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This paper concerns the complete controllability of the impulsive stochastic integrodifferential systems in Hilbert space. Based on
the semigroup theory and Burkholder-Davis-Gundy’s inequality, sufficient conditions of the complete controllability for impulsive
stochastic integro-differential systems are established by using the Banach fixed point theorem. An example for the stochastic wave
equation with impulsive effects is presented to illustrate the utility of the proposed result.

1. Introduction

It is well known that controllability is one of the fundamental
concepts and plays an important role in control theory and
engineering. The problem which is about controllability of
linear and nonlinear stochastic systems represented by SODE
(stochastic ordinary differential equation) in finite dimen-
sional space has been extensively studied (e.g., [1–4] and ref-
erences therein). The controllability for infinite dimensional
stochastic systems represented by SPDE (stochastic partial
differential equation) is natural generalization of stochastic
systems in finite dimensional space [5]. According to the lit-
erature, at least three types of infinite dimensional stochastic
systems have been studied, that is, approximate, complete,
and 𝑆-controllability [6], so the controllability research of
the infinite dimensional stochastic systems is usually more
complicated than that of the finite dimensional. For linear
stochastic system, the controllability problem has been stud-
ied by some authors [6, 7], which is shown as the following
SPDE:

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)] 𝑑𝑡 + Σ (𝑡) 𝑑𝑊 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥
0
∈ L
2
(Ω,𝐻) ,

(1)

where 𝑥
0
is F
0
-measurable, 𝐻 is separable Hilbert space, 𝐴

is the infinitesimal generator of a strongly continuous semi-
group 𝑆(𝑡) on𝐻, 𝐵 ∈ L(𝑈,𝐻), 𝑢(𝑡) is feedback control,𝑊(𝑡)

is 𝑄-Wiener process, and Σ ∈ L
2
(𝑄
1/2

𝐸,𝐻). For nonlinear
stochastic systems in infinite dimensional space, there are
also many results on the controllability theory (see [8–13]).

On the other hand, the impulsive effects exist widely in
many evolution processes in which the states are changed
abruptly at certain moments of time, involving fields such
as finance, economics, mechanics, electronics, and telecom-
munications (see [14] and references of therein). Impulsive
differential systems have emerged as an important area inves-
tigation in applied sciences, andmany papers have been pub-
lished about the controllability of impulsive differential sys-
tems both in finite and infinite dimensional space. Sakthivel
et al. [15] established the sufficient conditions for approximate
controllability of nonlinear impulsive differential systems by
Schauder’s fixed point theorem; Li et al. [16] investigated
the complete controllability of the first-order impulsive func-
tional differential systems in Banach space using Schaefer’s
fixed point theorem; Chang [17] studied the complete con-
trollability of impulsive functional differential systems with
infinite delay; Sakthivel et al. [18] discussed complete con-
trollability of second-order nonlinear impulsive differential
systems. However, the complete controllability problem of
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impulsive stochastic integro-differential systems has not been
investigated in infinite dimensional space yet, to the best of
our knowledge, although [19–22], respectively, investigated
the controllability of impulsive stochastic control systems in
finite dimensional space by using contraction mapping prin-
ciple; and Subalakshmi and Balachandran [23] studied the
approximate controllability of nonlinear stochastic impulsive
systems in Hilbert spaces by using Nussbaum’s fixed point
theorem. Based on Banach fixed point theorem, the proposed
work in this paper on the complete controllability of the
integro-differential stochastic systems with impulsive effects
in Hilbert spaces is new in the literature.

In this paper, our main purpose is to show the com-
plete controllability of following impulsive stochastic integro-
differential systems in Hilbert space,

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)

+ 𝐹(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠)] 𝑑𝑡

+ 𝐺(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

𝑔 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) 𝑑𝑤 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ⩾ 0,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥
𝑡
−

