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When solutions of the stationary Schrödinger equation in a half-space belong to the weighted Lebesgue classes, we give integral
representations of them, which imply known representation theorems of classical harmonic functions in a half-space.

1. Introduction and Results

LetR andR
+
be the sets of all real numbers and of all positive

real numbers, respectively. Let R𝑛 (𝑛 ≥ 2) denote the 𝑛-
dimensional Euclidean space with points 𝑥 = (𝑥󸀠, 𝑥

𝑛
), where

𝑥󸀠 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) ∈ R𝑛−1 and 𝑥

𝑛
∈ R. The unit sphere

and the upper half unit sphere in R𝑛 are denoted by S𝑛−1 and
S𝑛−1
+

, respectively.The boundary and closure of an open set𝐷
of R𝑛 are denoted by 𝜕𝐷 and 𝐷, respectively. The upper half
space is the set𝐻 = {(𝑥󸀠, 𝑥

𝑛
) ∈ R𝑛; 𝑥

𝑛
> 0}, whose boundary

is 𝜕𝐻.
We identify R𝑛 with R𝑛−1 × R and R𝑛−1 with R𝑛−1 × {0},

writing typical points 𝑥, 𝑦 ∈ R𝑛 as 𝑥 = (𝑥󸀠, 𝑥
𝑛
), 𝑦 = (𝑦󸀠, 𝑦

𝑛
),

where 𝑦󸀠 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛−1
) ∈ R𝑛−1 and putting

𝑥 ⋅ 𝑦 =

𝑛

∑
𝑗=1

𝑥
𝑗
𝑦
𝑗
, |𝑥| = √𝑥 ⋅ 𝑥,

Θ =
𝑥

|𝑥|
, Φ =

𝑦
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
.

(1)

For 𝑥 ∈ R𝑛 and 𝑟 > 0, let 𝐵(𝑥, 𝑟) denote the open ball
with center at 𝑥 and radius 𝑟(> 0) in R𝑛. 𝑆

𝑟
= 𝜕𝐵(𝑂, 𝑟),

where 𝑂 is the origin of R𝑛. For a set 𝐸, 𝐸 ⊂ R
+
∪ {0}, we

denote {𝑥 ∈ 𝐻; |𝑥| ∈ 𝐸} and {𝑥 ∈ 𝜕𝐻; |𝑥| ∈ 𝐸} by 𝐻𝐸 and
𝜕𝐻𝐸, respectively. By 𝐻𝑟 we denote 𝐻 ∩ 𝑆𝑟. We denote by
𝑑𝑆
𝑟
the (𝑛 − 1)-dimensional volume elements induced by the

Euclidean metric on 𝑆
𝑟
.

Let A
𝑏
denote the class of nonnegative radial potentials

𝑏(𝑥), that is, 0 ≤ 𝑏(𝑥) = 𝑏(|𝑥|), 𝑥 ∈ 𝐻, such that 𝑏 ∈ 𝐿𝑎loc(𝐻)
with some 𝑎 > 𝑛/2 if 𝑛 ≥ 4 and with 𝑎 = 2 if 𝑛 = 2 or 𝑛 = 3.

This paper is devoted to the stationary Schrödinger
equation:

𝑆𝑆𝐸
𝑏
ℎ (𝑥) = −Δℎ (𝑥) + 𝑏 (𝑥) ℎ (𝑥) = 0, (2)

where 𝑥 ∈ 𝐻, Δ is the Laplace operator and 𝑏 ∈ A
𝑏
. Note

that solutions of (2) are (classical) harmonic functions in the
case 𝑏 = 0. Under these assumptions the operator 𝑆𝑆𝐸

𝑏
can

be extended in the usual way from the space 𝐶∞
0
(𝐻) to an

essentially self-adjoint operator on 𝐿2(𝐻) (see [1]). We will
denote it by 𝑆𝑆𝐸

𝑏
as well. This last one has a Green function

𝐺
𝑏
(𝑥, 𝑦). Here 𝐺

𝑏
(𝑥, 𝑦) is positive on𝐻 and its inner normal

derivative 𝜕𝐺
𝑏
(𝑥, 𝑦)/𝜕𝑛(𝑦󸀠) ≥ 0. We denote this derivative by

𝑃
𝑏
(𝑥, 𝑦󸀠), which is called the Poisson 𝑏-kernel with respect to

𝐻. If 𝐺(𝑥, 𝑦) and 𝑃(𝑥, 𝑦󸀠) are denoted by the Green function
and Poisson kernel of the Laplace operator in𝐻, respectively,
then

𝑃 (𝑥, 𝑦
󸀠

) = −
𝜕𝐺(𝑥, 𝑦)

𝜕𝑦
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦
𝑛
=0

=
2𝑥
𝑛

𝑤
𝑛

1
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󸀠
󵄨󵄨󵄨󵄨
𝑛
,

(3)

where 𝑥 = (𝑥󸀠, 𝑥
𝑛
), 𝑦 = (𝑦󸀠, 𝑦

𝑛
) and 𝑤

𝑛
is the area of the unit

sphere in R𝑛.



