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We obtain the Lipschitz boundedness for a class of fractional multilinear operators with rough kernels on variable exponent
Lebesgue spaces. Our results generalize the related conclusions on Lebesgue spaces with constant exponent.

1. Introduction and Results

Let 0 < 𝛼 < 𝑛, Ω ∈ 𝐿𝑠(𝑆𝑛−1) (𝑠 > 𝑛/(𝑛 − 𝛼)) is homogeneous
of degree zero on 𝑅𝑛, 𝑆𝑛−1 denotes the unit sphere in 𝑅𝑛, the
fractional multilinear singular integral operator with rough
kernel 𝑇

Ω,𝛼,𝐴
is defined by

𝑇
Ω,𝛼,𝐴
𝑓 (𝑥) = ∫

𝑅
𝑛

Ω(𝑥 − 𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1
𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (1)

where 𝑅
𝑚
(𝐴; 𝑥, 𝑦) denotes the 𝑚th remainder of the Taylor

series of a function 𝐴 defined on 𝑅𝑛 at 𝑥 about 𝑦. More
precisely,

𝑅
𝑚
(𝐴; 𝑥, 𝑦) = 𝐴 (𝑥) − ∑

|𝛾|<𝑚

1

𝛾!
𝐷
𝛾

𝐴 (𝑦) (𝑥 − 𝑦)
𝛾

, (2)

and the corresponding fractional multilinear maximal oper-
ator is defined by

𝑀
Ω,𝛼,𝐴
𝑓 (𝑥) = sup

𝑟>0

1

𝑟𝑛−𝛼+𝑚−1

×∫

|𝑥−𝑦|<𝑟

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨𝑑𝑦.

(3)

Multilinear operator was first introduced by Calderón in
[1], and thenMeyer [2] studied it in depth and extended such
type of operators. Multilinear singular integral operator was
later introduced by Professor Lu during 1999 [3]. Especially
as𝑚 = 1, the fractional multilinear singular integral operator
𝑇
Ω,𝛼,𝐴

is obviously the commutator operator

[𝐴, 𝑇
Ω,𝛼
] 𝑓 (𝑥) = 𝐴 (𝑥) 𝑇

Ω,𝛼
𝑓 (𝑥) − 𝑇

Ω,𝛼
(𝐴𝑓) (𝑥) , (4)

the commutator is a typical non-convolution singular oper-
ator. Since the commutator has a close relation with partial
differential equations and pseudo-differential operator, mul-
tilinear operator has been receiving more widely attention.

It is well known that the boundedness of 𝑇
Ω,𝛼,𝐴

and
𝑀

Ω,𝛼,𝐴
had been obtained on Lebesgue spaces in [4–7].

However, the corresponding results have not been obtained
on 𝐿𝑝(⋅)(𝑅𝑛). Nowadays, there is an evident increase of
investigations related to both the theory of the spaces 𝐿𝑝(⋅)
themselves and the operator theory in these spaces [8–11].
This is caused by possible applications to models with non-
standard local growth in elasticity theory, fluid mechanics,
and differential equations [12–14]. The purpose of this paper
is to study the behaviour of 𝑇

Ω,𝛼,𝐴
and 𝑀

Ω,𝛼,𝐴
on variable

Lebesgue spaces.
To state the main results of this paper, we need to recall

some notions.
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Definition 1. Suppose a measurable function 𝑝(⋅) : 𝑅𝑛 →
[1,∞), for some 𝜆 > 0, then, the variable exponent Lebesgue
space 𝐿𝑝(⋅)(𝑅𝑛) is defined by

𝐿
𝑝(⋅)

(𝑅
𝑛

)={𝑓 is measurable : ∫
𝑅
𝑛

(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
)

𝑝(𝑥)

𝑑𝑥 < ∞} ,

(5)

with norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

= inf {𝜆 > 0 : ∫
𝑅
𝑛

(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
)

𝑝(𝑥)

𝑑𝑥 ≤ 1} . (6)

We denote

𝑝
−
= essinf {𝑝 (𝑥) : 𝑥 ∈ 𝑅𝑛} ,

𝑝
+
= esssup {𝑝 (𝑥) : 𝑥 ∈ 𝑅𝑛} .

