑔(𝜌) > 0, where 𝜌 = ((𝑝 + 1)/2𝑝𝛾
𝑝+1

𝑝+1
)
1/(𝑝−1), 𝑔(𝜌) = ((𝑝 −

1)/2𝑝)𝜌. Then it follows that, if |ℎ|
2
𝛾
2
< 𝑔(𝜌), that is, |ℎ|

2
<

𝛾
−1

2
𝑔(𝜌) ≜ 𝑚

𝑝
, there exists 𝛼 = 𝜌(𝑔(𝜌) − 𝛾

2
|ℎ|
2
) > 0 such

that 𝐽|
𝜕𝐵𝜌

⩾ 𝛼, where

𝑚
𝑝
=
𝑝 − 1

2𝑝𝛾
2

(
𝑝 + 1

2𝑝𝛾
𝑝+1

𝑝+1

)

1/(𝑝−1)

. (11)

Lemma 3. Let 𝑝 ∈ (1, 5) and ℎ satisfy (h1). Then 𝑐 =

inf
𝐵𝜌
𝐽 < 0, where 𝜌 is given by Lemma 2 and 𝐵

𝜌
= {𝑢 ∈ 𝐻 :

‖𝑢‖ < 𝜌}.

Proof. By (h
1
), ℎ ∈ 𝐿2(R3), ℎ ̸= 0, then for 𝜀 ∈ (0, |ℎ|

2
), there

exists 𝜓 ∈ 𝐶
∞

0
(R3) such that |ℎ − 𝜓|

2
< 𝜀. Then ∫

R3
(ℎ
2
−

ℎ𝜓) ⩽ ∫
R3
|ℎ
2
− ℎ𝜓| ⩽ 𝜀|ℎ|

2
, so ∫

R3
ℎ𝜓 ⩾ |ℎ|

2

2
− 𝜀|ℎ|

2
> 0.

Hence, by (7), for 𝑡 > 0 small enough, we have

𝐽 (𝑡𝜓) =
𝑡
2

2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

+
𝑏𝑡
4

4
(∫

R3

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

)

2

−
𝑡
𝑝+1

𝑝 + 1
∫

R3

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

𝑝+1

− 𝑡∫

R3
ℎ𝜓 < 0.

(12)

Then, by the definition of 𝐵
𝜌
, 𝑐 = inf

𝐵𝜌
𝐽 < 0.

Lemma 4. Let 𝑝 ∈ (1, 5) and ℎ satisfy (h1). The bounded PS
sequence of the functional 𝐽 possesses a convergent subsequence.

Proof. Let {𝑢
𝑛
} be a bounded PS sequence of 𝐽, that

is {𝑢
𝑛
} and {𝐽(𝑢

𝑛
)} are bounded, 𝐽

󸀠
(𝑢
𝑛
) → 0 in 𝐻

󸀠,
where 𝐻󸀠 is the dual space of 𝐻. We may assume that, up to
a subsequence,

𝑢
𝑛
⇀ 𝑢 in 𝐻, 𝑢

𝑛
󳨀→ 𝑢 in 𝐿

𝑝+1
(R
3
) ,

𝑢
𝑛
󳨀→ 𝑢 a.e. on R

3
.

(13)

It follows that

∫

R3
(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝−1

𝑢
𝑛
− |𝑢|
𝑝−1

𝑢) (𝑢
𝑛
− 𝑢) 󳨀→ 0, 𝑛 󳨀→ ∞. (14)

By (8), we can obtain that

(𝐽
󸀠
(𝑢
𝑛
) − 𝐽
󸀠
(𝑢) , 𝑢

𝑛
− 𝑢)

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 𝑏 (∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)∫

R3
∇𝑢
𝑛
⋅ (∇𝑢
𝑛
− ∇𝑢)

− 𝑏 (∫

R3
|∇𝑢|
2
)∫

R3
∇𝑢 ⋅ (∇𝑢

𝑛
− ∇𝑢)

− ∫

R3
(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝−1

𝑢
𝑛
− |𝑢|
𝑝−1

𝑢) (𝑢
𝑛
− 𝑢)

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 𝑏 (∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛 − ∇𝑢
󵄨󵄨󵄨󵄨

2

+ 𝑏 (∫

R3
(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

− |∇𝑢|
2
))∫

R3
∇𝑢 ⋅ (∇𝑢

𝑛
− ∇𝑢)

− ∫

R3
(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝−1

𝑢
𝑛
− |𝑢|
𝑝−1

𝑢) (𝑢
𝑛
− 𝑢) .

