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We investigate the effectiveness of reproducing kernel method (RKM) in solving partial differential equations. We propose a
reproducing kernel method for solving the telegraph equation with initial and boundary conditions based on reproducing kernel
theory. Its exact solution is represented in the form of a series in reproducing kernel Hilbert space. Some numerical examples are
given in order to demonstrate the accuracy of this method. The results obtained from this method are compared with the exact
solutions and other methods. Results of numerical examples show that this method is simple, effective, and easy to use.

1. Introduction

Thehyperbolic partial differential equationsmodel the vibra-
tions of structures (e.g., buildings, beams, and machines).
These equations are the basis for fundamental equations
of atomic physics. In this paper, we consider the telegraph
equation of the form

𝜕
2
𝑢

𝜕𝑡2
(𝑥, 𝑡) + 2𝛼

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) + 𝛽

2
𝑢 (𝑥, 𝑡)

=
𝜕
2
𝑢

𝜕𝑥2
(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) , 0 ≤ 𝑥, 𝑡 ≤ 1, 𝛼 > 𝛽 ≥ 0,

(1)

with initial conditions

𝑢 (𝑥, 0) = 𝜑
1
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝜑

2
(𝑥) , (2)

and appropriate boundary conditions

𝑢 (0, 𝑡) = 𝑔
0
(𝑡) , 𝑢 (1, 𝑡) = 𝑔

1
(𝑡) , 𝑡 ≥ 0 (3)

by using reproducing kernel method (RKM). In recent
years, much attention has been given in the literature to

the development, analysis, and implementation of stable
methods for the numerical solution of (1)–(3) [1–3].Mohanty
carried out a new technique to solve the linear one-space-
dimensional hyperbolic equation (1) [4]. High-order accurate
method for solving linear hyperbolic equation is presented
in [5]. A compact finite difference approximation of fourth
order for discretizing spatial derivative of linear hyperbolic
equation and a collocation method for the time component
are used in [6]. A numerical scheme is developed to solve
the one-dimensional hyperbolic telegraph equation using the
collocation points and approximating the solution using thin
plate splines radial basis function [7]. Several test problems
were given, and the results of numerical experiments were
compared with analytical solutions to confirm the good
accuracy of their scheme. Yao [8] investigated a nonlinear
hyperbolic telegraph equation with an integral condition by
reproducing kernel space at 𝛼 = 𝛽 = 0. Yousefi presented
a numerical method for solving the one-dimensional hyper-
bolic telegraph equation by using Legendre multiwavelet
Galerkin method [9]. Dehghan and Lakestani presented a
numerical technique for the solution of the second-order
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one-dimensional linear hyperbolic equation [10]. Lakestani
and Saray used interpolating scaling functions for solving (1)–
(3) [11]. Dehghan provided a solution of the second-order
one-dimensional hyperbolic telegraph equation by using the
dual reciprocity boundary integral equation (DRBIE)method
[12].The problemhas explicit solution that can be obtained by
the method of separation of variables in [13].

In this paper, the problem is solved easily and elegantly
by using RKM. The technique has many advantages over the
classical techniques. It also avoids discretization and provides
an efficient numerical solution with high accuracy, minimal
calculation, and avoidance of physically unrealistic assump-
tions. In the next section, we will describe the procedure of
this method.

The theory of reproducing kernels was used for the first
time at the beginning of the 20th century by Zaremba in his
work on boundary value problems for harmonic and bihar-
monic functions [14]. Reproducing kernel theory has impor-
tant application in numerical analysis, differential equations,
probability, and statistics. Recently, using the RKM, some
authors discussed telegraph equation [15], Troesch’s porblem
[16], MHD Jeffery-Hamel flow [17], Bratu’s problem [18],
KdV equation [19], fractional differential equation [20],
nonlinear oscillator with discontinuity [21], nonlinear two-
point boundary value problems [22], integral equations [23],
and nonlinear partial differential equations [24].

The paper is organized as follows. Section 2 introduces
several reproducing kernel spaces. The representation in
𝑊(Ω) and a linear operator are presented in Section 3.
Section 4 provides the main results. The exact and approx-
imate solutions of (1)–(3) and an iterative method are
developed for the kind of problems in the reproducing
kernel space. We have proved that the approximate solution
converges to the exact solution uniformly. Numerical experi-
ments are illustrated in Section 5. Some conclusions are given
in Section 6.

2. Reproducing Kernel Spaces

In this section, some useful reproducing kernel spaces are
defined.

Definition 1 (reproducing kernel function). Let 𝐸 ̸= 0. A
function 𝐾 : 𝐸 × 𝐸 → C is called a reproducing kernel
function of the Hilbert space𝐻 if and only if

(a) 𝐾(⋅, 𝑡) ∈ 𝐻 for all 𝑡 ∈ 𝐸,
(b) ⟨𝜑, 𝐾(⋅, 𝑡)⟩ = 𝜑(𝑡) for all 𝑡 ∈ 𝐸 and all 𝜑 ∈ 𝐻.

The last condition is called “the reproducing property” as the
value of the function 𝜑 at the point 𝑡 is reproduced by the
inner product of 𝜑 with𝐾(⋅, 𝑡).

Definition 2. Hilbert function space 𝐻 is a reproducing
kernel space if and only if for any fixed 𝑥 ∈ 𝑋, the linear
functional 𝐼(𝑓) = 𝑓(𝑥) is bounded [25, page 5].

Definition 3. We define the space𝐻1
2
[0, 1] by

𝐻
1

2
[0, 1] = {𝑢 ∈ 𝐴𝐶 [0, 1] : 𝑢

󸀠
∈ 𝐿
2
[0, 1]} . (4)

The inner product and the norm in𝐻
1

2
[0, 1] are defined by

⟨𝑢, 𝑔⟩
𝐻
1

2

= 𝑢 (0) 𝑔 (0) + ∫

1

0

𝑢
󸀠
(𝑡) 𝑔
󸀠
(𝑡) d𝑡, 𝑢, 𝑔 ∈ 𝐻

1

2
[0, 1] ,

‖𝑢‖𝐻1
2

= √⟨𝑢, 𝑢⟩𝐻1
2

, 𝑢 ∈ 𝐻
1

2
[0, 1] .

(5)

Lemma 4. The space 𝐻
1

2
[0, 1] is a reproducing kernel space,

and its reproducing kernel function 𝑞
𝑠
is given by [25, page 123]

𝑞
𝑠
(𝑡) = {

1 + 𝑡, 𝑡 ≤ 𝑠,

1 + 𝑠, 𝑡 > 𝑠.
(6)

Definition 5. We define the space 𝐹3
2
[0, 𝑇] by

𝐹
3

2
[0, 𝑇] = {𝑢 ∈ 𝐴𝐶 [0, 𝑇] : 𝑢

󸀠
, 𝑢
󸀠󸀠
∈ 𝐴𝐶 [0, 𝑇] ,

𝑢
(3)

∈ 𝐿
2
[0, 𝑇] , 𝑢 (0) = 𝑢

󸀠
(0) = 0} .