(7)

Using this notation we define a class of variable exponent as
follows:

Φ(𝑅
𝑛

) = {𝑝 (⋅) : 𝑅
𝑛

󳨀→ [1,∞) , 𝑝
−
> 1, 𝑝

+
< ∞} . (8)

The exponent 𝑝󸀠(⋅) means the conjugate of 𝑝(⋅), namely,
1/𝑝(𝑥) + 1/𝑝

󸀠

(𝑥) = 1 holds.

Definition 2. For𝛽 > 0, the homogeneous Lipschitz space Λ̇
𝛽

is the space of functions 𝑓, such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

= sup
𝑥,ℎ∈𝑅

𝑛
,ℎ ̸= 0

󵄨󵄨󵄨󵄨󵄨󵄨
Δ
[𝛽]+1

ℎ
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨

|ℎ|
𝛽

< ∞, (9)

where Δ1
ℎ
𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥), Δ𝑘+1

ℎ
𝑓(𝑥) = Δ

𝑘

ℎ
𝑓(𝑥 + ℎ) −

Δ
𝑘

ℎ
𝑓(𝑥), 𝑘 ≥ 1.

Definition 3. For 0 < 𝛼 < 𝑛, the fractional integral operator
with rough kernel is defined by

𝑇
Ω,𝛼
𝑓 (𝑥) = ∫

𝑅
𝑛

Ω(𝑥 − 𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑓 (𝑦) 𝑑𝑦,

𝑇
Ω,𝛼
𝑓 (𝑥) = ∫

𝑅
𝑛

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦.

(10)

The corresponding fractional maximal operator with
rough kernel is defined by

𝑀
Ω,𝛼
𝑓 (𝑥) = sup

𝑟>0

1

𝑟𝑛−𝛼
∫

|𝑥−𝑦|<𝑟

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦. (11)

When 𝛼 = 0, 𝑇
Ω,𝛼

is much more closely related to
the elliptic partial equations of second order with variable
coefficients. In 1955, Calderón and Zygmund [15] proved the
𝐿
𝑝 boundedness. In 1971, Muckenhoupt and Wheeden [16]

proved the (𝐿𝑝, 𝐿𝑞) boundedness of 𝑇
Ω,𝛼

with power weights.
In this paper, we state some properties of variable expo-

nents belonging to class 𝐵(𝑅𝑛).

Proposition 4. If 𝑝(⋅) ∈ Φ(𝑅𝑛) satisfies

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)
󵄨󵄨󵄨󵄨 ≤

−𝐶

log (󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨)
,
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ≤
1

2
,

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐶

log (𝑒 + |𝑥|)
,
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≥ |𝑥| ,

(12)

Then, one has 𝑝(⋅) ∈ 𝐵(𝑅𝑛).

Recently, Mitsuo Izuki has proved the condition as below.

Theorem A (see [17]). Suppose that 𝑝(⋅) ∈ Φ(𝑅𝑛) satisfies
conditions (12) in Proposition 4. Let 0 < 𝛼 < 𝑛/𝑝

+
, and define

the variable exponent 𝑞(⋅) by
1

𝑝 (𝑥)
−
1

𝑞 (𝑥)
=
𝛼

𝑛
. (13)

Then, one has that for all 𝑓 ∈ 𝐿𝑝(⋅)(𝑅𝑛),
󵄩󵄩󵄩󵄩[𝑏, 𝐼

𝛼

] 𝑓
󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶‖𝑏‖
𝐵𝑀𝑂(𝑅

𝑛
)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛) (14)

for all 𝑓 ∈ 𝐿𝑝(⋅)(𝑅𝑛) and 𝑏 ∈ 𝐵𝑀𝑂(𝑅𝑛).

Next, we will discuss the boundedness of 𝑇
Ω,𝛼,𝐴

and
𝑀

Ω,𝛼,𝐴
on variable Lebesgue spaces. We can get 𝑇

Ω,𝛼,𝐴
and

𝑀
Ω,𝛼,𝐴

are bounded from 𝐿𝑝(⋅)(𝑅𝑛) to 𝐿𝑞(⋅)(𝑅𝑛). In fact, the
results generalize Theorem A in [17] from classical Lebesgue
spaces to variable exponent Lebesgue spaces. Now, let us
formulate our results as follows.