(15)

Since {𝑢
𝑛
} is also bounded in D1,2(R3), then

𝑏 (∫

R3
(
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨

2

− |∇𝑢|
2
))∫

R3
∇𝑢 ⋅ (∇𝑢

𝑛
− ∇𝑢) 󳨀→ 0. (16)

Therefore,

0 ⩽
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

⩽
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+𝑏 (∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛 − ∇𝑢
󵄨󵄨󵄨󵄨

2

󳨀→ 0, 𝑛 󳨀→ ∞.

(17)

That is, 𝑢
𝑛
→ 𝑢 in 𝐻.

Theorem 5. Let 𝑝 ∈ (1, 5) and ℎ satisfy (h1). Then, there
exists 𝑢

0
∈ 𝐻 such that

𝐽 (𝑢
0
) = 𝑐 = inf

𝐵𝜌

𝐽 (𝑢) < 0, (18)

where 𝜌 is given by Lemma 2 and 𝐵
𝜌
= {𝑢 ∈ 𝐻 : ‖𝑢‖ < 𝜌}.

Proof. By Lemma 3, 𝑐 = inf{𝐽(𝑢) : 𝑢 ∈ 𝐵
𝜌
} < 0, then by

Ekeland variational principle [9], there exists {𝑢
𝑛
} ⊂ 𝐵
𝜌
such

that

𝑐 ⩽ 𝐽 (𝑢
𝑛
) ⩽ 𝑐 +

1

𝑛
,

𝐽 (𝜔) ⩾ 𝐽 (𝑢
𝑛
) −

1

𝑛

󵄩󵄩󵄩󵄩𝜔 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 ∀𝜔 ∈ 𝐵
𝜌
.

(19)

Then, by Lemma 2 𝑢
𝑛

∈ 𝐵
𝜌
, then {𝑢

𝑛
} is a bounded

PS sequence of 𝐽. Therefore, Lemma 4 implies that there
exists 𝑢

0
∈ 𝐻 such that 𝑢

𝑛
→ 𝑢

0
, up to a subsequence.

So 𝐽(𝑢
0
) = 𝑐 < 0 and 𝐽

󸀠
(𝑢
0
) = 0.

3. Proof of Theorem 1

In this section, we will show the existence of the second solu-
tion. Note that 𝑝 ∈ (1, 5), when 𝑝 ∈ (1, 3], |𝑢|𝑝−1𝑢 neither
satisfies (AR) condition nor is 4-superlinear. So, in order to
obtain the bounded PS sequence, following the argument in
[6], we also use a direct method in [7]. Firstly, we recall the
following main result in [7]. The “monotonicity trick” at the
core of this theorem was invented by Struwe (see [9]).

Theorem 6 (see [7]). Let (𝑋, ‖ ⋅ ‖) be a Banach space and
𝐼 ⊂ R

+
be an interval. Consider the family of 𝐶1 functionals

on 𝑋

𝐽
𝜆
(𝑢) = 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , 𝜆 ∈ 𝐼, (20)
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with 𝐵 nonnegative and either 𝐴(𝑢) → ∞ or 𝐵(𝑢) → ∞

as ‖𝑢‖ → ∞. We assume that there are two points V
1
,

V
2
in 𝑋 such that

𝑐
𝜆
= inf
𝛾∈Γ𝜆

max
𝑡∈[0,1]

𝐽
𝜆
(𝛾 (𝑡)) > max {𝐽

𝜆
(V
1
) , 𝐽
𝜆
(V
2
)} , ∀𝜆 ∈ 𝐽,

(21)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝑋) : 𝛾 (0) = V
1
, 𝛾 (1) = V

2
} . (22)

Then, for almost every 𝜆 ∈ 𝐼 there is a sequence {𝑢
𝑛
(𝜆)} ⊂

𝑋 such that
(i) {𝑢
𝑛
(𝜆)} is bounded;

(ii) 𝐽
𝜆
(𝑢
𝑛
(𝜆)) → 𝑐

𝜆
;

(iii) 𝐽󸀠
𝜆
(𝑢
𝑛
(𝜆)) → 0 in the dual 𝑋−1 of 𝑋.

In our case, 𝑋 = 𝐻, 𝐼 = [1/2, 1], and define 𝐽
𝜆
: 𝑋 →

R by

𝐽
𝜆
(𝑢) = 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , (23)

where 𝜆 ∈ 𝐼,

𝐴 (𝑢) =
1

2
‖𝑢‖
2
+
𝑏

4
(∫

R3
|∇𝑢|
2
)

2

−∫

R3
ℎ𝑢, 𝐵 (𝑢) =

1

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

.