(7)

The inner product and the norm in 𝐹
3

2
[0, 𝑇] are defined by

⟨𝑢, 𝑔⟩
𝐹
3

2

=

2

∑

𝑖=0

𝑢
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

𝑇

0

𝑢
(3)

(𝑡) 𝑔
(3)

(𝑡) d𝑡, 𝑢, 𝑔 ∈ 𝐹
3

2
[0, 𝑇] ,

‖𝑢‖𝐹3
2

= √⟨𝑢, 𝑢⟩𝐹3
2

, 𝑢 ∈ 𝐹
3

2
[0, 𝑇] .

(8)

Lemma 6. The space 𝐹
3

2
[0, 𝑇] is a reproducing kernel space,

and its reproducing kernel function 𝑟
𝑠
is given by [25, page 148]

𝑟
𝑠
(𝑡) =

{{{{{{

{{{{{{

{

1

4
𝑠
2
𝑡
2
+

1

12
𝑠
2
𝑡
3
−

1

24
𝑠𝑡
4
+

1

120
𝑡
5
,

𝑡 ≤ 𝑠,

1

4
𝑠
2
𝑡
2
+

1

12
𝑠
3
𝑡
2
−

1

24
𝑡𝑠
4
+

1

120
𝑠
5
,

𝑡 > 𝑠.

(9)

Definition 7. We define the space𝑊3
2
[0, 1] by

𝑊
3

2
[0, 1] = {𝑢 ∈ 𝐴𝐶 [0, 1] : 𝑢

󸀠
, 𝑢
󸀠󸀠
∈ 𝐴𝐶 [0, 1] ,

𝑢
(3)

∈ 𝐿
2
[0, 1] , 𝑢 (0) = 𝑢 (1) = 0} .

(10)

The inner product and the norm in𝑊
3

2
[0, 1] are defined by

⟨𝑢, 𝑔⟩
𝑊
3

2

=

2

∑

𝑖=0

𝑢
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

1

0

𝑢
(3)

(𝑥) 𝑔
(3)

(𝑥) d𝑥, 𝑢, 𝑔 ∈ 𝑊
3

2
[0, 1] ,

‖𝑢‖𝑊3
2

= √⟨𝑢, 𝑢⟩𝑊3
2

, 𝑢 ∈ 𝑊
3

2
[0, 1] .

(11)

The space 𝑊
3

2
[0, 1] is a reproducing kernel space, and its

reproducing kernel function 𝑅
𝑦
is given by the following

theorem.
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Theorem 8. The space𝑊3
2
[0, 1] is a reproducing kernel space,

and its reproducing kernel function 𝑅
𝑦
is given by

𝑅
𝑦
(𝑥) =

{{{{{{

{{{{{{

{

5

∑

𝑖=1

𝑐
𝑖
(𝑦) 𝑥
𝑖
, 𝑥 ≤ 𝑦,

5

∑

𝑖=0

𝑑
𝑖
(𝑦) 𝑥
𝑖
, 𝑥 > 𝑦,

(12)

where

𝑐
1
(𝑦) =

5

156
𝑦
4
−

1

156
𝑦
5
−

5

26
𝑦
2
−

5

78
𝑦
3
+

3

13
𝑦,

𝑐
2
(𝑦) =

5

624
𝑦
4
−

1

624
𝑦
5
+

21

104
𝑦
2
−

5

312
𝑦
3
−

5

26
𝑦,

𝑐
3
(𝑦) =

5

1872
𝑦
4
−

1

1872
𝑦
5
+

7

104
𝑦
2
−

5

936
𝑦
3
−

5

78
𝑦,

𝑐
4
(𝑦) = −

5

3744
𝑦
4
+

1

3744
𝑦
5
+

5

624
𝑦
2
+

5

1872
𝑦
3
−

1

104
𝑦,

𝑐
5
(𝑦) =

5

3744
𝑦
4
−

1

18720
𝑦
5
−

1

624
𝑦
2

−
1

1872
𝑦
3
−

1

156
𝑦 +

1

120
,

𝑑
0
(𝑦) =

1

120
𝑦
5
,

𝑑
1
(𝑦) = −

1

104
𝑦
4
−

1

156
𝑦
5
−

5

26
𝑦
2
−

5

78
𝑦
3
+

3

13
𝑦,

𝑑
2
(𝑦) =

7

104
𝑦
3
+

5

624
𝑦
4
−

1

624
𝑦
5
+

21

104
𝑦
2
−

5

26
𝑦,

𝑑
3
(𝑦) =

5

1872
𝑦
4
−

1

1872
𝑦
5
−

5

312
𝑦
2
−

5

936
𝑦
3
−

5

78
𝑦,

𝑑
4
(𝑦) = −

5

3744
𝑦
4
+

1

3744
𝑦
5
+

5

624
𝑦
2
+

5

1872
𝑦
3
+

5

156
𝑦,

𝑑
5
(𝑦) =

1

3744
𝑦
4
−

1

18720
𝑦
5
−

1

624
𝑦
2
−

1

1872
𝑦
3
−

1

156
𝑦.

(13)

Proof. Let 𝑢 ∈ 𝑊
3

2
[0, 1] and let 0 ≤ 𝑦 ≤ 1. By Definition 7

and integrating by parts two times, we obtain that

⟨𝑢, 𝑅
𝑦
⟩
𝑊
3

2

=

2

∑

𝑖=0

𝑢
(𝑖)
(0) 𝑅
(𝑖)

𝑦
(0)

+ ∫

1

0

𝑢
(3)

(𝑥) 𝑅
(3)

𝑦
(𝑥) d𝑥

= 𝑢 (0) 𝑅
𝑦
(0) + 𝑢

󸀠
(0) 𝑅
󸀠

𝑦
(0)

+ 𝑢
󸀠󸀠
(0) 𝑅
󸀠󸀠

𝑦
(0) + 𝑢

󸀠󸀠
(1) 𝑅
(3)

𝑦
(1)

− 𝑢
󸀠󸀠
(0) 𝑅
(3)

𝑦
(0)

− 𝑢
󸀠
(1) 𝑅
(4)

𝑦
(1) + 𝑢

󸀠
(0) 𝑅
(4)

𝑦
(0)

+ ∫

1

0

𝑢
󸀠
(𝑥) 𝑅
(5)

𝑦
(𝑥) d𝑥.

(14)

After substituting the values of 𝑅
𝑦
(0), 𝑅󸀠

𝑦
(0), 𝑅󸀠󸀠

𝑦
(0), 𝑅(3)

𝑦
(0),

𝑅
(4)

𝑦
(0), 𝑅(3)

𝑦
(1), and 𝑅

(4)

𝑦
(1) into the above equation, we get

⟨𝑢, 𝑅
𝑦
⟩
𝑊
3

2

= 𝑢 (0) 0 + 𝑢
󸀠
(0)

× (
3

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2
+

5

156
𝑦
4
−

1

156
𝑦
5
)

+ 𝑢
󸀠󸀠
(0) (

−5

13
𝑦 −

5

156
𝑦
3
+
21

52
𝑦
2
+

5

312
𝑦
4
−

1

312
𝑦
5
)

+ 𝑢
󸀠󸀠
(1) 0 − 𝑢

󸀠󸀠
(0)

× (
−5

13
𝑦 −

5

156
𝑦
3
+
21

52
𝑦
2
+

5

312
𝑦
4
−

1

312
𝑦
5
)

− 𝑢
󸀠
(1) 0 + 𝑢

󸀠
(0)

× (−
3

13
𝑦 +

5

78
𝑦
3
+

5

26
𝑦
2
−

5

156
𝑦
4
+

1

156
𝑦
5
)