Theorem 5. Suppose that 𝑝(⋅) ∈ Φ(𝑅𝑛) satisfies conditions
(12) in Proposition 4. Let 0 < 𝛼 < 𝑛/𝑝

+
, 0 < 𝛽 < 1,

0 < 𝛼 + 𝛽 < 𝑛/𝑝
+
, and 1 < 𝑝

+
< 𝑛/(𝛼 + 𝛽), and define

the variable exponent 𝑞(⋅) by

1

𝑞 (𝑥)
−
1

𝑝 (𝑥)
=
𝛼 + 𝛽

𝑛
. (15)

If𝐷𝛾𝐴 ∈ Λ̇
𝛽
(|𝛾| = 𝑚 − 1), then, there is a 𝐶 > 0, independent

of 𝑓 and 𝐴, such that

󵄩󵄩󵄩󵄩𝑇Ω,𝛼,𝐴𝑓
󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

. (16)

Theorem 6. Suppose that 𝑝(⋅) ∈ Φ(𝑅𝑛) satisfies conditions
(12) in Proposition 4. Let 0 < 𝛼 < 𝑛/𝑝

+
, 0 < 𝛽 < 1,

0 < 𝛼 + 𝛽 < 𝑛/𝑝
+
, and 1 < 𝑝

+
< 𝑛/(𝛼 + 𝛽), and define

the variable exponent 𝑞(⋅) by

1

𝑞 (𝑥)
−
1

𝑝 (𝑥)
=
𝛼 + 𝛽

𝑛
. (17)

If𝐷𝛾𝐴 ∈ Λ̇
𝛽
(|𝛾| = 𝑚 − 1), then, there is a 𝐶 > 0, independent

of 𝑓 and 𝐴, such that

󵄩󵄩󵄩󵄩𝑀Ω,𝛼,𝐴
𝑓
󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

. (18)

Remark 7. We point out that 𝐶 will denote positive constants
whose values may change at different places.
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2. Lemmas and Proof of Theorems

Lemma 8 (see [15]). Let 𝐴(𝑥) be a function on 𝑅𝑛 with 𝑚th
order derivatives in 𝐿𝑙

𝑙𝑜𝑐
(𝑅

𝑛

) for some 𝑙 > 𝑛. Then,
󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)

󵄨󵄨󵄨󵄨

≤ 𝐶
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑚

∑

|𝑟|=𝑚

(
1

󵄨󵄨󵄨󵄨𝑄
𝑦

𝑥

󵄨󵄨󵄨󵄨

∫

𝑄
𝑦

𝑥

󵄨󵄨󵄨󵄨𝐷
𝛾

𝐴 (𝑧)
󵄨󵄨󵄨󵄨

𝑙

𝑑𝑧)

1/𝑙

,

(19)

where 𝑄𝑦
𝑥
is the cube centered at 𝑥 and having diameter

5√𝑛|𝑥 − 𝑦|.

Lemma 9 (see [18]). For 0 < 𝛽 < 1, 1 ≤ 𝑞 < ∞, we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

= sup
𝑄

1

|𝑄|
1+𝛽/𝑛

∫

𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑚𝑄 (𝑓)
󵄨󵄨󵄨󵄨 𝑑𝑥

≈ sup
𝑄

1

|𝑄|
𝛽/𝑛

(
1

|𝑄|
∫

𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑚𝑄 (𝑓)
󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

.

(20)

Lemma 10 (see [18]). Let 𝑄∗ ⊂ 𝑄, 𝑔 ∈ Λ̇
𝛽
(0 < 𝛽 < 1), then,

󵄨󵄨󵄨󵄨𝑚𝑄∗ (𝑔) − 𝑚𝑄 (𝑔)
󵄨󵄨󵄨󵄨 ≤ 𝐶|𝑄|

𝛽/𝑛󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

. (21)

We state the following important lemma.

Lemma 11. Suppose 0 < 𝛼 < 𝑛, 0 < 𝛽 < 1, with 0 < 𝛼+𝛽 < 𝑛,
Ω ∈ 𝐿

𝑠

(𝑆
𝑛−1

)(𝑠 > 𝑛/(𝑛 − (𝛼 + 𝛽))), 𝐷𝛾𝐴 ∈ Λ̇
𝛽
. Then, there

exists a constant 𝐶 only depends on𝑚, 𝑛, 𝛼, and 𝛽, such that

󵄨󵄨󵄨󵄨𝑇Ω,𝛼,𝐴𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)𝑇
Ω,𝛼+𝛽
𝑓 (𝑥) . (22)

Proof. For any𝑥 ∈ 𝑅𝑛, let the cube be centered at𝑥 andhaving
the diameter be 𝑙, where 𝑙 > 0, we have

𝑇
Ω,𝛼,𝐴
𝑓 (𝑥)

= (∫

𝑄

+∫

𝑄
𝑐

)
Ω (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1
𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦

:= 𝐻
1
+ 𝐻

2
.