(24)

Then {𝐽
𝜆
}
𝜆∈𝐼

is a family of 𝐶1 functionals on 𝐻. For any 𝑢 ∈
𝐻, 𝐵(𝑢) ⩾ 0, and 𝐴(𝑢) ⩾ (1/2)‖𝑢‖

2
− 𝛾
2
|ℎ|
2
‖𝑢‖ →

∞ as ‖𝑢‖ → ∞.
In the following, we verify that the functional 𝐽

𝜆
satisfies

the conditions of Theorem 6.

Lemma 7. Let 𝑝 ∈ (1, 5) and ℎ satisfy (h1)-(h2). Then, the
following claims hold:

(i) there exist 𝑟, 𝑎 > 0 and 𝑒 ∈ 𝐻 such that for all 𝜆 ∈ 𝐼

𝐽
𝜆
|
𝜕𝐵𝜌

(𝑢) ⩾ 𝑎 > 0, 𝐽
𝜆
(𝑒) < 0 with ‖𝑒‖ > 𝑟; (25)

(ii) for any 𝜆 ∈ 𝐼,

𝑐
𝜆
= inf
𝛾∈Γ

max
𝑡∈[0,1]

𝐽
𝜆
(𝛾 (𝑡)) > max {𝐽

𝜆
(0) , 𝐽
𝜆
(𝑒)} , (26)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝑋) : 𝛾 (0) = 0, 𝛾 (1) = 𝑒} . (27)

Proof. (i) Since for all 𝑢 ∈ 𝐻 and 𝜆 ∈ 𝐼 = [1/2, 1], 𝐽
𝜆
(𝑢) ⩾

𝐽
1
(𝑢). By Lemma 2, there exist 𝑟, 𝑎 > 0 independent of 𝜆 ∈

𝐼 such that 𝐽
𝜆
(𝑢) ⩾ 𝑎 > 0 with ‖𝑢‖ = 𝑟.

We choose a function 𝑤 ∈ 𝐻 and 𝑤 ̸= 0. Set 𝑤
𝑡
(⋅) =

𝑡𝑤(𝑡
−2
⋅) for 𝑡 > 0. Then, for all 𝜆 ∈ 𝐼, by (7) and (h

1
), we

have

𝐽
𝜆
(𝑤
𝑡
) ⩽

𝑎𝑡
4

2
∫

R3
|∇𝑤|
2
+
𝑡
8

2
∫

R3
|𝑤|
2

+
𝑏𝑡
8

4
(∫

R3
|∇𝑤|
2
)

2

−
𝑡
𝑝+7

2 (𝑝 + 1)
∫

R3
|𝑤|
𝑝+1

.

(28)

Noting 𝑝 > 1, then there exists 𝑡
0
large enough satisfy-

ing ‖𝑤
𝑡0
‖ > 𝑟, which is independent of 𝜆 ∈ 𝐼, such that for

all 𝜆 ∈ 𝐼, 𝐽
𝜆
(𝑒) < 0 with 𝑒 = 𝑤

𝑡0
.

(ii) Since 𝑐
𝜆
is nonincreasing on 𝜆 ∈ 𝐼, then by the

definition of 𝑐
𝜆
and (i), for all 𝜆 ∈ 𝐼, we have 𝑐

1/2
⩾ 𝑐
𝜆
⩾

𝑐
1
⩾ 𝑎 > 0.

By Lemma 7 andTheorem 6, for almost every 𝜆 ∈ 𝐼, there
exists a bounded sequence {𝑢𝜆

𝑛
} ⊂ 𝐻 such that 𝐽

𝜆
(𝑢
𝜆

𝑛
) →

𝑐
𝜆
, (𝐽
𝜆
)
󸀠
(𝑢
𝜆

𝑛
) → 0. By Lemma 4, there exists 𝑢𝜆 ∈ 𝐻 such

that 𝑢𝜆
𝑛
→ 𝑢
𝜆 in 𝐻. Therefore, (𝐽

𝜆
)
󸀠
(𝑢
𝜆
) = 0 and 𝐽

𝜆
(𝑢
𝜆
) =

𝑐
𝜆
. It follows from (ii) of Lemma 7 that 𝑢𝜆 ̸= 0.
Therefore, there exists {𝜆

𝑛
} ⊂ 𝐼 with 𝜆

𝑛
→ 1
− and a

nonnegative sequence {𝑢𝜆𝑛} (denoted by {𝑢
𝑛
} for simplicity)

satisfying

𝐽
𝜆𝑛
(𝑢
𝑛
) = 𝑐
𝜆𝑛
, (𝐽

𝜆𝑛
)
󸀠

(𝑢
𝑛
) = 0. (29)

In order to obtain the boundedness of {𝑢
𝑛
}, we need

the following Pohozaev identity. The proof is similar to the
argument in [10].