+ ∫

1

0

𝑢
󸀠
(𝑥) 𝑅
(5)

𝑦
(𝑥) d𝑥;

(15)

thus we obtain that

⟨𝑢, 𝑅
𝑦
⟩
𝑊
3

2

= ∫

1

0

𝑢
󸀠
(𝑥) 𝑅
(5)

𝑦
(𝑥) d𝑥

= ∫

𝑦

0

𝑢
󸀠
(𝑥) 𝑅
(5)

𝑦
(𝑥) d𝑥 + ∫

1

𝑦

𝑢
󸀠
(𝑥) 𝑅
(5)

𝑦
(𝑥) d𝑥

= ∫

𝑦

0

𝑢
󸀠
(𝑥) (1 −

10

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2

+
5

156
𝑦
4
−

1

156
𝑦
5
) d𝑥

+ ∫

1

𝑦

𝑢
󸀠
(𝑥) (−

10

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2

+
5

156
𝑦
4
−

1

156
𝑦
5
) d𝑥

= (𝑢 (𝑦) − 𝑢 (0))

× (1 −
10

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2

+
5

156
𝑦
4
−

1

156
𝑦
5
)
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+ (𝑢 (1) − 𝑢 (𝑦))

× (−
10

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2

+
5

156
𝑦
4
−

1

156
𝑦
5
)

= 𝑢 (𝑦) − 𝑢 (0)

× (1 −
10

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2

+
5

156
𝑦
4
−

1

156
𝑦
5
)

+ 𝑢 (1) (−
10

13
𝑦 −

5

78
𝑦
3
−

5

26
𝑦
2

+
5

156
𝑦
4
−

1

156
𝑦
5
) .

(16)

By Definition 7, we have 𝑢(0) = 𝑢(1) = 0. So

⟨𝑢, 𝑅
𝑦
⟩
𝑊
3

2

= 𝑢 (𝑦) . (17)

This completes the proof.

Definition 9. We define the binary space𝑊(Ω) by

𝑊(Ω) = {𝑢 :
𝜕
4
𝑢

𝜕𝑥2𝜕𝑡2
is completely continuous in

Ω = [0, 1] × [0, 1] ,
𝜕
6
𝑢

𝜕𝑥3𝜕𝑡3
∈ 𝐿
2
(Ω) ,

𝑢 (𝑥, 0) = 0,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 0,

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 0} .

(18)

The inner product and the norm in𝑊(Ω) are defined by

⟨𝑢, 𝑔⟩
𝑊

=

2

∑

𝑖=0

∫

1

0

[
𝜕
3

𝜕𝑡3

𝜕
𝑖

𝜕𝑥𝑖
𝑢 (0, 𝑡)

×
𝜕
3

𝜕𝑡3

𝜕
𝑖

𝜕𝑥𝑖
𝑔 (0, 𝑡)] d𝑡

+

2

∑

𝑗=0

⟨
𝜕
𝑗

𝜕𝑡𝑗
𝑢 (𝑥, 0) ,

𝜕
𝑗

𝜕𝑡𝑗
𝑔 (𝑥, 0)⟩

𝑊
3

2

+∬

1

0

[
𝜕
3

𝜕𝑥3

𝜕
3

𝜕𝑡3
𝑢 (𝑥, 𝑡)

×
𝜕
3

𝜕𝑥3

𝜕
3

𝜕𝑡3
𝑔 (𝑥, 𝑡)] d𝑡 d𝑥,

(19)

‖𝑢‖𝑊 = √⟨𝑢, 𝑢⟩𝑊, 𝑢 ∈ 𝑊 (Ω) . (20)

Lemma 10. 𝑊(Ω) is a reproducing kernel space, and its
reproducing kernel function 𝐾

(𝑦,𝑠)
is given by [25, page 148]

𝐾
(𝑦,𝑠)

= 𝑅
𝑦
𝑟
𝑠
. (21)

Definition 11. We define the binary space 𝑊̂(Ω) by

𝑊̂ (Ω) = {𝑢 : 𝑢 is completely continuous in

Ω = [0, 1] × [0, 1] ,
𝜕
2
𝑢

𝜕𝑥𝜕𝑡
∈ 𝐿
2
(Ω)} .

(22)

The inner product and the norm in 𝑊̂(Ω) are defined by

⟨𝑢, 𝑔⟩
𝑊̂

= ∫

1

0

[
𝜕

𝜕𝑡
𝑢 (0, 𝑡)

𝜕

𝜕𝑡
𝑔 (0, 𝑡)] d𝑡

+ ⟨𝑢 (𝑥, 0) , 𝑔 (𝑥, 0)⟩
𝐻
1

2

+∬

1

0

[
𝜕

𝜕𝑥

𝜕

𝜕𝑡
𝑢 (𝑥, 𝑡)

𝜕

𝜕𝑥

𝜕

𝜕𝑡
𝑔 (𝑥, 𝑡)] d𝑡 d𝑥,

‖𝑢‖
𝑊̂

= √⟨𝑢, 𝑢⟩
𝑊̂
, 𝑢 ∈ 𝑊̂ (Ω) .

(23)

Lemma 12. 𝑊̂(Ω) is a reproducing kernel space, and its
reproducing kernel function 𝐺

(𝑦,𝑠)
is given as [25, page 148]

𝐺
(𝑦,𝑠)

= 𝑄
𝑦
𝑞
𝑠
. (24)

Remark 13. Hilbert spaces can be completely classified: there
is a unique Hilbert space up to isomorphism for every
cardinality of the base. Since finite-dimensional Hilbert
spaces are fully understood in linear algebra and since
morphisms of Hilbert spaces can always be divided into
morphisms of spaces with Aleph-null (𝜒

0
) dimensionality,

functional analysis of Hilbert spaces mostly deals with the
unique Hilbert space of dimensionality Aleph-null and its
morphisms. One of the open problems in functional analysis
is to prove that every bounded linear operator on a Hilbert
space has a proper invariant subspace. Many special cases
of this invariant subspace problem have already been proven
[26].

3. Solution Representation in 𝑊(Ω)

In this section, the solution of (1) is given in the reproducing
kernel space𝑊(Ω). On defining the linear operator 𝐿 : 𝑊(Ω)

→ 𝑊̂(Ω) by

𝐿V =
𝜕
2V

𝜕𝑡2
−

𝜕
2V

𝜕𝑥2
+ 2𝛼

𝜕V

𝜕𝑡
+ 𝛽
2V (𝑥, 𝑡) , (25)

after homogenizing the initial and boundary conditions,
model problem (1)–(3) changes to the problem

𝐿V = 𝑀(𝑥, 𝑡) , (𝑥, 𝑡) ∈ [0, 1] × [0, 1] ,

V (𝑥, 0) =
𝜕V

𝜕𝑡
(𝑥, 0) = V (0, 𝑡) = V (1, 𝑡) = 0,

(26)
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where

𝑀(𝑥, 𝑡) =
𝜕
2
𝑍

𝜕𝑡2
(𝑥, 𝑡) −

𝜕
2V

𝜕𝑥2
(𝑥, 𝑡)

+ 2𝛼
𝜕𝑍

𝜕𝑡
(𝑥, 𝑡) + 𝛽

2
𝑍 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) ;

(27)

for convenience, we again write 𝑢 instead of V in (26)

Lemma 14. 𝐿 is a bounded linear operator.