𝑘

) , 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥
0
∈ 𝐻,

(2)

where 𝐹 : [0, 𝑇] × 𝐻 × 𝐻 → 𝐻, 𝐺 : [0, 𝑇] × 𝐻 × 𝐻 →

L
2
(𝑄
1/2

𝐸,𝐻), 𝑓, 𝑔 : [0, 𝑇 × [0, 𝑇] × 𝐻 → 𝐻 are measur-
able mappings. 𝐼

𝑘
(𝑥
𝑡
−

𝑘

) = 𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

𝜌, where 𝑥(𝑡
+

𝑘
) and 𝑥(𝑡

−

𝑘
) denote the right and left limits of

𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, respectively. Also Δ𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
)

represents the jump in the state 𝑥 at time 𝑡
𝑘
with 𝐼

𝑘
deter-

mining the size of the jump. For systems (2), if 𝐼
𝑘

= 0, the
controllability problemwas studied by Subalakshmi et al. [11].
If 𝐼
𝑘

̸= 0 and 𝐺 = 0, 𝑓 = 0, [15] discussed the approx-
imate controllability problem. When 𝐴, 𝐵 are matrices with
appropriate dimensions, 𝐹, 𝐺 are vectors (in fact, matrix is
aspecial form of operator), and 𝑓 = 𝑔 = 0, Karthikeyan et al.
[19] obtained the controllability results, so system (2) is of the
more general form and has great diversity.

The outline of this paper is as follows: Section 2 con-
tains basic notations, lemmas, and preliminary facts. The
controllability results are given in Section 3 by fixed point
methods. In Section 4, we provide an example to demonstrate
the effectiveness of ourmethod. Finally, conclusions are given
in Section 5.

2. Preliminaries

Let (Ω,F,P) be a complete probability space with a filtra-
tion {F

𝑡
}
𝑡⩾0

satisfying the usual conditions (i.e., it is right
continuous and F

0
contains all P-null sets). We consider

three Hilbert spaces 𝐸, 𝐻, and𝑈, and a𝑄-Wiener process on
(Ω,F,P) with the covariance operator 𝑄 ∈ L(𝐸) such that
tr𝑄 < ∞. Let ⟨⋅⟩ and ‖ ⋅ ‖ denote inner product and norm

of 𝐻, respectively.L(𝑋, 𝑌) is the space of all linear bounded
operator from aHilbert space𝑋 to a Hilbert space 𝑌. We also
employ the same notation ‖ ⋅ ‖ for the norm ofL(𝑋, 𝑌). We
assume that there exists a complete orthonormal {𝑒

𝑘
} in 𝐸, a

bounded sequence of nonnegative real numbers 𝜆
𝑘
such that

𝑄𝑒
𝑘
= 𝜆
𝑘
𝑒
𝑘
, 𝑘 = 1, 2, . . ., and a sequence {𝛽

𝑘
} of independent

Brownian motions such that

⟨𝑤 (𝑡) , 𝑒⟩ =

∞

∑

𝑘=1

√𝜆
𝑘
⟨𝑒
𝑘
, 𝑒⟩ 𝛽
𝑘 (𝑡) , 𝑒 ∈ 𝐸, 𝑡 ∈ [0, 𝑇] , (3)

andF
𝑡
= F
𝛽

𝑡
, whereF𝛽

𝑡
is the 𝜎-algebra generated by {𝛽(𝑠) :

0 ⩽ 𝑠 ⩽ 𝑡}. LetL0
2
= L
2
(𝑄
1/2

𝐸,𝐻) be the space of allHilbert-
Schmidt operator from 𝑄

1/2
𝐸 to 𝐻 with the inner product

⟨Ψ,Φ⟩L0
2

= tr[Ψ𝑄Φ
∗
] and the norm ‖ ⋅ ‖L0

2

. 𝐿
2
(F
𝑇
, 𝐻) is the

Hilbert space of allF
𝑇
-measurable square integrable random

variables with values in Hilbert space𝐻. 𝐿F
𝑇

2
([0, 𝑇],𝐻) is the

Hilbert space of square integrable andF
𝑇
-adapted processes

with values in 𝐻.
Let PC([0, 𝑇], 𝐿

2
(Ω,F,P; 𝐻)) = {𝜙 : 𝜙 is a function

from [0, 𝑇] into 𝐿
2
(Ω,F,P; 𝐻) such that 𝜙(𝑡) is contin-

uous at 𝑡 ̸= 𝑡
𝑘
, left continuous at 𝑡 = 𝑡

𝑘
, and the right limit

𝜙(𝑡
+

𝑘
) exists for 𝑘 = 1, 2, . . . , 𝜌}. H

2
(𝑈
2
) is the closed sub-

space of PC([0, 𝑇], 𝐿
2
(Ω,F,P; 𝐻)) consisting of measur-

able and F
𝑡
-adapted 𝐻-valued(𝑈-valued) process 𝜙(⋅) ∈

PC([0, 𝑇], 𝐿
2
(Ω,F,P; 𝐻))(𝜙(⋅) ∈ PC([0, 𝑇], 𝐿

2
(Ω,F,P; 𝑈)))

endowed with the norm ‖𝜙‖
2

H
2

= sup
0⩽𝑡⩽𝑇

E‖𝜙(𝑡)‖
2.