Lemma 8. Under the conditions of (h1) and (h2), if 𝑢 ∈ 𝐻 is
a weak solution of (1), the following Pohozaev identity holds:

1

2
(𝑎 + 𝑏∫

R3
|∇𝑢|
2
)∫

R3
|∇𝑢|
2
+
3

2
∫

R3
𝑢
2

=
3

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

+ ∫

R3
(3ℎ + (∇ℎ (𝑥) , 𝑥)) 𝑢.

(30)

Lemma 9. Consider {𝑢
𝑛
} in (29) is bounded in𝐻.

Proof. Firstly, since (𝐽
𝜆𝑛
)
󸀠
(𝑢
𝑛
) = 0, then by Lemma 8, 𝑢

𝑛

satisfies the following Pohozaev identity:

𝑎

2
∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

+
𝑏

2
(∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)

2

+
3

2
∫

R3
𝑢
2

𝑛

− 𝜆
𝑛

3

𝑝 + 1
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝+1

− 3∫

R3
ℎ (𝑥) 𝑢

𝑛

− ∫

R3
(∇ℎ (𝑥) , 𝑥) 𝑢

𝑛
= 0.

(31)

On the other hand, by ((𝐽
𝜆𝑛
)
󸀠
(𝑢
𝑛
), 𝑢
𝑛
) = 0 and 𝐽

𝜆𝑛
(𝑢
𝑛
) = 𝑐
𝜆𝑛
,

we have that

𝑎∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

+ 𝑏(∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)

2

+ ∫

R3
𝑢
2

𝑛

− 𝜆
𝑛
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝+1

− ∫

R3
ℎ𝑢
𝑛
= 0,

(32)

𝑎

2
∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

+
𝑏

4
(∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)

2

+
1

2
∫

R3
𝑢
2

𝑛

−
𝜆
𝑛

𝑝 + 1
∫

R3

󵄨󵄨󵄨󵄨𝑢n
󵄨󵄨󵄨󵄨

𝑝+1

− ∫

R3
ℎ𝑢
𝑛
= 𝑐
𝜆𝑛
.

(33)
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Then, combining (33) with (31), we can obtain

𝑎∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

+
𝑏

4
(∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2

)

2

= 3𝑐
𝜆𝑛
− ∫

R3
(∇ℎ (𝑥) , 𝑥) 𝑢

𝑛
.

(34)

Since 𝑐
𝜆𝑛

⩽ 𝑐
1/2

by Lemma 7, and (∇ℎ(𝑥), 𝑥) ∈ 𝐿
2
(R3), so

in order to prove the boundedness of {𝑢
𝑛
} in 𝐻, we only

need to prove that |𝑢
𝑛
|
2
is bounded. By contradiction, we

assume that |𝑢
𝑛
|
2

→ ∞, up to a subsequence. Let V
𝑛
=

𝑢
𝑛
/|𝑢
𝑛
|
2
, 𝑋
𝑛
= 𝑎∫

R3
|∇V
𝑛
|
2, 𝑌
𝑛
= 𝑏|𝑢

𝑛
|
2

2
(∫

R3
|∇V
𝑛
|
2
)
2, 𝑍
𝑛
=

𝜆
𝑛
|𝑢
𝑛
|
𝑝−1

2
∫
R3
|V
𝑛
|
𝑝+1.

Note that 𝑐
𝜆𝑛

is bounded and ℎ, (∇ℎ(𝑥), 𝑥) ∈ 𝐿
2
(R3).

Multiplying (31)–(33) by 1/|𝑢
𝑛
|
2

2
, we have that

𝑋
𝑛

2
+
𝑌
𝑛

2
−

3

𝑝 + 1
𝑍
𝑛
= −

3

2
+ 𝑜 (1) ,

𝑋
𝑛
+ 𝑌
𝑛
− 𝑍
𝑛
= −1 + 𝑜 (1) ,

𝑋
𝑛

2
+
𝑌
𝑛

4
−

𝑍
𝑛

𝑝 + 1
= −

1

2
+ 𝑜 (1) ,

(35)

where 𝑜(1) denotes the quantity tends to zero as 𝑛 → ∞. By
calculating, we obtain that

𝑋
𝑛
=
1 − 𝑝

5 − 𝑝
+ 𝑜 (1) . (36)

Since 𝑝 ∈ (1, 5) and 𝑋
𝑛

⩾ 0 for 𝑛 ∈ N, so this is a
contradiction for 𝑛 large enough.Therefore, {𝑢

𝑛
} is bounded

in 𝐻.