Proof. Let 𝑢 ∈ 𝑊(Ω) and let (𝑥, 𝑡) ∈ Ω. By Lemma 10, we
have

𝑢 (𝑥, 𝑡) = ⟨𝑢,𝐾
(𝑥,𝑡)

⟩
𝑊
, (28)

and thus
𝐿𝑢 (𝑥, 𝑡) = ⟨𝑢, 𝐿𝐾

(𝑥,𝑡)
⟩
𝑊
,

𝜕

𝜕𝑥
𝐿𝑢 (𝑥, 𝑡) = ⟨𝑢,

𝜕

𝜕𝑥
𝐿𝐾
(𝑥,𝑡)

⟩

𝑊

,

𝜕

𝜕𝑡
𝐿𝑢 (𝑥, 𝑡) = ⟨𝑢,

𝜕

𝜕𝑡
𝐿𝐾
(𝑥,𝑡)

⟩

𝑊

,

𝜕

𝜕𝑡

𝜕

𝜕𝑥
𝐿𝑢 (𝑥, 𝑡) = ⟨𝑢,

𝜕

𝜕𝑡

𝜕

𝜕𝑥
𝐿𝐾
(𝑥,𝑡)

⟩

𝑊

.

(29)

Hence there exist 𝑎
0
, 𝑏
0
, 𝑎
1
, 𝑏
1
> 0 such that

|𝐿𝑢 (𝑥, 𝑡)| ≤ 𝑎
0‖𝑢‖𝑊,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝐿𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑏
0‖𝑢‖𝑊,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐿𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑎
1‖𝑢‖𝑊,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡

𝜕

𝜕𝑥
𝐿𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑏
1‖𝑢‖𝑊.

(30)

Therefore,

‖𝐿𝑢‖
2

𝑊̂
= ∫

1

0

[
𝜕

𝜕𝑡
𝐿𝑢 (0, 𝑡)]

2

d𝑡

+ ⟨𝐿𝑢 (𝑥, 0) , 𝐿𝑢 (𝑥, 0)⟩𝐻1
2

+∬

1

0

[
𝜕

𝜕𝑥

𝜕

𝜕𝑡
𝐿𝑢 (𝑥, 𝑡)]

2

d𝑡 d𝑥

= ∫

1

0

[
𝜕

𝜕𝑡
𝐿𝑢 (0, 𝑡)]

2

d𝑡 + [𝐿𝑢 (0, 0)]
2

+ ∫

1

0

[
𝜕

𝜕𝑥
𝐿𝑢 (𝑥, 0)]

2

d𝑥

+∬

1

0

[
𝜕

𝜕𝑥

𝜕

𝜕𝑡
𝐿𝑢 (𝑥, 𝑡)]

2

d𝑡 d𝑥

≤ (𝑎
2

0
+ 𝑎
2

1
+ 𝑏
2

0
+ 𝑏
2

1
) ‖𝑢‖
2

𝑊
.

(31)

This completes the proof.

Now, choose a countable dense subset {(𝑥
1
, 𝑡
1
), (𝑥
2
,

𝑡
2
), . . .} in Ω and define

𝜑
𝑖
= 𝐺
(𝑥
𝑖
,𝑡
𝑖
)
, Ψ

𝑖
= 𝐿
∗
𝜑
𝑖
, (32)

where𝐿∗ is the adjoint operator of𝐿.Theorthonormal system
{Ψ̂
𝑖
}
∞

𝑖=1
of 𝑊(Ω) can be derived from the process of Gram-

Schmidt orthogonalization of {Ψ
𝑖
}
∞

𝑖=1
as

Ψ̂
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
Ψ
𝑘
. (33)

Theorem 15. Suppose that {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω. Then

{Ψ
𝑖
}
∞

𝑖=1
is a complete system in𝑊(Ω), and

Ψ
𝑖
= 𝐿𝐾
(𝑥
𝑖
,𝑡
𝑖
)
(𝑥, 𝑡) . (34)

Proof. We have

Ψ
𝑖
= 𝐿
∗
𝜑
𝑖
= ⟨𝐿
∗
𝜑
𝑖
, 𝐾
(𝑥,𝑡)

⟩
𝑊

= ⟨𝜑
𝑖
, 𝐿𝐾
(𝑥,𝑡)

⟩
𝑊̂

= ⟨𝐿𝐾
(𝑥,𝑡)

, 𝐺
(𝑥
𝑖
,𝑡
𝑖
)
⟩
𝑊̂

= 𝐿𝐾
(𝑥,𝑡)

(𝑥
𝑖
, 𝑡
𝑖
)

= 𝐿𝐾
(𝑥
𝑖
,𝑡
𝑖
)
(𝑥, 𝑡) .

(35)

Clearly, Ψ
𝑖
∈ 𝑊(Ω). For each fixed 𝑢 ∈ 𝑊(Ω), if

⟨𝑢, Ψ
𝑖
⟩
𝑊

= 0, 𝑖 = 1, 2, . . . , (36)

then

0 = ⟨𝑢, Ψ
𝑖
⟩
𝑊

= ⟨𝑢, 𝐿
∗
𝜑
𝑖
⟩
𝑊

= ⟨𝐿𝑢, 𝜑
𝑖
⟩
𝑊̂

= 𝐿𝑢 (𝑥
𝑖
, 𝑡
𝑖
) , 𝑖 = 1, 2, . . . .

(37)

Note that {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω. Hence, 𝐿𝑢 = 0. From the

existence of 𝐿−1, it follows that 𝑢 = 0. The proof is completed.

Theorem 16. If {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, then the solution of

(26) is given by

𝑢 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
. (38)
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Proof. By Theorem 15, {Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
is a complete system in

𝑊(Ω). Thus,

𝑢 =

∞

∑

𝑖=1

⟨𝑢, Ψ̂
𝑖
⟩
𝑊
Ψ̂
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢, Ψ
𝑘
⟩
𝑊
Ψ̂
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢, 𝐿
∗
𝜑
𝑘
⟩
𝑊
Ψ̂
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿𝑢, 𝜑

𝑘
⟩
𝑊̂
Ψ̂
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿𝑢, 𝐺

(𝑥
𝑘
,𝑡
𝑘
)
⟩
𝑊̂
Ψ̂
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐿𝑢 (𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
.

(39)

This completes the proof.

Now the approximate solution 𝑢
𝑛
can be obtained from

the 𝑛-term intercept of the exact solution 𝑢 and

𝑢
𝑛
=

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
. (40)

Obviously
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩𝑊 󳨀→ 0, 𝑛 󳨀→ ∞. (41)

Theorem 17. If 𝑢 ∈ 𝑊(Ω), then
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩𝑊 󳨀→ 0, 𝑛 󳨀→ ∞. (42)

Moreover, a sequence ‖𝑢
𝑛
− 𝑢‖
𝑊
is monotonically decreasing in

𝑛.

Proof. From (38) and (40), it follows that

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩𝑊 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑛+1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
(𝑥, 𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑊

. (43)

Thus,
󵄩󵄩󵄩󵄩𝑢𝑛 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝑊 󳨀→ 0, 𝑛 󳨀→ ∞. (44)

In addition

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

𝑊
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑛+1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
(𝑥, 𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑊

=

∞

∑

𝑖=𝑛+1

(

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
(𝑥, 𝑡))

2

.