2 Abstract and Applied Analysis

Let 𝑔 be a continuous function on 𝜕𝐻. We say that
ℎ is a solution of the Dirichlet problem for the stationary
Schrödinger operator 𝑆𝑆𝐸

𝑏
on𝐻 with 𝑔, if

ℎ ∈ 𝐶
2

(𝐻) ∩ 𝐶
0

(𝐻) ,

𝑆𝑆𝐸
𝑏
ℎ = 0 in 𝐻,

ℎ = 𝑔 on 𝜕𝐻.

(4)

Note that ℎ is a solution of the classical Dirichlet problem for
the Laplace operator Δ on𝐻 with 𝑔 in the case 𝑏 = 0.

Let Λ be a Laplace-Beltrami operator (spherical part of
the Laplace) on the unit sphere. It is known (see, e.g., [2, page
41]) that the eigenvalue problem

Λ𝜑 (Θ) + 𝜏𝜑 (Θ) = 0 Θ ∈ S𝑛−1
+
,

𝜑 (Θ) = 0 Θ ∈ 𝜕S𝑛−1
+

(5)

has the eigenvalues 𝜏
𝑗
= 𝑗(𝑗 + 𝑛 − 2), where 𝑗 = 0, 1, 2 . . ..

Corresponding eigenfunctions are denoted by 𝜑
𝑗V (1 ≤

V ≤ V
𝑗
), where V

𝑗
is the multiplicity of 𝜏

𝑗
. We norm the

eigenfunctions in 𝐿2(S𝑛−1
+
) and 𝜑

1
= 𝜑
11
> 0.

Let 𝑃
𝑗
(𝑟) and 𝑄

𝑗
(𝑟) stand, respectively, for the increasing

and nonincreasing, as 𝑟 → +∞, solutions of the equation:

− 𝑇
󸀠󸀠

(𝑟) −
𝑛 − 1

𝑟
𝑇
󸀠

(𝑟)

+ (
𝜏
𝑗

𝑟2
+ 𝑏 (𝑟)) 𝑇 (𝑟) = 0, 0 < 𝑟 < ∞,

(6)

normalized under the condition 𝑃
𝑗
(1) = 𝑄

𝑗
(1) = 1.

We shall also consider the class B
𝑏
, consisting of the

potentials 𝑏 ∈ A
𝑏
such that there exists a finite limit

lim
𝑟→∞

𝑟2𝑏(𝑟) = 𝑠 ∈ [0,∞); moreover, 𝑟−1|𝑟2𝑏(𝑟) − 𝑠| ∈
𝐿(1,∞). If 𝑏 ∈ B

𝑏
, then solutions of (2) are continuous (see

[3]).
In the rest of paper, we assume that 𝑏 ∈ B

𝑏
and we shall

suppress this assumption for simplicity. Further, we use the
standard notations 𝑢+ = max{𝑢, 0}, 𝑢− = −min{𝑢, 0}, and [𝑑]
is the integer part of 𝑑 and 𝑑 = [𝑑] + {𝑑}, where 𝑑 is a positive
real number.

Denote

𝜆
±

𝑗,𝑠
=
2 − 𝑛 ± √(𝑛 − 2)

2

+ 4 (𝑠 + 𝜏
𝑗
)

2
(𝑗 = 0, 1, 2, 3, . . .) .

(7)

Remark 1. 𝜆+
𝑗,0
= 𝑗 in the case 𝑏 = 0, where 𝑗 = 0, 1, 2, 3, . . ..

It is known (see [4]) that in the case under consideration
the solutions to (6) have the asymptotics

𝑃
𝑗
(𝑟) ∼ 𝑑

1
𝑟
𝜆
+

𝑗,𝑠 , 𝑄
𝑗
(𝑟) ∼ 𝑑

2
𝑟
𝜆
−

𝑗,𝑠 , as 𝑟 󳨀→ ∞, (8)

where 𝑑
1
and 𝑑

2
are some positive constants.