By a solution of system (2), we mean a mild solution of
the following nonlinear integral equation:

𝑥 (𝑡) = 𝑆 (𝑡) 𝑥
0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐹(𝑠, 𝑥 (𝑠) , ∫

𝑠

0

𝑓 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

0

𝑆 (𝑡−𝑠) 𝐺(𝑠, 𝑥 (𝑠) , ∫

𝑠

0

𝑔 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑤 (𝑠)

+

𝜌

∑

𝑘=1

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) ,

(4)

where 𝑢 ∈ 𝑈
𝑎𝑑

:= 𝑈
2
, 𝑆(𝑡)
𝑡⩾0

denotes the strongly continuous
semigroup generated by the operator 𝐴.

Now let us introduce the controllability operator Π
𝑇

𝑠

associated with (4) (see[8]),

Π
𝑇

𝑠
{⋅} = ∫

𝑇

𝑠

𝑆 (𝑇 − 𝑡) 𝐵𝐵
∗
𝑆
∗
(𝑇 − 𝑡) 𝑑𝑡, (5)

which belongs toL(𝐻,𝐻); 𝐵∗ is the adjoint operator of 𝐵.

Definition 1. System (2) is completely controllable on [0, 𝑇] if

R
𝑇
(𝑥
0
) = 𝐿

F
𝑇

2
([0, 𝑇] ,𝐻) . (6)
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That is, all the points in 𝐿
F
𝑇

2
([0, 𝑇],𝐻) can be reached from

the point 𝑥
0
at time 𝑇, where R

𝑡
(𝑥
0
) = {𝑥(𝑡; 𝑥

0
, 𝑢) : 𝑢 ∈

𝐿
F
2
([0, 𝑇],𝐻)}.

Lemma 2 (Burkholder-Davis-Gundy’s inequality [23]). For
any 𝑟 ⩾ 1 and for arbitraryL0

2
-valued predictable processΨ(𝑡),

𝑡 ∈ [0, 𝑇], one has

E( sup
0⩽𝑡⩽𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

Ψ (𝑠) 𝑑𝑤 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑟

) ⩽ 𝐶
𝑟
E(∫

𝑡

0

‖Ψ (𝑠)‖
2

L0
2

𝑑𝑠)

𝑟

, (7)

where

𝐶
𝑟
= (𝑟 (2𝑟 − 1))

𝑟
(

2𝑟

2𝑟 − 1
)

2𝑟
2

. (8)

Lemma 3 (Mahmudov [6]). The following linear system

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)] 𝑑𝑡 + 𝐷 (𝑡) 𝑑𝑤 (𝑡) , 𝑥 (0) = 𝑥
0

(9)

is completely controllable if and only if Π𝑇
0

⩾ 𝛾𝐼, where 𝛾 is
constant and 𝐼 is unit operator.

Lemma 4. Assume that the operatorΠ𝑇
𝑠
is invertible. Then for

arbitrary target 𝑥
𝑇

∈ 𝐿
2
(F
𝑇
, 𝐻), the control

𝑢 (𝑡) = 𝐵
∗
𝑆
∗
(𝑇 − 𝑡)E

× {(Π
𝑇

0
)
−1

[𝑥
𝑇
− 𝑆 (𝑇) 𝑥

0
− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐺 (𝑠) 𝑑𝑤 (𝑠)

−

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] | F

𝑡
}

(10)

transfers the systems (4) from 𝑥
0
to 𝑥
𝑇
at time 𝑇, where 𝐹(𝑠) =

𝐹(𝑠, 𝑥(𝑠), ∫
𝑠

0
𝑓(𝑠, 𝜏, 𝑥(𝜏))𝑑𝜏), 𝐺(𝑠) = 𝐺(𝑠, 𝑥(𝑠), ∫

𝑠

0
𝑔(𝑠, 𝜏, 𝑥(𝜏))

𝑑𝜏)).