(45)

Clearly, ‖𝑢
𝑛
(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖

𝑊
is monotonically decreasing in

𝑛.

0 2 4

0

5

10

ES
RKM

−10

−5

−4 −2

𝑥

𝑢
(
𝑥
)

Figure 1: Graph of numerical results for Example 20 (𝛼 = 10, 𝛽 =

20, 𝑡 = 0.5).

4. The Method Implementation

(i) If (26) is linear, then the analytical solution of (26)
can be obtained directly by (38).

(ii) If (26) is nonlinear, then the solution of (26) can be
obtained by the following iterative method.

We construct an iterative sequence 𝑢
𝑛
, putting

any fixed 𝑢
0
∈ 𝑊
3

2
[0, 1] ,

𝑢
𝑛
=

𝑛

∑

𝑖=1

𝐴
𝑖
Ψ̂
𝑖
,

(46)

where

𝐴
1
= 𝛽
11
𝑀(𝑥
𝑘
, 𝑡
𝑘
, 𝑢 (𝑥
𝑘
, 𝑡
𝑘
))

𝐴
2
=

2

∑

𝑘=1

𝛽
2𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
, 𝑢
𝑘−1

(𝑥
𝑘
, 𝑡
𝑘
)) ,

...

𝐴
𝑛
=

𝑛

∑

𝑘=1

𝛽
𝑛𝑘
𝑀(𝑥
𝑘
, 𝑡
𝑘
, 𝑢
𝑘−1

(𝑥
𝑘
, 𝑡
𝑘
)) .

(47)

Next we will prove that 𝑢
𝑛
given by the iterative formula (46)

converges to the exact solution.

Theorem 18. Suppose that ‖𝑢
𝑛
‖ defined by (46) is bounded

and (26) has a unique solution. If {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω,

then 𝑢
𝑛
converges to the analytical solution 𝑢 of (26), and

𝑢 =

∞

∑

𝑖=1

𝐴
𝑖
Ψ̂
𝑖
, (48)

where 𝐴
𝑖
is given by (47).
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Table 1: Numerical results for Example 20 for 𝑡 = 0.5.

AE RE AE RE AE RE
𝑥 CPU time (s) 𝛼 = 20 𝛼 = 20 𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50

𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2

0.9829 2.168 4.9 × 10
−9

1.1 × 10
−7

8.9 × 10
−8

2.0 × 10
−6

9.6 × 10
−9

2.1 × 10
−7

0.9903 2.324 3.8 × 10
−8

1.5 × 10
−7

4.6 × 10
−8

1.9 × 10
−7

9.8 × 10
−7

4.0 × 10
−6

0.9938 2.215 5.9 × 10
−8

3.6 × 10
−6

5.0 × 10
−8

3.1 × 10
−6

8.5 × 10
−9

5.2 × 10
−7

0.9957 2.262 6.8 × 10
−7

2.5 × 10
−7

1.4 × 10
−7

5.3 × 10
−7

5.2 × 10
−7

1.9 × 10
−6

Table 2: Numerical results for Example 20 for 𝑡 = 1.0.

AE RE AE RE AE RE
𝑥 CPU time (s) 𝛼 = 20 𝛼 = 20 𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50

𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2

0.9829 2.340 5.1 × 10
−9

3.1 × 10
−7

5.5 × 10
−8

3.3 × 10
−6

4.5 × 10
−7

2.7 × 10
−5

0.9903 2.278 7.1 × 10
−7

7.8 × 10
−6

1.6 × 10
−8

1.8 × 10
−7

9.5 × 10
−7

1.0 × 10
−5

0.9938 2.293 4.4 × 10
−7

7.3 × 10
−5

1.7 × 10
−6

2.9 × 10
−4

2.2 × 10
−7

3.6 × 10
−5

0.9957 2.277 2.2 × 10
−8

2.2 × 10
−7

1.4 × 10
−8

1.4 × 10
−7

7.2 × 10
−7

7.4 × 10
−6

Table 3: A comparison between interpolating scaling function
method [11] and RKM for different values of 𝛼, 𝛽, and 𝑡 for
Example 20.

𝑥
CPU time

(s)

AE
[11]

𝛼 = 20

𝑡 = 0.5

AE
RKM
𝛼 = 20

𝑡 = 0.5

AE
[11]

𝛽 = 10

𝑡 = 1

AE
RKM
𝛽 = 10

𝑡 = 1

0.0 2.512 2 × 10
−21

0.0 2 × 10
−6

0.0

0.1 2.262 5 × 10
−4

3 × 10
−7

1 × 10
−3

3 × 10
−8

0.2 2.309 7 × 10
−4

2 × 10
−8

2 × 10
−3

3 × 10
−7

0.3 2.293 1 × 10
−3

2 × 10
−7

2 × 10
−4

2 × 10
−7

0.4 2.278 2 × 10
−3

5 × 10
−5

4 × 10
−4

1 × 10
−7

0.5 2.883 3 × 10
−3

1 × 10
−5

5 × 10
−4

8 × 10
−8

0.6 2.821 3 × 10
−3

5 × 10
−8

8 × 10
−4

5 × 10
−7

0.7 2.805 4 × 10
−3

2 × 10
−7

8 × 10
−4

1 × 10
−7

0.8 2.231 3 × 10
−3

6 × 10
−7

6 × 10
−4

1 × 10
−7

0.9 2.277 2 × 10
−3

2 × 10
−6

3 × 10
−4

8 × 10
−8

1.0 2.169 2 × 10
−4

2 × 10
−8

9 × 10
−5

4 × 10
−10

Proof. First, we prove the convergence of 𝑢
𝑛
. From (46) and

the orthonormality of {Ψ̂
𝑖
}
∞

𝑖=1
, we infer that

󵄩󵄩󵄩󵄩𝑢𝑛+1
󵄩󵄩󵄩󵄩
2

=

𝑛+1

∑

𝑖=1

𝐴
2

𝑖
=

𝑛

∑

𝑖=1

𝐴
2

𝑖
+ 𝐴
2

𝑛+1

=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
2

+ 𝐴
2

𝑛+1
≥
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩 .

(49)

By (49), ‖𝑢
𝑛
‖ is nondecreasing, and by the assumption, ‖𝑢

𝑛
‖

is bounded. Thus ‖𝑢
𝑛
‖ is convergent. By (49), there exists a

constant 𝑐 such that

∞

∑

𝑖=1

𝐴
2

𝑖
= 𝑐. (50)

Table 4: A comparison between interpolating scaling function
method [11] and RKM for different values of 𝛼, 𝛽, and 𝑡 for
Example 20.