If 𝑏 ∈ A
𝑏
, it is known that the following expansion for the

Green function 𝐺
𝑏
(𝑥, 𝑦) (see [5, Chapter 11], [6]):

𝐺
𝑏
(𝑥, 𝑦) =

∞

∑
𝑗=0

1

𝜒󸀠 (1)
𝑃
𝑗
(min (|𝑥| , 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨))

× 𝑄
𝑗
(max (|𝑥| , 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)) (

V
𝑗

∑
V=1

𝜑
𝑗V (Θ) 𝜑𝑗V (Φ)) ,

(9)

where |𝑥| ̸= |𝑦| and 𝜒󸀠(1) = 𝑤(𝑄
1
(𝑟), 𝑃
1
(𝑟))|
𝑟=1

is its Wron-
skian. The series converges uniformly if either |𝑥| ≤ 𝑘|𝑦| or
|𝑦| ≤ 𝑘|𝑥|, where 0 < 𝑘 < 1.

For a nonnegative integer𝑚 and two points 𝑥, 𝑦 ∈ 𝐻, we
define a modified Green function:

𝐺 (𝑏,𝑚) (𝑥, 𝑦) = 𝐺
𝑏
(𝑥, 𝑦) − 𝑉 (𝑏,𝑚) (𝑥, 𝑦) , (10)

where
𝑉 (𝑏,𝑚) (𝑥, 𝑦)

=

{{{{{{{

{{{{{{{

{

0 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 < 1,

𝑚

∑
𝑗=0

1

𝜒󸀠 (1)
𝑃
𝑗
(|𝑥|) 𝑄

𝑗
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

×(

V
𝑗

∑
V=1

𝜑
𝑗V (Θ) 𝜑𝑗V (Φ)) if 1 ≤ 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 < ∞.

(11)

If the generalized Poisson kernel 𝑃(𝑏,𝑚)(𝑥, 𝑦󸀠) with
respect to𝐻 is defined by

𝑃 (𝑏,𝑚) (𝑥, 𝑦
󸀠

) =
𝜕𝐺 (𝑏,𝑚) (𝑥, 𝑦)

𝜕𝑛 (𝑦󸀠)
, (12)

then we have 𝑃(𝑏, 0)(𝑥, 𝑦󸀠) = 𝑃
𝑏
(𝑥, 𝑦󸀠) and 𝑃(0,𝑚)(𝑥, 𝑦󸀠)

coincides with ones in Finkelstein and Scheinberg [7], Siegel
and Talvila [8], Deng [9], Qiao and Deng [10], and Qiao [11]
(see [5, Chapter 11]).

Put

𝑈 (𝑏,𝑚; 𝑢) (𝑥) = ∫
𝜕𝐻

𝑃 (𝑏,𝑚) (𝑥, 𝑦
󸀠

) 𝑢 (𝑦
󸀠

) 𝑑𝑦
󸀠

, (13)

where 𝑢(𝑦󸀠) is a continuous function on 𝜕𝐻.
For real numbers 𝛽 ≥ 1, we denote C(𝛽, 𝑏) the class

of all measurable functions 𝑓(𝑦) satisfying the following
inequality:

∫
𝐻

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝜑1

1 + 𝑃
[𝛽]
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛+{𝛽}

𝑑𝑦 < ∞, (14)

and the class D(𝛽, 𝑏) consists of all measurable functions
𝑔(𝑦
󸀠) (𝑦󸀠 ∈ 𝜕𝐻) satisfying

∫
𝜕𝐻

󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑦
󸀠
)
󵄨󵄨󵄨󵄨󵄨
𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨
) 𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨
)

1 + 𝜒󸀠 (
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨) 𝑃[𝛽] (

󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨) |𝑦
󸀠|
𝑛+{𝛽}−1

𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

< ∞. (15)

We will also consider the class of all continuous functions
ℎ(𝑦), which is the solution of (2), with ℎ+(𝑦) ∈ C(𝛽, 𝑏) and
ℎ+(𝑦󸀠) ∈ D(𝛽, 𝑏), is denoted by E(𝛽, 𝑏).



Abstract and Applied Analysis 3

Remark 2. If 𝑏 = 0 and 𝛽 = 𝛼 + 1, then (14) and (15) are
equivalent to

∫
𝐻

𝑦
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

1 +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛+𝛼+2

𝑑𝑦 < ∞,

∫
𝜕𝐻

󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑦󸀠)

󵄨󵄨󵄨󵄨󵄨

1 +
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝑛+𝛼
𝑑𝑦
󸀠

< ∞,

(16)

respectively, from Remark 1 and (14), which yield that E(𝛼 +
1, 0) is equivalent to (𝐶𝐻)

𝛼
in the notation of [9].