(23)

Below, we give estimates of𝐻
1
. Let

󵄨󵄨󵄨󵄨𝐻1
󵄨󵄨󵄨󵄨 ≤

∞

∑

𝑗=0

∫

2
−𝑗
𝑄\2
−𝑗−1

𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≤

∞

∑

𝑗=0

∫

2
−𝑗
𝑄\2
−𝑗−1

𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴2−𝑗𝑄; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨𝑑𝑦.

(24)

Note that 𝐴
2
−𝑗
𝑄
(𝑦)=𝐴(𝑦)− ∑

|𝛾|=𝑚−1
(1/𝛾!)𝑚

2
−𝑗
𝑄
(𝐷

𝛾

𝐴)𝑦
𝑟.

When 𝑦 ∈ 2−𝑗𝑄 \ 2−𝑗−1𝑄, by Lemmas 8, 9, and 10, we have

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴2−𝑗𝑄; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐶(2

−𝑗

𝑙)
𝛽󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑚−1

∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

.

(25)

Note that |𝑥 − 𝑦| ≥ 2−𝑗−1, we have |𝑥 − 𝑦|𝛽 ≥ 2−𝛽(2−𝑗𝑙)𝛽, such
that

󵄨󵄨󵄨󵄨𝐻1
󵄨󵄨󵄨󵄨 ≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
𝑘

󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

×

∞

∑

𝑗=0

(2
−𝑗

𝑙)
𝛽

∫

2
−𝑗
𝑄\2
−𝑗−1

𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

×

∞

∑

𝑗=0

∫

2
−𝑗
𝑄\2
−𝑗−1

𝑄

(2
−𝑗

𝑙)
𝛽 󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

×

∞

∑

𝑗=0

∫

2
−𝑗
𝑄\2
−𝑗−1

𝑄

2
𝛽󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝛽 󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)∫

𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−(𝛼+𝛽)

𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)∫

𝑅
𝑛

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−(𝛼+𝛽)

𝑑𝑦

= 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)𝑇
Ω,𝛼+𝛽
𝑓 (𝑥) .

(26)

Below, we give the estimates of𝐻
2
. For 0 < 𝛼 + 𝛽 < 𝑛, we

get

󵄨󵄨󵄨󵄨𝐻2
󵄨󵄨󵄨󵄨 ≤

∞

∑

𝑗=0

∫

2
𝑗+1
𝑄\2
𝑗
𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≤

∞

∑

𝑗=0

∫

2
𝑗+1
𝑄\2
𝑗
𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴2𝑗+1𝑄; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨𝑑𝑦.

(27)

For any 𝑦 ∈ 2𝑗+1𝑄 \ 2𝑗𝑄,

𝐴
2
𝑗+1
𝑄
(𝑦) = 𝐴 (𝑦) − ∑

|𝛾|
𝑚−1

1

𝛾!
𝑚
2
𝑗+1
𝑄
(𝐷

𝛾

𝐴) . (28)

Thus, by Lemmas 8 and 9, we obtain

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴2𝑗+1𝑄; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

≤ 𝐶(2
𝑗

𝑙)
𝛽󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑚−1

∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

.
(29)
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And for |𝑥 − 𝑦| ≥ 2𝑗𝑙, we have |𝑥 − 𝑦|𝛽 ≥ (2𝑗𝑙)𝛽. Hence,

󵄨󵄨󵄨󵄨𝐻2
󵄨󵄨󵄨󵄨 ≤ ( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

×

∞

∑

𝑗=0

(2
𝑗

𝑙)
𝛽

∫

2
𝑗+1
𝑄\2
𝑗
𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

×

∞

∑

𝑗=0

∫

2
𝑗+1
𝑄\2
𝑗
𝑄

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝛽 󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

×

∞

∑

𝑗=0

∫

2
𝑗+1
𝑄\2
𝑗
𝑄

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−(𝛼+𝛽)

𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)∫

𝑅
𝑛

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−(𝛼+𝛽)

𝑑𝑦

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)𝑇
Ω,𝛼+𝛽
𝑓 (𝑥) .