𝑥

AE
[11]

𝛼 = 10

𝑡 = 0.5

AE
RKM
𝛼 = 10

𝑡 = 0.5

AE
[11]
𝛽 = 5

𝑡 = 1

AE
RKM
𝛽 = 5

𝑡 = 1

0.0 0.0 0.0 2 × 10
−6

0.0

0.1 3 × 10
−4

1 × 10
−7

1 × 10
−4

2 × 10
−7

0.2 1 × 10
−3

3 × 10
−8

7 × 10
−4

2 × 10
−6

0.3 1 × 10
−3

9 × 10
−8

6 × 10
−4

6 × 10
−7

0.4 2 × 10
−3

2 × 10
−8

9 × 10
−4

7 × 10
−8

0.5 2 × 10
−3

2 × 10
−7

1 × 10
−3

5 × 10
−8

0.6 2 × 10
−3

5 × 10
−7

1 × 10
−3

9 × 10
−8

0.7 2 × 10
−3

7 × 10
−8

8 × 10
−4

3 × 10
−8

0.8 2 × 10
−3

7 × 10
−8

7 × 10
−4

6 × 10
−8

0.9 1 × 10
−3

4 × 10
−7

3 × 10
−4

2 × 10
−8

1.0 1 × 10
−4

8 × 10
−9

9 × 10
−5

7 × 10
−8

This implies that

{𝐴
𝑖
}
∞

𝑖=1
∈ ℓ
2
. (51)

If𝑚 > 𝑛, then

󵄩󵄩󵄩󵄩𝑢𝑚 − 𝑢
𝑛

󵄩󵄩󵄩󵄩
2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑘=𝑛

𝑢
𝑘+1

− 𝑢
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

𝑚−1

∑

𝑘=𝑛

󵄩󵄩󵄩󵄩𝑢𝑘+1 − 𝑢
𝑘

󵄩󵄩󵄩󵄩
2

=

𝑚−1

∑

𝑘=𝑛

𝐴
2

𝑘+1
󳨀→ 0, 𝑚, 𝑛 󳨀→ ∞.

(52)



8 Abstract and Applied Analysis

Table 5: Numerical results for Example 21 for 𝑡 = 0.5.

AE RE AE RE AE RE
𝑥 CPU time (s) 𝛼 = 20 𝛼 = 20 𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50

𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2

0.9829 2.215 7.23 × 10
−8

6.8 × 10
−7

3.4 × 10
−9

3.2 × 10
−8

8.41 × 10
−8

7.99 × 10
−7

0.9903 2.246 3.51 × 10
−9

6.8 × 10
−9

1.8 × 10
−9

3.5 × 10
−9

3.52 × 10
−7

6.86 × 10
−7

0.9938 2.231 7.56 × 10
−7

1.9 × 10
−5

7.6 × 10
−8

1.9 × 10
−6

2.84 × 10
−9

7.28 × 10
−8

0.9957 2.433 5.45 × 10
−8

9.9 × 10
−8

2.6 × 10
−8

4.8 × 10
−8

4.53 × 10
−8

8.27 × 10
−8

Table 6: Numerical results for Example 21 for 𝑡 = 1.0.

AE RE AE RE AE RE
𝑥 CPU time (s) 𝛼 = 20 𝛼 = 20 𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50

𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2

0.9829 2.184 1.3 × 10
−7

2.08 × 10
−6

6.32 × 10
−8

9.7 × 10
−7

2.78 × 10
−8

4.2 × 10
−7

0.9903 2.293 5.1 × 10
−9

1.61 × 10
−8

7.31 × 10
−8

2.3 × 10
−7

2.07 × 10
−7

6.5 × 10
−7

0.9938 2.512 8.0 × 10
−9

3.34 × 10
−7

8.10 × 10
−10

3.3 × 10
−8

4.37 × 10
−7

1.8 × 10
−5

0.9957 2.215 1.6 × 10
−8

4.83 × 10
−8

3.71 × 10
−9

1.0 × 10
−8

4.04 × 10
−7

1.2 × 10
−6

0

0.5

−0.5

0 2 4 6−4−6 −2

ES
RKM

𝑥

𝑢
(
𝑥
)

Figure 2: Graph of numerical results for Example 21 (𝛼 = 10, 𝛽 =

20, 𝑡 = 0.5).

The completeness of𝑊(Ω) shows that there exists 𝑢̂ ∈ 𝑊(Ω)

such that 𝑢
𝑛

→ 𝑢̂ as 𝑛 → ∞. Now, we prove that 𝑢̂ solves
(26). Taking limits in (40), we get

𝑢̂ =

∞

∑

𝑖=1

𝐴
𝑖
Ψ̂
𝑖
. (53)

Note that

𝐿𝑢̂ =

∞

∑

𝑖=1

𝐴
𝑖
𝐿Ψ̂
𝑖
, (54)

(𝐿𝑢̂) (𝑥
𝑘
, 𝑡
𝑘
) =

∞

∑

𝑖=1

𝐴
𝑖
𝐿Ψ̂
𝑖
(𝑥
𝑘
, 𝑡
𝑘
)

=

∞

∑

𝑖=1

𝐴
𝑖
⟨𝐿Ψ̂
𝑖
, 𝐺
(𝑥
𝑘
,𝑡
𝑘
)
⟩
𝑊̂

=

∞

∑

𝑖=1

𝐴
𝑖
⟨𝐿Ψ̂
𝑖
, 𝜑
𝑘
⟩
𝑊̂

=

∞

∑

𝑖=1

𝐴
𝑖
⟨Ψ̂
𝑖
, 𝐿
∗
𝜑
𝑘
⟩
𝑊

=

∞

∑

𝑖=1

𝐴
𝑖
⟨Ψ̂
𝑖
, Ψ
𝑘
⟩
𝑊
.

(55)

In view of (47), we have

𝐿𝑢̂ (𝑥
𝑙
, 𝑡
𝑙
) = 𝑀(𝑥

𝑙
, 𝑡
𝑙
, 𝑢
𝑙−1

(𝑥
𝑙
, 𝑡
𝑙
)) . (56)

Since {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense inΩ, for each (𝑦, 𝑠) ∈ Ω, there exists

a subsequence {(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

)}
∞

𝑗=1
such that

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) 󳨀→ (𝑦, 𝑠) , 𝑗 󳨀→ ∞. (57)

We know that

𝐿𝑢̂ (𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) = 𝑀(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

, 𝑢
𝑛
𝑗
−1

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

)) . (58)

Let 𝑗 → ∞. By the continuity of 𝑓, we have

(𝐿𝑢̂) (𝑦, 𝑠) = 𝑀(𝑦, 𝑠, 𝑢̂ (𝑦, 𝑠)) , (59)

which indicates that 𝑢̂ satisfies (26).

Remark 19. In the same manner, it can be proved that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢
𝑛

𝜕𝑥
−
𝜕𝑢

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, 𝑛 󳨀→ ∞, (60)

where

𝜕𝑢

𝜕𝑥
=

∞

∑

𝑖=1

𝐴
𝑖

𝜕Ψ̂
𝑖

𝜕𝑥
,

𝜕𝑢
𝑛

𝜕𝑥
=

𝑛

∑

𝑖=1

𝐴
𝑖

𝜕Ψ̂
𝑖

𝜕𝑥
, (61)

and 𝐴
𝑖
is given by (47).
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Table 7: RMS errors for Example 21.