Proof of Theorem 1. Since

𝐽 (𝑢
𝑛
) = 𝐽
𝜆𝑛
(𝑢
𝑛
) + (𝜆

𝑛
− 1)

1

𝑝 + 1
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝+1

,

(𝐽
󸀠
(𝑢
𝑛
) , V) = ((𝐽

𝜆𝑛
)
󸀠

(𝑢
𝑛
) , V)

+ (𝜆
𝑛
− 1)∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝−1

𝑢
𝑛
V, V ∈ 𝐻.

(37)

By Lemma 9 and 𝐻 󳨅→ 𝐿
𝑝+1

(R3), |𝑢
𝑛
|
𝑝+1

is bounded
and | ∫

R3
|𝑢
𝑛
|
𝑝−1

𝑢
𝑛
V| ⩽ 𝛾

𝑝+1

𝑝+1
|𝑢
𝑛
|
𝑝

𝑝+1
‖V‖. Thus, when 𝜆

𝑛
→

1
−, we have that {𝐽(𝑢

𝑛
)} is bounded and 𝐽

󸀠
(𝑢
𝑛
) → 0.

Therefore {𝑢
𝑛
} is a bounded PS sequence of 𝐽. By Lemma 4,

{𝑢
𝑛
} has a convergent subsequence. We may assume that

𝑢
𝑛
→ V
0
, up to a subsequence. Consequently, 𝐽󸀠(V

0
) = 0.

According to Lemma 7, we have 𝐽(V
0
) = lim

𝑛→∞
𝐽(𝑢
𝑛
) =

lim
𝑛→∞

𝐽
𝜆𝑛
(𝑢
𝑛
) ⩾ 𝑎 > 0. Thus V

0
is a positive energy solution

to problem (1). Hence, by Theorem 5 problem (1) has two
solutions 𝑢

0
and V
0
satisfying 𝐽(𝑢

0
) < 0 < 𝐽(V

0
).

Acknowledgments

The authors thank the anonymous referee for the careful
reading and some helpful comments, which greatly improve
the paper. Projects supported by theNational Natural Science
Foundation of China (Grant no. 11071149), Science Council of
Shanxi Province (2010011001-1, 2012011004-2, 2013021001-4).

References

[1] X. He and W. Zou, “Existence and concentration behavior of
positive solutions for a Kirchhoff equation in 𝑅

3,” Journal of
Differential Equations, vol. 252, no. 2, pp. 1813–1834, 2012.

[2] J. Jin and X.Wu, “Infinitely many radial solutions for Kirchhoff-
type problems in 𝑅

𝑁,” Journal of Mathematical Analysis and
Applications, vol. 369, no. 2, pp. 564–574, 2010.

[3] W. Liu and X. He, “Multiplicity of high energy solutions for
superlinear Kirchhoff equations,” Journal of Applied Mathemat-
ics and Computing, vol. 39, no. 1-2, pp. 473–487, 2012.

[4] J. Wang, L. Tian, J. Xu, and F. Zhang, “Multiplicity and
concentration of positive solutions for a Kirchhoff type problem
with critical growth,” Journal of Differential Equations, vol. 253,
no. 7, pp. 2314–2351, 2012.

[5] X. Wu, “Existence of nontrivial solutions and high energy
solutions for Schrödinger-Kirchhoff-type equations in R𝑁,”
Nonlinear Analysis, vol. 12, no. 2, pp. 1278–1287, 2011.

[6] Y. Li, F. Li, and J. Shi, “Existence of a positive solution to
Kirchhoff type problems without compactness conditions,”
Journal of Differential Equations, vol. 253, no. 7, pp. 2285–2294,
2012.

[7] L. Jeanjean, “On the existence of bounded Palais-Smale
sequences and application to a Landesman-Lazer-type problem
set on R𝑁,” Proceedings of the Royal Society of Edinburgh A, vol.
129, no. 4, pp. 787–809, 1999.

[8] M. Willem, Minimax Theorems, Progress in Nonlinear Differ-
ential Equations and their Applications, 24, Birkhäuser, Boston,
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