(30)

From the proof above, we obtain
󵄨󵄨󵄨󵄨𝑇Ω,𝛼,𝐴𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝐻1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐻2
󵄨󵄨󵄨󵄨

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)𝑇
Ω,𝛼+𝛽
𝑓 (𝑥) .

(31)

Lemma 12 (see [19]). If 𝑝(⋅) ∈ Φ(𝑅𝑛), for all 𝑓 ∈ 𝐿𝑝(⋅)(𝑅𝑛),
then, the norm ‖𝑓‖

𝐿
𝑝(⋅)
(𝑅
𝑛
)
has the following equivalence:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

≤ sup {∫
𝑅
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥) 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 :

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠
(⋅)
(𝑅
𝑛
)
≤ 1}

≤ 𝑟
𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠
(⋅)
(𝑅
𝑛
)
,

(32)

where 𝑟
𝑝
:= 1 + 1/𝑝

−
− 1/𝑝

+
.

Lemma 13 (see [19], the generalized Hölder inequality). If
𝑝(⋅) ∈ Φ(𝑅

𝑛

), then, for all 𝑓 ∈ 𝐿𝑝(⋅)(𝑅𝑛) and for all 𝑔 ∈
𝐿
𝑝
󸀠

(⋅)

(𝑅
𝑛

), we have

∫

𝑅
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥) 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠
(⋅)
(𝑅
𝑛
)
. (33)

By a similarmethodofDing andLu [20], it is easy to verify
the following result.

Lemma 14. For any 𝜀 > 0 with 0 < 𝛼 + 𝛽 − 𝜀 < 𝛼 + 𝛽 + 𝜀 < 𝑛,
we have
󵄨󵄨󵄨󵄨󵄨
𝑇
Ω,𝛼+𝛽
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶[𝑀

Ω,𝛼+𝛽+𝜀
𝑓 (𝑥)]

1/2

[𝑀
Ω,𝛼+𝛽−𝜀

𝑓 (𝑥)]
1/2

,

(34)

where 𝐶 depends only on 𝛼, 𝛽, 𝜀, and 𝑛.

Lemma 15 (see [19]). Given that 𝑝(⋅) : 𝑅𝑛 → [1,∞), such
that 𝑝

+
< ∞, then, ‖𝑓‖

𝐿
𝑝(⋅)
(𝑅
𝑛
)
< 𝐶

1
if and only if |𝑓|

𝐿
𝑝(⋅)
(𝑅
𝑛
)
<

𝐶
2
. In particular, if either constant equals 1, one can make the

other equals 1 as well.

Remark 16. We denote |𝑓|
𝐿
𝑝(⋅)
(𝑅
𝑛
)
= ∫

𝑅
𝑛
|𝑓(𝑦)|

𝑝(𝑦)

𝑑𝑦.

Lemma 17 (see [21]). Suppose that 𝑝(⋅) ∈ Φ(𝑅𝑛) satisfies
conditions (12) in Proposition 4. Let 0 < 𝛼 + 𝛽 < 𝑛/𝑝

+
, and

define the variable exponent 𝑞(⋅) by

1

𝑝 (𝑥)
−
1

𝑞 (𝑥)
=
𝛼 + 𝛽

𝑛
. (35)

Then, one has that for all 𝑓 ∈ 𝐿𝑝(⋅)(𝑅𝑛),
󵄩󵄩󵄩󵄩󵄩
𝑀

Ω,𝛼+𝛽
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

. (36)

Lemma 18. Let 0 < 𝛼 < 𝑛, Ω ∈ 𝐿𝑠(𝑆𝑛−1), then, for 𝑥 ∈ 𝑅𝑛,

𝑇
Ω,𝛼,𝐴
𝑓 (𝑥) ≥ 𝑀

Ω,𝛼,𝐴
𝑓 (𝑥) , (37)

where

𝑇
Ω,𝛼,𝐴
𝑓 (𝑥) = ∫

𝑅
𝑛

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦.