Let us recall the classical case 𝑏 = 0. If ℎ(𝑥) ≥ 0 is
harmonic in𝐻, continuous on𝐻, and ℎ ∈ E(1, 0), then there
exists a constant 𝑑

3
≥ 0 such that (see [12])

ℎ (𝑥) = 𝑑
3
𝑥
𝑛
+ ∫
𝜕𝐻

𝑃 (𝑥, 𝑦
󸀠

) 𝑢 (𝑦
󸀠

) 𝑑𝑦
󸀠

, (17)

where 𝑥 = (𝑥󸀠, 𝑥
𝑛
) ∈ 𝐻.

Deng (see [9]) has constructed a similar representation
to (17) for ℎ ∈ E(𝛼 + 1, 0)(𝛼 ≥ 0), which is the integral
with a modified Poisson kernel derived by subtracting some
special harmonic polynomials from 𝑃(𝑥, 𝑦

󸀠). By virtue of
this modified Poisson kernel, Qiao (see [11, 13]) and Qiao
and Deng (see [14–18]) have constructed different integral
representations for harmonic functions of finite order and
infinite order.

Especially, Su (see [6, 19]) recently writes solutions to the
half-space Dirichlet problem with respect to the stationary
Schrödinger operator 𝑆𝑆𝐸

𝑏
. Now we state our main results as

follows.

Theorem 3. If ℎ ∈ E(𝛽, 𝑏), then ℎ ∈ D(𝛽, 𝑏).

Theorem 4. If ℎ ∈ E(𝛽, 𝑏),𝑚 is an integer such that 𝑃
𝑚
(|𝑦|) <

𝑃
[𝛽]
(|𝑦|)|𝑦|{𝛽} ≤ 𝑃

𝑚+1
(|𝑦|)(|𝑦| ≥ 1), and then the following

properties hold.

(I) If 𝛽 = 1, then there exists a constant 𝑑
4
such that

ℎ (𝑥) = 𝑑
4
𝑃
1
(|𝑥|) 𝜑

1
(Θ) + 𝑈 (𝑏, 0; ℎ) (𝑥) (18)

for 𝑥 ∈ 𝐻.
(II) If 𝛽 > 1, then we have ℎ(𝑥) = 𝑈(𝑏,𝑚; ℎ)(𝑥) + 𝑢(𝑥),

where

𝑢 (𝑥) =

𝑚

∑
𝑗=0

(

V
𝑗

∑
V=1

𝑑
𝑗V𝜑𝑗V (Θ))𝑃𝑗 (|𝑥|) (19)

vanishing continuously on 𝜕𝐻, 𝑥 = (𝑥󸀠, 𝑥
𝑛
) ∈ 𝐻 and

𝑑
𝑗V are constants.

2. Lemmas

The following Lemma plays an important role in our discus-
sions, which is due to Levin and Kheyfits (see [5, page 356]).

Lemma 5. If 𝑅 > 1 and ℎ(𝑦) is a solution of (2) on a domain
containing𝐻(1, 𝑅), then

∫
𝐻𝑅

𝜒󸀠 (𝑅)

𝑃
1
(𝑅)

ℎ𝜑
1
(Φ) 𝑑𝑆

𝑅
+ ∫
𝜕𝐻(1,𝑅)

ℎ (𝑦
󸀠

)
𝜕𝜑
1

𝜕𝑛
𝑊(

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑦
󸀠

+ 𝑑
5
+ 𝑑
6

𝑄
1
(𝑅)

𝑃
1
(𝑅)

= 0,

(20)

where

𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
) = 𝑄

1
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
) −

𝑄
1
(𝑅)

𝑃
1
(𝑅)

𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
) ,

𝑑
5
= ∫
𝐻1

ℎ𝜑
1
(Φ)𝑄

󸀠

1
(𝑟) − 𝑄

1
(1) 𝜑
1
(Φ)

𝜕ℎ

𝜕𝑛
𝑑𝑆
1
,

𝑑
6
= ∫
𝐻1

𝑃
1
(1) 𝜑
1
(Φ)

𝜕ℎ

𝜕𝑛
− ℎ𝜑
1
(Φ) 𝑃
󸀠

1
(1) 𝑑𝑆

1
.