𝑁

[10] RKM [10] RKM [10] RKM
𝛼 = 20 𝛼 = 20 𝛼 = 20 𝛼 = 20 𝛼 = 10 𝛼 = 10

𝛽 = 10 𝛽 = 10 𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5

𝑡 = 0.5 𝑡 = 0.5 𝑡 = 1.0 𝑡 = 1.0 𝑡 = 0.5 𝑡 = 0.5

5 3.2 × 10
−7

2.8 × 10
−8

3.4 × 10
−6

2.3 × 10
−8

3.6 × 10
−6

1.1 × 10
−7

7 2.0 × 10
−10

5.7 × 10
−7

3.7 × 10
−9

5.9 × 10
−11

4.1 × 10
−10

9.6 × 10
−11

9 2.3 × 10
−13

2.7 × 10
−16

2.4 × 10
−12

4.8 × 10
−13

3.5 × 10
−13

1.9 × 10
−12

11 1.1 × 10
−16

3.8 × 10
−20

1.0 × 10
−15

2.3 × 10
−16

3.4 × 10
−16

1.3 × 10
−16

Table 8: Numerical results for Example 22 for 𝑡 = 0.5.

AE RE AE RE AE RE
𝑥 𝛼 = 20 𝛼 = 20 CPU time (s) 𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50

𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2

0.9829 6.3 × 10
−8

1.9 × 10
−7

2.231 1.8 × 10
−5

5.8 × 10
−5

6.5 × 10
−6

2.0 × 10
−5

0.9903 7.2 × 10
−7

1.1 × 10
−6

2.540 4.5 × 10
−4

7.2 × 10
−4

7.5 × 10
−4

1.1 × 10
−3

0.9938 4.9 × 10
−8

1.7 × 10
−7

2.230 3.6 × 10
−5

1.2 × 10
−4

8.9 × 10
−6

3.2 × 10
−5

0.9957 6.4 × 10
−8

9.6 × 10
−8

2.680 2.5 × 10
−6

3.8 × 10
−6

1.5 × 10
−4

2.3 × 10
−4

5. Numerical Results

To test the accuracy of the present method, some numerical
experiments are presented in this section. Using our method,
we chose 36 points in Ω and obtained the approximate
solution 𝑢

36
. The comparison between interpolating scaling

function method [11] and RKM for different values of 𝛼, 𝛽,
and 𝑡 is given in Tables 4 and 5. We solve these examples for
a set of points

{𝑥
1
= 0, . . . , 𝑥

𝑖
= (𝑖 − 1) ℎ, . . . , 𝑥

𝑁
= 1} , ℎ =

1

𝑁 − 1
. (62)

In Tables 7 and 10 we calculate the RMS error by the following
formula:

RMS error = √
∑
𝑁+1

𝑖=1
(𝑢 − 𝑢

36
)
2

𝑁 + 1
.

(63)

It can be seen from Tables 4 and 5 and 7–10 that the results
obtained by the RKM are more accurate than those obtained
by themethods in [10, 11].This indicates that RKM is a reliable
method.TheCPU time (𝑠) is given in Tables 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10. Numerical solutions are described in the extended
domain [−4, 4] × [−3, 3]. The comparison of RMS error is
given for our method and Chebyshev method.

Example 20. Consider the following telegraph equation with
initial and boundary conditions:

𝜕
2
𝑢

𝜕𝑡2
(𝑥, 𝑡) + 2𝛼

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) + 𝛽

2
𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢

𝜕𝑥2
+ 𝑓 (𝑥, 𝑡) ,

𝑢 (𝑥, 0) = 𝜑
1
(𝑥) = sinh (𝑥) ,

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝜑

2
(𝑥) = −2 sinh (𝑥) ,

𝑢 (0, 𝑡) = 𝑔
0
(𝑡) = 0, 𝑡 ≥ 0,

𝑢 (1, 𝑡) = 𝑔
1
(𝑡) = exp (−2𝑡) sinh (1) , 𝑡 ≥ 0,

(64)

where

𝑓 (𝑥, 𝑡) = (3 − 4𝛼 + 𝛽
2
) exp (−2𝑡) sinh (𝑥) . (65)

The exact solution of (64) is given by [11]

𝑢 (𝑥, 𝑡) = exp (−2𝑡) sinh (𝑥) . (66)

If we apply

V (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑥 sinh (1) (exp (−2𝑡) − 1 + 2𝑡)

+ sinh (𝑥) (2𝑡 − 1)

(67)

to (64), then the following equation (68) is obtained:

𝜕
2V

𝜕𝑡2
−

𝜕
2V

𝜕𝑥2
+ 2𝛼

𝜕V

𝜕𝑡
+ 𝛽
2V (𝑥, 𝑡) = 𝑀 (𝑥, 𝑡) ,

V (𝑥, 0) =
𝜕V

𝜕𝑡
(𝑥, 0) = V (0, 𝑡) = V (1, 𝑡) = 0,

(68)

where

𝑀(𝑥, 𝑡) = (3 − 4𝛼 + 𝛽
2
) exp (−2𝑡) sinh (𝑥)

− sinh (𝑥) (2𝑡 − 1)

− 2𝛼 sinh (1) (−2 exp (−2𝑡) + 2) 𝑥

+ 4𝛼 sinh (𝑥)

− 𝛽
2 sinh (1) (exp (−2𝑡) − 1 + 2𝑡) 𝑥

+ 𝛽
2 sinh (𝑥) (2𝑡 − 1) − 4𝑥 exp (−2𝑡) sinh (1) .

(69)
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Table 9: Numerical results for Example 22 for 𝑡 = 1.0.

AE RE AE RE AE RE
𝑥 CPU time (s) 𝛼 = 20 𝛼 = 20 𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50

𝛽 = 10 𝛽 = 10 𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2

0.9829 2.587 2.7 × 10
−7

4.3 × 10
−7

3.2 × 10
−5

5.1 × 10
−5

6.9 × 10
−5

1.1 × 10
−4

0.9903 2.058 9.2 × 10
−7

8.7 × 10
−7

1.0 × 10
−5

9.6 × 10
−6

1.0 × 10
−4

9.6 × 10
−5

0.9938 2.262 2.5 × 10
−5

4.4 × 10
−5

6.9 × 10
−5

1.2 × 10
−4

1.1 × 10
−4

1.9 × 10
−4

0.9957 2.246 1.7 × 10
−4

1.6 × 10
−4

6.9 × 10
−4

6.3 × 10
−4

1.4 × 10
−4

1.3 × 10
−4

Table 10: RMS errors for Example 22.

𝑁

[10] RKM [10] RKM [10] RKM
𝛼 = 10 𝛼 = 10 𝛼 = 50 𝛼 = 50 𝛼 = 50 𝛼 = 50

𝛽 = 5 𝛽 = 5 𝛽 = 2 𝛽 = 2 𝛽 = 2 𝛽 = 2

𝑡 = 1.0 𝑡 = 1.0 𝑡 = 0.5 𝑡 = 0.5 𝑡 = 1.0 𝑡 = 1.0

5 2.8 × 10
−5

9.8 × 10
−6

3.1 × 10
−5

2.3 × 10
−6

6.9 × 10
−4

1.1 × 10
−5

7 1.3 × 10
−5

6.7 × 10
−7

1.5 × 10
−6

5.9 × 10
−7

2.2 × 10
−5

9.6 × 10
−6

9 2.8 × 10
−7

7.8 × 10
−8

1.8 × 10
−8

4.8 × 10
−10

6.3 × 10
−7

1.9 × 10
−9

11 6.1 × 10
−9

5.3 × 10
−11

7.8 × 10
−10

2.3 × 10
−11

1.6 × 10
−8

1.3 × 10
−10

After homogenizing the initial and boundary conditions and
using the above method, we obtain Tables 1–4 and Figure 1.