(38)

Proof. Since

𝑇
Ω,𝛼,𝐴
𝑓 (𝑥)

= ∫

𝑅
𝑛

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≥ ∫

|𝑥−𝑦|<𝑟

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼+𝑚−1

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≥
1

𝑟𝑛−𝛼+𝑚−1
∫

|𝑥−𝑦|<𝑟

󵄨󵄨󵄨󵄨Ω (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅𝑚 (𝐴; 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦,

(39)

then,

𝑇
Ω,𝛼,𝐴
𝑓 (𝑥) ≥ 𝑀

Ω,𝛼,𝐴
𝑓 (𝑥) . (40)

Proof of Theorem 5. Since

󵄨󵄨󵄨󵄨𝑇Ω,𝛼,𝐴𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)𝑇
Ω,𝛼+𝛽
𝑓 (𝑥) , (41)
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by Lemma 12, then, we have
󵄩󵄩󵄩󵄩𝑇Ω,𝛼,𝐴𝑓 (𝑥)

󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)

× sup {∫
𝑅
𝑛

𝑇
Ω,𝛼+𝛽
𝑓 (𝑥)

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 :

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞
󸀠
(⋅)
(𝑅
𝑛
)
≤ 1} .

(42)

Using the generalized Hölder inequality, then,
󵄩󵄩󵄩󵄩𝑇Ω,𝛼,𝐴𝑓

󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)
󵄩󵄩󵄩󵄩󵄩
𝑇
Ω,𝛼+𝛽
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞
󸀠
(⋅)
(𝑅
𝑛
)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)
󵄩󵄩󵄩󵄩󵄩
𝑇
Ω,𝛼+𝛽
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

.

(43)

Next, we will prove ‖𝑇
Ω,𝛼+𝛽
𝑓‖

𝐿
𝑞(⋅)
(𝑅
𝑛
)

≤ ‖𝑓‖
𝐿
𝑝(⋅)
(𝑅
𝑛
)
. Fix

𝑓 ∈ 𝐿
𝑝(⋅)

(𝑅
𝑛

), without loss of generality we may assume that
‖𝑓‖

𝐿
𝑝(⋅)
(𝑅
𝑛
)
= 1. Since 𝑞

+
< ∞, by Lemma 15 it will suffice to

prove that |𝑇
Ω,𝛼+𝛽
𝑓|

𝐿
𝑞(⋅)
(𝑅
𝑛
)
≤ 𝐶.

Fix 𝜀, 0 < 𝜀 < min(𝛼 + 𝛽, 𝑛 − (𝛼 + 𝛽)), such that
2

(𝜀𝑞
+
/𝑛) + 1

> 1, (44)

define 𝑟(⋅) : 𝑅𝑛 → [1, +∞) by

𝑟 (𝑥) =
2

(𝜀𝑞 (𝑥) /𝑛) + 1
. (45)

Then, by (44), we have 𝑟
−
> 1. Moreover, by elementary

algebra, for all 𝑥 ∈ 𝑅𝑛,
1

𝑝 (𝑥)
−

1

𝑟 (𝑥) 𝑞 (𝑥) /2
=
𝛼 + 𝛽 − 𝜀

𝑛
, (46)

1

𝑝 (𝑥)
−

1

𝑟󸀠 (𝑥) 𝑞 (𝑥) /2
=
𝛼 + 𝛽 + 𝜀

𝑛
. (47)

So that by Lemma 14, we have

∫

𝑅
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑇
Ω,𝛼+𝛽
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑞(𝑥)

𝑑𝑥

≤ 𝐶∫

𝑅
𝑛

[𝑀
Ω,𝛼+𝛽−𝜀

𝑓 (𝑥)]
𝑞(𝑥)/2

[𝑀
Ω,𝛼+𝛽+𝜀

𝑓 (𝑥)]
𝑞(𝑥)/2

𝑑𝑥.

(48)

By Lemma 13, then,

∫

𝑅
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑇
Ω,𝛼+𝛽
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑞(𝑥)

𝑑𝑥

≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝑀

Ω,𝛼+𝛽−𝜀
𝑓 (𝑥)]

𝑞(𝑥)/2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟(⋅)(𝑅𝑛)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝑀

Ω,𝛼+𝛽+𝜀
𝑓 (𝑥)]

𝑞(𝑥)/2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
󸀠
(⋅)
(𝑅
𝑛
)

.