Proof. Substituting (10) into (4), we can obtain that

𝑥 (𝑡) = 𝑆 (𝑡) 𝑥0 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠)

× 𝐵𝐵
∗
𝑆
∗
(𝑇 − 𝑠)E

× {(Π
𝑇

0
)
−1

[𝑥
𝑇
− 𝑆 (𝑇) 𝑥

0
− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐺 (𝑠) 𝑑𝑤 (𝑠)

−

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] | F

𝑡
}

+ ∫

𝑡

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑇 − 𝑠) 𝐺 (𝑠) 𝑑𝑤 (𝑠) +

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

= 𝑆 (𝑡) 𝑥0 + Π
𝑡

0
{𝑆
∗
(𝑇 − 𝑡) (Π

𝑇

0
)
−1

×[𝑥
𝑇
−𝑆 (𝑇) 𝑥

0
−∫

𝑇

0

𝑆 (𝑇−𝑠) 𝐹 (𝑠)𝑑𝑠

− ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐺 (𝑠) 𝑑𝑤 (𝑠)

−

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))]}

+ ∫

𝑡

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆 (𝑇 − 𝑠) 𝐺 (𝑠) 𝑑𝑤 (𝑠)

+

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) .

(11)

The proof is completed by letting 𝑡 = 𝑇 in (11).

3. Main Results

In this section, by using contraction mapping principle in
Banach space we discuss the complete controllability criteria
of semilinear impulsive stochastic systems (2). For the proof
of the main result we impose the following assumptions on
data of the problem.

Assumption A. The functions 𝐹, 𝐺, and 𝐼 are continuous and
satisfy the usual linear growth condition; that is, there exist
positive real constants 𝐿

1
, 𝛼
𝑘
for arbitrary 𝑥 ∈ 𝐻, and 0 ⩽

𝑡 ⩽ 𝑇 such that
󵄩󵄩󵄩󵄩𝐹(𝑡, 𝑥, 𝑦)

󵄩󵄩󵄩󵄩

2
+

󵄩󵄩󵄩󵄩𝐺(𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩

2

L0
2

⩽ 𝐿
1
(1 + ‖𝑥‖

2
+

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2
) ,

󵄩󵄩󵄩󵄩𝐼𝑘(𝑥)
󵄩󵄩󵄩󵄩

2
⩽ 𝛼
𝑘
(1 + ‖𝑥‖

2
) , 𝑘 = 1, 2, . . . , 𝜌,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑓(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑔(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

⩽ 𝑘
1‖𝑥‖
2
.

(12)

Assumption B. The functions 𝐹,𝐺, and 𝐼 satisfy the following
Lipschitz condition and for every 𝑡 ⩾ 0 and 𝑥, 𝑦 ∈ 𝐻 there
exist positive real constants 𝐿

2
, 𝛽
𝑘
, 𝑘
2
such that

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥
1
, 𝑦
1
) − 𝐹 (𝑡, 𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝑥

1
, 𝑦
1
) − 𝐺 (𝑡, 𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

L0
2

⩽ 𝐿
2
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

2
+

󵄩󵄩󵄩󵄩𝑦1 − 𝑦
2

󵄩󵄩󵄩󵄩

2
) ,

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥) − 𝐼
𝑘
(𝑦)

󵄩󵄩󵄩󵄩 ⩽ 𝛽
𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝜌,
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∫

𝑡

0

{
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑓 (𝑡, 𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩

2

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑔 (𝑡, 𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩

2
}𝑑𝑠

⩽ 𝑘
2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
.

(13)

Assumption C. The linear system (9) is completely control-
lable. By Lemma 3, for some 𝛾 > 0, E⟨Π

𝑇

0
𝑧, 𝑧⟩ ⩾ 𝛾E‖𝑧‖

2, for
all 𝑧 ∈ 𝐿

2
(F
𝑇
, 𝐻). Consequently, ‖(Π𝑇

0
)
−1

‖ ⩽ 1/𝛾 = 𝑙
2
.

Assumption D. Let 𝑝 = [6𝑇𝑙
1
𝐿
2
(𝑀𝑙
1
𝑙
2
+ 1)(𝑇 + 4)(1 + 𝑘

2
𝑇) +

6𝑙
1
𝜌(𝑀𝑙
2
+ 1)∑

𝜌

𝑘=1
𝛽
𝑘
] be such that 0 ⩽ 𝑝 < 1.