(21)

Lemma6 (see [6, Corollary 1.6]). If 𝑢 is a continuous function
on 𝜕𝐻 satisfying

∫
𝜕𝐻

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑦󸀠)

󵄨󵄨󵄨󵄨󵄨

1 +
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝜆
+

𝑚+1,𝑠
+𝑛−1

𝑑𝑦
󸀠

< ∞, (22)

then 𝑈(𝑏,𝑚; 𝑢)(𝑥) is a solution of the Dirichlet problem for
𝑆𝑆𝐸
𝑏
on𝐻 with ℎ and

lim
|𝑥|→∞,𝑥∈𝐻

|𝑥|
−𝜆
+

𝑚+1,𝑠𝑈 (𝑏,𝑚; 𝑢) (𝑥) = 0. (23)

Lemma 7 (see [6, Lemma 2.1] or [20, Theorem 1]). If 𝑢(𝑥) is
a solution of (2) on𝐻 satisfying

lim
|𝑥|→∞, 𝑥∈𝐻

|𝑥|
−𝜆
+

𝑚+1,𝑠𝑢
+

(𝑥) = 0, (24)

then (19) holds.

3. Proof of Theorem 3

We apply the formula (20) to ℎ = ℎ+ − ℎ− in𝐻(1, 𝑅):

𝑚
+
(𝑅) + ∫

𝜕𝐻(1,𝑅)

ℎ
+

(𝑦
󸀠

)𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

+ 𝑑
5
+
𝑄
1
(𝑅)

𝑃
1
(𝑅)

𝑑
6

= 𝑚
−
(𝑅) + ∫

𝜕𝐻(1,𝑅)

ℎ
−

(𝑦
󸀠

)𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

,

(25)

where

𝑚
±
(𝑅) = ∫

𝐻𝑅

𝜒󸀠 (𝑅)

𝑃
1
(𝑅)

ℎ
±

𝜑
1
𝑑𝑆
𝑅
. (26)
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Since 𝑢 ∈ E(𝛽, 𝑏), we obtain by (8)

∫
∞

1

𝑚
+
(𝑅) 𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+{𝛽}

𝑑𝑅

= ∫
𝐻(1,∞)

ℎ+𝜑
1

𝑃
[𝛽]
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛+{𝛽}

𝑑𝑦

≤ 2∫
𝐻

ℎ+𝜑
1

1 + 𝑃
[𝛽]
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛+{𝛽}

𝑑𝑦 < ∞.

(27)

From (15), we conclude that

∫
∞

1

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+{𝛽}

× ∫
𝜕𝐻(1,𝑅)

ℎ
+

(𝑦
󸀠

)𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

𝑑𝑅

= ∫
𝜕𝐻(1,∞)

ℎ
+

(𝑦
󸀠

) 𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
)

× ∫
∞

|𝑦󸀠|

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+{𝛽}

× (
𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
)

𝑃
1
(
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)
−
𝑊
1
(𝑅)

𝑃
1
(𝑅)

)𝑑𝑅
𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

≤ 𝑀∫
𝜕𝐻(1,∞)

ℎ+ (𝑦󸀠) 𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
) 𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
)

𝜒󸀠 (
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨) 𝑃[𝛽] (

󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝑛+{𝛽}−1

𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

≤ 𝑀∫
𝜕𝐻

ℎ+ (𝑦󸀠) 𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
) 𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
)

1 + 𝜒󸀠 (
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨) 𝑃[𝛽] (

󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝑛+{𝛽}−1

𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

< ∞.

(28)

Combining (25), (27), and (28), we obtain

∫
∞

1

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

× ∫
𝜕𝐻(1,𝑅)

ℎ
−

(𝑦
󸀠

)𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

𝑑𝑅

≤ ∫
∞

1

𝑚
+
(𝑅) 𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

𝑑𝑅

+ ∫
∞

1

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

× ∫
𝜕𝐻(1,𝑅)

ℎ
+

(𝑦
󸀠

)𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
)
𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

𝑑𝑅

+ ∫
∞

1

1

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

× (𝑃
1
(𝑅) 𝑑
5
+ 𝑄
1
(𝑅) 𝑑
6
) 𝑑𝑅

< ∞.