(49)

Without loss of generality, wemay assume that each is greater
than 1, since, otherwise, there is nothing to prove. In this
case, in the definition of each norm we may assume that the
infimum is taken over by values of 𝜆 which are greater than
1. But then, since for all 𝑥 ∈ 𝑅𝑛 and 𝜆 > 1, 𝜆2/𝑞(𝑥) ≥ 𝜆2/𝑞+ , we
have

∫

𝑅
𝑛

(

[𝑀
Ω,𝛼+𝛽−𝜀

𝑓 (𝑥)]
𝑞(𝑥)/2

𝜆
)

𝑟(𝑥)

𝑑𝑥

= ∫

𝑅
𝑛

(

𝑀
Ω,𝛼+𝛽−𝜀

𝑓 (𝑥)

𝜆2/𝑞(𝑥)
)

𝑟(𝑥)𝑞(𝑥)/2

𝑑𝑥

≤ ∫

𝑅
𝑛

(

𝑀
Ω,𝛼+𝛽−𝜀

𝑓(𝑥)

𝜆2/𝑞+(𝑥)
)

𝑟(𝑥)𝑞(𝑥)/2

𝑑𝑥.

(50)

Therefore, by (46) and Lemma 17, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝑀

Ω,𝛼+𝛽−𝜀
𝑓(𝑥)]

𝑞(𝑥)/2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟(𝑥)(𝑅𝑛)

≤
󵄩󵄩󵄩󵄩󵄩
[𝑀

Ω,𝛼+𝛽−𝜀
𝑓(𝑥)]

󵄩󵄩󵄩󵄩󵄩

𝑞
+
/2

𝐿
𝑟(𝑥)𝑞(𝑥)/2

(𝑅
𝑛
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞
+
/2

𝐿
𝑝(𝑥)

(𝑅
𝑛
)

≤ 𝐶.

(51)

In the same way, we have

∫

𝑅
𝑛

(

[𝑀
Ω,𝛼+𝛽+𝜀

𝑓 (𝑥)]
𝑞(𝑥)/2

𝜆
)

𝑟
󸀠

(𝑥)

𝑑𝑥

= ∫

𝑅
𝑛

(

𝑀
Ω,𝛼+𝛽+𝜀

𝑓(𝑥)

𝜆2/𝑞(𝑥)
)

𝑟
󸀠

(𝑥)𝑞(𝑥)/2

𝑑𝑥

≤ ∫

𝑅
𝑛

(

𝑀
Ω,𝛼+𝛽+𝜀

𝑓(𝑥)

𝜆2/(𝑞)+(𝑥)
)

𝑟
󸀠

(𝑥)𝑞(𝑥)/2

𝑑𝑥.

(52)

Therefore, by (47) and Lemma 17, then,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝑀

Ω,𝛼+𝛽+𝜀
𝑓(𝑥)]

𝑞(𝑥)/2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
󸀠
(𝑥)
(𝑅
𝑛
)

≤
󵄩󵄩󵄩󵄩󵄩
[𝑀

Ω,𝛼+𝛽+𝜀
𝑓(𝑥)]

󵄩󵄩󵄩󵄩󵄩

𝑞
+
/2

𝐿
𝑟
󸀠
(𝑥)𝑞(𝑥)/2

(𝑅
𝑛
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑞
+
/2

𝐿
𝑝(𝑥)

(𝑅
𝑛
)

≤ 𝐶.

(53)
Hence,
󵄨󵄨󵄨󵄨󵄨
𝑇
Ω,𝛼+𝛽
𝑓
󵄨󵄨󵄨󵄨󵄨𝐿𝑞(⋅)(𝑅𝑛)

= ∫

𝑅
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑇
Ω,𝛼+𝛽
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑞(𝑥)

𝑑𝑥 ≤ 𝐶. (54)

So, we have
󵄩󵄩󵄩󵄩󵄩
𝑇
Ω,𝛼+𝛽
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

,

󵄩󵄩󵄩󵄩𝑇Ω,𝛼,𝐴𝑓
󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)
󵄩󵄩󵄩󵄩󵄩
𝑇
Ω,𝛼+𝛽
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(𝑅𝑛)

≤ 𝐶( ∑

|𝛾|=𝑚−1

󵄩󵄩󵄩󵄩𝐷
𝛾

𝐴
󵄩󵄩󵄩󵄩 ̇
Λ
𝛽

)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝑅𝑛)

.

(55)

This completes the proof of Theorem 5.



6 Abstract and Applied Analysis

By Lemmas 15 and 18 and Theorem 5, the proof of
Theorem 6 is directly deduced.
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