Now for convenience, let us introduce the following
notations:

𝑙
1
= max
0⩽𝑡⩽𝑇

‖𝑆(𝑡)‖
2
, 𝑀 = max

𝑠∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩
Π
𝑇

𝑠

󵄩󵄩󵄩󵄩󵄩

2

. (14)

Theorem 5. Suppose that assumptions A, B, C, and D are
satisfied. Then system (4) is completely controllable on [0, 𝑇].

Proof. For arbitrary initial data 𝑥
0

∈ H
2
, we can define a

nonlinear operator Φ from 𝐻
2
to 𝐻
2
as the following:

(Φ𝑥) (𝑡) = 𝑆 (𝑡) 𝑥
0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥) 𝑑𝑤 (𝑠)

+

𝜌

∑

𝑘=1

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) ,

(15)

where 𝑢(𝑡) is defined by (10).
By Lemma 4, the control (10) transfers system (4) from

the initial state 𝑥
0
to the final state 𝑥

𝑇
provided that the

operators Φ has a fixed point in H
2
. So, if the operator Φ

has a fixed point then system (2) is completely controllable.
As mentioned before, to prove the complete controllability of
the system (2), it is enough to show that Φ has a fixed point
in H
2
. To do this, we can employ the contraction mapping

principle. In the following, we will divide the proof into two
steps.

Firstly, we show that H
2
maps H

2
into itself. From (15)

we have

sup
0⩽𝑡⩽𝑇

E‖(Φ𝑥) (𝑡)‖
2
= sup
0⩽𝑡⩽𝑇

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆 (𝑡) 𝑥0 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥) 𝑑𝑤 (𝑠)

+

𝜌

∑

𝑘=1

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

⩽ 5 sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩𝑆 (𝑡) 𝑥

0

󵄩󵄩󵄩󵄩

2

+ 5 sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝐵𝑢(𝑠)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 5 sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝐹(𝑠, 𝑥)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 5 sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝐺(𝑠, 𝑥)𝑑𝑤(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 5 sup
0⩽𝑡⩽𝑇

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜌

∑

𝑘=1

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≜

5

∑

𝑖=1

𝐴
𝑖
.

(16)

Using Holder inequality, B-D-G inequality (here𝐶
1
= 4),

and Assumption C, we have the following estimates:

𝐴
1
⩽ 5𝑙
1
E
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩

2
,

𝐴
3
⩽ 5𝑇 sup
0⩽𝑡⩽𝑇

E∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠

⩽ 5𝑇𝑙
1
𝐿
1
∫

𝑇

0

(1 + (1 + 𝑘
1
) sup
0⩽𝑠⩽𝑇

E‖𝑥 (𝑠)‖
2
)𝑑𝑠,

𝐴
4
⩽ 20𝑙
1
𝐿
1
∫

𝑇

0

(1 + (1 + 𝑘
1
) sup
0⩽𝑠⩽𝑇

E‖𝑥 (𝑠)‖
2
)𝑑𝑠,

𝐴
5
⩽ 5𝜌 sup
0⩽𝑡⩽𝑇

E

𝜌

∑

𝑘=1

󵄩󵄩󵄩󵄩𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))
󵄩󵄩󵄩󵄩

2

⩽ 5𝜌𝑙
1

𝜌

∑

𝑖−1

𝛼
𝑘
(1 + sup
0⩽𝑡⩽𝑇

E‖𝑥 (𝑠)‖
2
) .

(17)

Meanwhile by control function (15), we have

𝐴
2
= 5 sup
0⩽𝑡⩽𝑇

E

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆 (𝑡 − 𝑟) 𝐵 𝐵
∗
𝑆
∗
(𝑇 − 𝑟)E

× {(Π
𝑇

0
)
−1

× [𝑥 (𝑇) − 𝑆 (𝑇) 𝑥0

− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠, 𝑥) 𝑑𝑠
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− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐺 (𝑠, 𝑥) 𝑑𝑤 (𝑠)

−

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))]}𝑑𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 5 sup
0⩽𝑡⩽𝑇

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆 (𝑡 − 𝑟) 𝐵𝐵
∗
𝑆
∗
(𝑡 − 𝑟) 𝑆

∗
(𝑇 − 𝑡) (Π

𝑇

0
)
−1

× [𝑥 (𝑇) − 𝑆 (𝑇) 𝑥
0
− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠, 𝑥) 𝑑𝑠

− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐺 (𝑠, 𝑥) 𝑑𝑤 (𝑠)

−

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] 𝑑𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 5 sup
0⩽𝑡⩽𝑇

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Π
𝑡

0
𝑆
∗
(𝑇 − 𝑡) (Π

𝑇

0
)
−1

× [𝑥
𝑇
− 𝑆 (𝑇) 𝑥

0
− ∫

𝑇

0

𝑆 (𝑇 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

− ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥) 𝑑𝑤 (𝑠)

−

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(18)

So similar as in (17), we get

𝐴
2
⩽ 25𝑀𝑙

1
𝑙
2
(E

󵄩󵄩󵄩󵄩𝑥𝑇
󵄩󵄩󵄩󵄩

2
+ 𝑙
1

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

2

+ 𝑇𝑙
1
𝐿
1
∫

𝑇

0

(1 + (1 + 𝑘
1
) sup
0⩽𝑠⩽𝑇

‖𝑥 (𝑠)‖
2
)𝑑𝑠

+ 4𝑙
1
𝐿
1
∫

𝑇

0

(1 + (1 + 𝑘
1
) sup
0⩽𝑠⩽𝑇

‖𝑥 (𝑠)‖
2
)𝑑𝑠

+ 𝜌

𝜌

∑

𝑖=1

𝛼
𝑘
(1 + sup
0⩽𝑡⩽𝑇

‖𝑥 (𝑡)‖
2
)) .

(19)

From (17)–(19), we have

sup
0⩽𝑡⩽𝑇

E‖Φ𝑥 (𝑡)‖
2

⩽ 𝐶[1 + ∫

𝑇

0

(1 + (1 + 𝑘
1
) sup
0⩽𝑠⩽𝑇

E‖𝑥 (𝑠)‖
2
)𝑑𝑠]

⩽ 𝐶[1 + (1 + (1 + 𝑘
1
) 𝑇 sup
0⩽𝑠⩽𝑇

E‖𝑥 (𝑠)‖
2
)]

(20)

for all 𝑡 ∈ [0, 𝑇], where𝐶 is constant.This implies thatΦmaps
H
2
into itself.
Secondly, we prove that Φ is a contraction mapping on

H
2
, for any 𝑥, 𝑦 ∈ H

2
,

sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩(Φ𝑥) (𝑡) − (Φ𝑦) (𝑡)

󵄩󵄩󵄩󵄩

2

= sup
0⩽𝑡⩽𝑇

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Π
𝑡

0
𝑆
∗
(𝑇 − 𝑡) (Π

𝑇

0
)
−1

× [∫

𝑇

0

𝑆 (𝑇 − 𝑠) (𝐹 (𝑠, 𝑦) − 𝐹 (𝑠, 𝑥)) 𝑑𝑠

+ ∫

𝑇

0

𝑆 (𝑇 − 𝑠) (𝐺 (𝑠, 𝑦) − 𝐺 (𝑠, 𝑥)) 𝑑𝑤 (𝑠)

+

𝜌

∑

𝑘=1

𝑆 (𝑇 − 𝑡
𝑘
) (𝐼
𝑘
(𝑦 (𝑡
−

𝑘
)) − 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)))]

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐹 (𝑠, 𝑥) − 𝐹 (𝑠, 𝑦)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐺 (𝑠, 𝑥) − 𝐺 (𝑠, 𝑦)) 𝑑𝑤 (𝑠)

+

𝜌

∑

𝑘=1

𝑆 (𝑡 − 𝑡
𝑘
) (𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) − 𝐼
𝑘
(𝑦 (𝑡
−

𝑘
)))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

⩽ 6𝑀𝑙
1
𝑙
2

{

{

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0

𝑆 (𝑇 − 𝑠) (𝐹 (𝑠, 𝑥) − 𝐹 (𝑠, 𝑦)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0

𝑆 (𝑇 − 𝑠) (𝐺 (𝑠, 𝑥) − 𝐺 (𝑠, 𝑦)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜌

∑

𝑘=1

𝑆 (𝑇−𝑡
𝑘
)(𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))−𝐼
𝑘
(𝑦 (𝑡
−

𝑘
)))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

}

}

+ 6 sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐹 (𝑠, 𝑥) − 𝐹 (𝑠, 𝑦)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 6 sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐺 (𝑠, 𝑥) − 𝐺 (𝑠, 𝑦)) 𝑑𝑤(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 6 sup
0⩽𝑡⩽𝑇

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜌

∑

𝑘=1

𝑆 (𝑡 − 𝑡
𝑘
) (𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) − 𝐼
𝑘
(𝑦 (𝑡
−

𝑘
)))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≜ 6𝑀𝑙
1
𝑙
2

3

∑

𝑖=1

𝐵
𝑖
+

6

∑

𝑖=4

𝐵
𝑖
.