(29)

Set

H (𝛽) = lim
|𝑦󸀠|→∞

𝜒
󸀠
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨
) 𝑃
[𝛽]
(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨
)
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
󵄨󵄨󵄨󵄨󵄨

𝑛+{𝛽}−1

𝑄
1
(
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)

× ∫
∞

|𝑦󸀠|

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

× (
𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
)

𝑃
1
(
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)
−
𝑊
1
(𝑅)

𝑃
1
(𝑅)

)𝑑𝑅

= lim
|𝑦󸀠|→∞

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨

𝜆
+

[𝛽],𝑠
+𝜆
+

1,𝑠
+𝑛+{𝛽}−2

× ∫
∞

|𝑦󸀠|

1

𝑅
𝜆
+

[𝛽],𝑠
−𝜆
+

1,𝑠
+({𝛽}/2)+1

(
1

󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝜒
1,𝑠

−
1

𝑅𝜒1,𝑠
)𝑑𝑅,

(30)

where 𝜒
1,𝑠
= 𝜆+
1,𝑠
− 𝜆−
1,𝑠
.

By the L’hospital’s rule, we have

H (𝛽)

=

{{

{{

{

𝜒
1,𝑠

(𝜆+
[𝛽],𝑠

− 𝜆+
1,𝑠
) (𝜆+
[𝛽],𝑠

+ 𝜆+
1,𝑠
+ 𝑛 − 2)

if {𝛽} = 0,

+∞ if {𝛽} ̸= 0,

(31)

which yields that there exists a positive constant𝑀 such that,
for any |𝑦󸀠| ≥ 1,

∫
∞

|𝑦󸀠|

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑅

≥
𝑀𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
) 𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
)

𝜒󸀠 (
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨) 𝑃[𝛽] (

󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝑛+{𝛽}−1

.

(32)

Then

𝑀∫
𝜕𝐻(1,∞)

ℎ− (𝑦󸀠) 𝑃
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
) 𝑄
1
(
󵄨󵄨󵄨󵄨󵄨
𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
)

𝜒󸀠 (
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨) 𝑃[𝛽] (

󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑦
󸀠
󵄨󵄨󵄨󵄨
𝑛+{𝛽}−1

𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

≤ ∫
𝜕𝐻(1,∞)

ℎ
−

∫
∞

|𝑦󸀠|

𝑃
1
(𝑅)

𝜒󸀠 (𝑅) 𝑃
[𝛽]
(𝑅) 𝑅𝑛+({𝛽}/2)

×𝑊(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑅

𝜕𝜑
1

𝜕𝑛
𝑑𝑦
󸀠

< ∞,

(33)

which shows that ℎ ∈ D(𝛽, 𝑏) from |ℎ| = ℎ+ + ℎ−. Then
Theorem 3 is proved.

4. Proof of Theorem 4

To prove (II), notice that 𝑃
𝑚
(|𝑦|) < 𝑃

[𝛽]
(|𝑦|)|𝑦|{𝛽} ≤

𝑃
𝑚+1

(|𝑦|) (|𝑦| ≥ 1) and condition (15) is stronger than
condition (22) fromTheorem 3.
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Consider the function ℎ(𝑥) − 𝑈(𝑎,𝑚; ℎ)(𝑥). Then it
follows from Lemma 6 and Theorem 3 that this is a solution
of (2) in𝐻 and vanishes continuously on 𝜕𝐻.

Then

0 ≤ (ℎ (𝑥) − 𝑈 (𝑏,𝑚; ℎ) (𝑥))
+

≤ ℎ
+

(𝑥) + (𝑈 (𝑏,𝑚; ℎ))
−

(𝑥)

(34)

for any 𝑃 ∈ 𝐻. Further, (8) gives that

lim
|𝑥|→∞,𝑥∈𝐻

|𝑥|
−𝜆
+

𝑚+1,𝑠ℎ
+

(𝑥) = 0, (35)

which together with (34) and Lemmas 6 and 7 give the result
of (II).

If 𝑢 ∈ E(1, 𝑏), then ℎ ∈ E(𝛽, 𝑏) for each 𝛽 > 1 and there
exists a constant 𝑑

7
such that

ℎ (𝑥) = 𝑑
7
𝑃
1
(|𝑥|) 𝜑

1
(Θ) + 𝑈 (𝑏, 1; ℎ) (𝑥) (36)

for all 𝑥 ∈ 𝐻. So if we take

𝑑
4
= 𝑑
7
− ∫
𝜕𝐻[1,∞)

𝑃 (𝑏, 1) (0, 𝑦
󸀠

) ℎ (𝑦
󸀠

) 𝑑𝑦
󸀠

, (37)

we see that (18) holds for all 𝑥 ∈ 𝐻.
Thus we complete the proof of Theorem 4.
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