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We present a comparison between Adomian decomposition method (ADM) and Tau method (TM) for the integro-differential
equations with the initial or the boundary conditions. The problem is solved quickly, easily, and elegantly by ADM.The numerical
results on the examples are shown to validate the proposed ADM as an effective numerical method to solve the integro-differential
equations. The numerical results show that ADM method is very effective and convenient for solving differential equations than
Tao method.

1. Introduction

The decomposition method was introduced by Adomian in
[1–3] in the 1980s in order to solve linear and nonlinear
functional equations (algebraic, differential, partial differen-
tial equations and systems, integral, delay, integro-differential
equations, etc.) [1–10]. This method leads to computable,
accurate, approximate convergence solutions to linear and
nonlinear deterministic and stochastic operator equations.
The solution can verify any stage of approximation. The
convergence of this method was proved by Cherruault and
coauthors in [11–13].

In this paperwewill be concernedwith approximate solu-
tions of the linear or nonlinear Volterra integro-differential
equations. Firstly, this type of equation was introduced by
Volterra [14] in the early 1900s.These equations can be found
in physics, biology, and engineering applications such as heat
transfer, diffusion process in general, and neutron diffusion
[4].

Many authors have compared the ADM with some
existing methods in solving different linear or nonlinear evo-
lution equations, integral and integro-differential equations.
Bellomo and Monaco [15] compared the ADM and the per-
turbation techniques. Advantages of the ADM over Picard’s
method have been shown by Rach [16]. Edwards et al. [17]

compared the ADM and the Runge-Kutta methods for
approximate solutions of some predator-prey models. Addi-
tionally, Wazwaz [18] presented a comparison between the
ADM and the Taylor series methods. He showed that the
ADM minimizes the computational difficulties of the Taylor
series in that the components of the solutionwere determined
elegantly by using simple integrals. More recently, El-Sayed
and Abdel-Aziz [19] introduced a comparison of the ADM
and theWavelet-Galerkinmethod for the solution of integro-
differential equations.They showed that the ADMwas simple
and easy to use.

In [20], Hosseini and Shahmorad employed Tau method
to obtain a numerical solution to the integro-differential
equations given by (1). Batiha et al. [21] presented the varia-
tional iterationmethod (VIM) and the ADM for solving non-
linear integro-differential equations. Fariborzi Araghi and
Sadigh Behzadi [22–24] solved nonlinear Volterra-Fredholm
integro-differential equations by using the modified ADM,
the VIM, and the homotopy analysis method, respectively.
Borhanifar and Abazari [25] implemented the differential
transform method for solving nonlinear integro-differential
equations with the kernel functions including derivative
type of unknown solution. Ben Zitoun and Cherruault [26]
presented a method for solving nonlinear integro-differential
equations with constant or variable coefficients with initial
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or boundary conditions. El-Kalla [27] introduced a new
technique for solving a class of quadratic integral and integro-
differential equations.

In this work, we will describe and adapt Adomian’s
decompositionmethod to obtain an approximate solution for
(1). As we will see, the method converges rapidly.The balance
of this paper is as follows: in Section 2, we will give analysis
of ADM for the problem; in Section 3 we will give three
examples to demonstrate the method. Concluding remarks
are given in the last section.

2. Analysis

We consider the nonlinear Volterra integro-differential equa-
tions of the form in [4] as follows:

𝑢
(𝑛)
(𝑥) = 𝑓 (𝑥) + ∫

𝑥

0

𝐾(𝑥, 𝑡)𝑁𝑢(𝑡) 𝑑𝑡,

𝑢
(𝑚)
(0) = 𝑐𝑚, 0 ≤ 𝑚 ≤ (𝑛 − 1) ,

(1)

where 𝑢(𝑛)(𝑥) indicates the 𝑛th derivative of 𝑢(𝑥)with respect
to 𝑥, 𝑐𝑚 constants that define the initial conditions, and𝑁𝑢 is
nonlinear operator. In this work we take 𝑁𝑢 equal to 𝑢2 or
𝑢𝑢𝑥. Thus, applying the inverse operator 𝐿−1 to (1) yields

𝑢(𝑥) =

𝑛−1

∑

𝑘=0

1

𝑘!