Example 21. Consider the following telegraph equation with
initial and boundary conditions:

𝜕
2
𝑢

𝜕𝑡2
+ 2𝛼

𝜕𝑢

𝜕𝑡
+ 𝛽
2
𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢

𝜕𝑥2
+ 𝑓 (𝑥, 𝑡) ,

𝑢 (𝑥, 0) = 𝜑
1
(𝑥) = sin (𝑥) ,

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝜑

2
(𝑥) = 0,

𝑢 (0, 𝑡) = 𝑔
0
(𝑡) = 0, 𝑡 ≥ 0,

𝑢 (1, 𝑡) = 𝑔
1
(𝑡) = cos (𝑡) sin (1) , 𝑡 ≥ 0,

(70)

where

𝑓 (𝑥, 𝑡) = −2𝛼 sin (𝑡) sin (𝑥) + 𝛽
2 cos (𝑡) sin (𝑥) . (71)

The exact solution of (70) is given by [11]

𝑢 (𝑥, 𝑡) = cos (𝑡) sin (𝑥) . (72)

If we apply

V (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑥 sin (1) (cos (𝑡) − 1) − sin (𝑥) (73)

to (70), then the following (74) is obtained:

𝜕
2V

𝜕𝑡2
(𝑥, 𝑡) −

𝜕
2V

𝜕𝑥2
(𝑥, 𝑡) + 2𝛼

𝜕V

𝜕𝑡

+ 𝛽
2V (𝑥, 𝑡) = 𝑀 (𝑥, 𝑡) ,

V (𝑥, 0) =
𝜕V

𝜕𝑡
(𝑥, 0) = V (0, 𝑡) = V (1, 𝑡) = 0,

(74)

where

𝑀(𝑥, 𝑡) = − 2𝛼 sin (𝑡) sin (𝑥) + 𝛽
2 cos (𝑡) sin (𝑥) − sin (𝑥)

− 2𝛼 sin (𝑡) sinh (1) 𝑥 + 𝑥 cos (𝑡) sin (1)

− 𝛽
2
𝑥 sin (1) (cos (𝑡) − 1) − 𝛽

2 sin (𝑥) .

(75)

After homogenizing the initial and boundary conditions and
using the above method, we obtain Tables 5–7 and Figures 2
and 3.

Example 22. Consider the following telegraph equation with
initial and boundary conditions:

𝜕
2
𝑢

𝜕𝑡2
+ 2𝛼

𝜕𝑢

𝜕𝑡
+ 𝛽
2
𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢

𝜕𝑥2
+ 𝑓 (𝑥, 𝑡) ,

𝑢 (𝑥, 0) = 𝜑
1
(𝑥) = tan(

𝑥

2
) ,

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝜑

2
(𝑥) =

(1 + tan2 (𝑥/2))
2

,

𝑢 (0, 𝑡) = 𝑔
0
(𝑡) = tan(

𝑡

2
) , 𝑡 ≥ 0,

𝑢 (1, 𝑡) = 𝑔
1
(𝑡) = tan(

1 + 𝑡

2
) , 𝑡 ≥ 0,

(76)

where

𝑓 (𝑥, 𝑡) = 𝛼 (1 + tan2 (𝑥 + 𝑡

2
)) + 𝛽

2 tan(
𝑥 + 𝑡

2
) . (77)

The exact solution of (76) is given by [10]

𝑢 (𝑥, 𝑡) = tan(
𝑥 + 𝑡

2
) . (78)



Abstract and Applied Analysis 11

1
0.5
0
−0.5

−1

−4

−2

0

2
4 −4

−2

0

2

4

(a)

0 2 4

0

1

2

3

−1

−2

−3

−4 −2

(b)

Figure 3: Plots of numerical results for Example 21 (𝛼 = 6, 𝛽 = 2).

If we apply

V (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) + (𝑥 − 1) tan(
𝑡

2
)

− 𝑥 tan(
1 + 𝑡

2
) − tan(

𝑥

2
)

× (1 + (
𝑡 tan (𝑥/2)

2
))

+ 𝑥 tan(
1

2
)(1 + (

𝑡 tan (1/2)

2
))

(79)

to (76), then the following equation (80) is obtained

𝜕
2V

𝜕𝑡2
(𝑥, 𝑡) −

𝜕
2V

𝜕𝑥2
(𝑥, 𝑡) + 2𝛼

𝜕V

𝜕𝑡

+ 𝛽
2V (𝑥, 𝑡) = 𝑀 (𝑥, 𝑡) ,

V (𝑥, 0) =
𝜕V

𝜕𝑡
(𝑥, 0) = V (0, 𝑡) = V (1, 𝑡) = 0,

(80)

where

𝑀(𝑥, 𝑡) = 𝛼 (1 + tan2 (𝑥 + 𝑡

2
)) + 𝛽

2 tan(
𝑥 + 𝑡

2
)

+ (
tan (𝑥/2)

2
+

𝑡

4
+
3𝑡

4
tan2 (𝑥

2
))

× (1 + tan2 (𝑥
2
))

+ (𝑥 − 1) 𝛼 (1 + tan2 ( 𝑡

2
))

− 𝛼𝑥(1 + tan2 (𝑡 + 1

2
)) − 𝛼 tan2 (𝑥

2
)

+ 𝛼𝑥 tan2 (1
2
) + 𝛽
2
(𝑥 − 1) tan(

𝑡

2
)

− 𝛽
2
𝑥 tan(

1 + 𝑡

2
) − 𝛽
2 tan(

𝑥

2
)

× (1 +
𝑡 tan (𝑥/2)

2
)

+ 𝛽
2
𝑥 tan(

1

2
)(1 +

𝑡 tan (1/2)

2
)

×
𝑥 − 1

2
tan(

𝑡

2
) (1 + tan2 ( 𝑡

2
))

−
𝑥

2
tan(

1 + 𝑡

2
) (1 + tan2 (1 + 𝑡

2
)) .

(81)

After homogenizing the initial and boundary conditions and
using the above method, we obtain Tables 8–10 and Figure 4.

Remark 23. In Tables 1–9, we abbreviate the exact solution
and the approximate solution by AS and ES, respectively. AE
stands for the absolute error, that is, the absolute value of the
difference of the exact solution and the approximate solution,
while RE indicates the relative error, that is, the absolute error
divided by the absolute value of the exact solution.

6. Conclusion

In this study, a second-order one-dimensional telegraph
equation with initial and boundary conditions was solved
by reproducing kernel Hilbert space method. We described
the method and used it in some test examples in order
to show its applicability and validity in comparison with
exact and other numerical solutions. The obtained results
show that this approach can solve the problem effectively
and need few computations. The satisfactory results that we
obtained were compared with the results that were obtained
by [10, 11]. Numerical experiments on test examples show
that our proposed schemes are of high accuracy and support
the theoretical results. As shown in Tables 7 and 10 our
results are better than the results that were obtained by [10].
According to these results, it is possible to apply RKM to
linear and nonlinear differential equations with initial and
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Figure 4: Plots of numerical results for Example 22 (𝛼 = 10, 𝛽 = 5).

boundary conditions. It has been shown that the obtained
results are uniformly convergent and the operator that was
used is a bounded linear operator. From the results, RKM can
be applied to high dimensional partial differential equations,
integral equations, and fractional differential equations with-
out any transformation or discretization, and good results can
be obtained.
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