(21)

Using Lipschitz condition, similiar to 𝐴
1
–𝐴
5
, we have the

following estimates:

𝐵
1
⩽ 𝑇𝑙
1
𝐿
2
(1 + 𝑘

2
𝑇)∫

𝑇

0

sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠, (22)
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𝐵
2
⩽ 4𝑙
1
𝐿
2
(1 + 𝑘

2
𝑇)∫

𝑇

0

sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠, (23)

𝐵
3
⩽ 𝑙
1
𝜌

𝜌

∑

𝑘=1

𝛽
𝑘
sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
, (24)

𝐵
4
⩽ 6𝑇𝑙

1
𝐿
2
(1 + 𝑘

2
𝑇)∫

𝑇

0

sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠, (25)

𝐵
5
⩽ 24𝑙
1
𝐿
2
(1 + 𝑘

2
𝑇)∫

𝑇

0

sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠, (26)

𝐵
6
⩽ 6𝑙
1
𝜌

𝜌

∑

𝑘=1

𝛽
𝑘
sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥(𝑠) − 𝑦(𝑠)

󵄩󵄩󵄩󵄩

2 (27)

together with inequalities (22)–(27):

sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩(Φ𝑥) (𝑡) − (Φ𝑦) (𝑡)

󵄩󵄩󵄩󵄩

2

⩽ 6𝑇𝑀𝑙
2

1
𝑙
2
𝐿
2
(1 + 𝑘

2
𝑇)∫

𝑇

0

sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠

+ 24𝑀𝑙
2

1
𝑙
2
𝐿
2
(1 + 𝑘

2
𝑇)∫

𝑇

0

sup
0⩽𝑠⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥(𝑠) − 𝑦(𝑠)

󵄩󵄩󵄩󵄩

2
𝑑𝑠

+ (6𝑀𝑙
1
𝑙
2
𝜌

𝜌

∑

𝑘=1

𝛽
𝑘
+ 6𝑙
1
𝜌

𝜌

∑

𝑘=1

𝛽
𝑘
) sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩

2

⩽ [6𝑇𝑙
1
𝐿
2
(𝑀𝑙
1
𝑙
2
+ 1) (𝑇 + 4) (1 + 𝑘

2
𝑇)

+ 6𝑙
1
𝜌 (𝑀𝑙

2
+ 1)

𝜌

∑

𝑘=1

𝛽
𝑘
] sup
0⩽𝑡⩽𝑇

E
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑦(𝑡)

󵄩󵄩󵄩󵄩

2
.

(28)

Theorefore, Φ is a contraction mapping fromH
2
to H
2
,

and hence Φ has a unique fixed point. Thus the system (4) is
completely controllability on [0, 𝑇].

4. Example

Consider the impulsive stochastic integrao-differential wave
equation with control 𝑢(𝑡, 𝑧) ∈ 𝐿

2
[0, 1],

𝜕
2
𝑧

𝜕𝑡2
= 𝑎

𝜕
2
𝑧

𝜕𝜉2
+ 𝑏𝑢 (𝑡, 𝑧) + 𝐹(𝑡, 𝑧 (𝑡) , ∫

𝑡

0

𝑓 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠)

+ 𝐺(𝑡, 𝑧 (𝑡) , ∫

𝑡

0

𝑔 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠)
𝜕𝑤

𝜕𝑡
,

𝑡 ̸= 𝑡
𝑘
, 0 ⩽ 𝜉 ⩽ 1,

(29)

where 𝜕𝑤/𝜕𝑡 is white noise and initial and boundary condi-
tions are

𝑧 (𝑡, 0) = 𝑧 (𝑡, 1) = 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑧 (𝑡
𝑘
) (𝜉) = 𝐼

1

𝑘
(𝑧
𝑡
𝑘

) , Δ𝑧
󸀠
(𝑡
𝑘
) (𝜉) = 𝐼

2

𝑘
(𝑧
𝑡
𝑘

) ,

𝑧 (0, 𝜉) = 𝑧
0
(𝜉) ,

𝜕𝑧 (0, 𝜉)

𝜕𝑡
= 𝑧
1
(𝜉) .

(30)

Let 𝐻 = 𝐿
2
[0, 1]; then 𝐴 : 𝐻 → 𝐻, 𝐴𝑧 = 𝑧

󸀠󸀠. Domain of
operator 𝐴 is

𝐷(𝐴) = {𝑧 ∈ 𝐻 | 𝑧, 𝑧
󸀠 is continuous, 𝑧󸀠󸀠 ∈ 𝐻,

𝑧 (0) = 𝑧 (1) = 0} .

(31)

Let

𝑍 =
[
[

[

𝑧

𝜕𝑧

𝜕𝑡

]
]

]

, 𝑍 (0) = [
𝑧
0

𝑧
1

] , 𝐵 = [
0

𝑏
] , (32)

𝐹 = [

[

0

𝐹(𝑡, 𝑧 (𝑡) , ∫

𝑡

0

𝑓 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠)
]

]

,

𝐺 = [

[

0

𝐺(𝑡, 𝑧 (𝑡) , ∫

𝑡

0

𝑔 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠)
]

]

.

(33)

Then the system (29) is

𝑑𝑍 = [A𝑍 + 𝐵𝑢 + 𝐹 (𝑡, 𝑍)] 𝑑𝑡 + 𝐺 (𝑡, 𝑍) 𝑑𝑊, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑍
𝑘
= [

[

𝐼
1

𝑘

𝐼
2

𝑘

]

]

, 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚, 𝑍 (0) = [

𝑧
0

𝑧
1

] ,

(34)

where

A = [
0 𝐼

−𝐴 0
] , (35)

andA is the infinitesimal generator of a strongly continuous
semigroup ℎ(𝑡), 𝑡 ⩾ 0, on 𝑋 = 𝐷(𝐴

1/2
) ⊕ 𝐻, for 𝑥 × 𝑦 ∈ 𝑋:

𝑆 (𝑡) [
𝑥

𝑦
] =

∞

∑

𝑛=1

[
cos (𝑛𝜋𝑡) (𝑛𝜋)

−1 sin (𝑛𝜋𝑡)

− (𝑛𝜋) sin (𝑛𝜋𝑡) cos (𝑛𝜋𝑡)
] [

𝑥
𝑛

𝑦
𝑛

] 𝑒
𝑛
,

(36)

𝑒
𝑛
(𝜃) = √2 sin(𝑛𝜋𝜃), 𝜃 ∈ [0, 1]. Write ℎ(𝑡) is

ℎ (𝑡) = [
𝐶 (𝑡) 𝑆 (𝑡)

𝐴𝑆 (𝑡) 𝐶 (𝑡)
] , (37)

where

𝑆 (𝑡) 𝑥 := ∫

𝑡

0

𝐶 (𝑠) 𝑥𝑑𝑠, 𝑥 ∈ 𝐻. (38)
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The mild solution of system (29) is

𝑧 (𝑡) = 𝐶 (𝑡) 𝑧
0
+ 𝑆 (𝑡) 𝑧

1
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑧)] 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑧) 𝑑𝑤𝑠

+ ∑

0⩽𝑡
𝑘

⩽𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼
1

𝑘
(𝑧
𝑡
𝑘

) + ∑

0⩽𝑡
𝑘

⩽𝑡

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
2

𝑘
(𝑧
𝑡
𝑘

)

(39)

by [7]; the stochastic linear systemof (29) is complete control-
lable. Then fromTheorem 5 one can easily prove system (29)
is completely controllable, if the functions𝐹, 𝐺, 𝑓, 𝑔, 𝐼

1

𝑘
, 𝐼
2

𝑘

satisfy Lipschitz condition and linear growth condition.

5. Conclusions

The complete controllability of impulsive stochastic integro-
differential systems in Hilbert space has been investigated
in this paper. Sufficient conditions of complete controllabil-
ity for impulsive stochastic integro-differential systems are
established by using the Banach fixed point theorem. An
example illustrates the efficiency of proposed results.
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