𝑐𝑚𝑥
𝑘
+ 𝐿
−1
[𝑓(𝑥)]

+ 𝐿
−1
(∫

𝑥

0

𝐾(𝑥, 𝑡)𝑁𝑢(𝑡) 𝑑𝑡) ,

(2)

where ∑𝑛−1𝑘=0(1/𝑘!)𝑐𝑚𝑥
𝑘 is obtained by using the initial condi-

tions in [4] and 𝐿−1 is 𝑛-fold integration operator; that is,

𝐿
−1
(⋅) = ∫

𝑥

0

⋅ ⋅ ⋅ ∫

𝑥

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛-times

(⋅) 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛-times
. (3)

We obtain the zeroth component

𝑢0(𝑥) =

𝑛−1

∑

𝑘=0

1

𝑘!

𝑐𝑚𝑥
𝑘
+ 𝐿
−1
[𝑓(𝑥)] , (4)

which is defined by all terms that arise from the initial
conditions and from integrating the source terms. Then,
decomposing the unknown function 𝑢(𝑥) gives a sum of the
component defined by the decomposition series

𝑢(𝑥) =

∞

∑

𝑛=0

𝑢𝑛(𝑥) . (5)

Since the nonlinear terms𝑁𝑢 = 𝑢2 or𝑁𝑢 = 𝑢𝑢𝑥, then it can
be expressed as

𝐹(𝑢) = 𝑁𝑢 =

∞

∑

𝑛=0

𝐴𝑛, (6)

where 𝐴𝑛 appropriate Adomian is polynomial which is
generated form of the following formula [1–3, 6]:

𝐴0 = 𝐹(𝑢0) ,
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...

(7)

Substituting (5) and (6) into (2) yields,

∞
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(8)

The components 𝑢1(𝑥), 𝑢2(𝑥), . . . are completely determined
by using the recurrent formula

𝑢1(𝑥) = 𝐿
−1
(∫

𝑥

0

𝐾(𝑥, 𝑡) 𝐴0(𝑡) 𝑑𝑡) ,

...

𝑢𝑛(𝑥) = 𝐿
−1
(∫

𝑥

0

𝐾(𝑥, 𝑡) 𝐴𝑛−1(𝑡) 𝑑𝑡) ,

(9)

for 𝑛 ≥ 0. It is useful to note that the recursive formula is
constructed on the basis that the zeroth component 𝑢0(𝑥) is
defined by all terms that arise from the initial conditions and
from integrating the source terms. The remaining compo-
nents 𝑢𝑛(𝑥), 𝑛 ≥ 0, can be completely determined such that
each term is computed by using the previous term.As a result,
the components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), . . . are identified, and the
series solutions are thus entirely determined.

The 𝑛-term approximation 𝜙𝑛 is defined by

𝜙𝑛 =

𝑛−1

∑

𝑘=0

𝑢𝑘(𝑥) , (10)

which can be used for numerical approximation.

3. Test Problems

In this section, we report on numerical results of some
examples, selected through integral and integro-differential
equations, solved by ADM. These examples can be solved
analytically by reducing them to differential equations, and
they are also solved numerically by Tau method in [20]. Here
the aim is to solve these examples using the ADM given
Section 2 and compare these results with the presented results
in [20].
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Problem 1. We mainly present the method using the algo-
rithm given in Section 2. As a first example, consider the
equation

𝑦(𝑠) − ∫

𝑠

0

𝑦(𝑡) 𝑑𝑡 = 1, 0 ≤ 𝑠 ≤ 1. (11)

In order to illustrate the proposed method, we get zeroth
component

𝑦0 = 1 (12)

and obtain 𝑦1(𝑥), 𝑦2(𝑥), . . . by using (9) to determine the
other individual terms of the decomposition series. Thus

𝑦1 = ∫

𝑠

0

𝑦0(𝑡) 𝑑𝑡 = 𝑠,

𝑦2 = ∫

𝑠

0

𝑦1(𝑡) 𝑑𝑡 =
1

2!

𝑠
2
,

𝑦3 = ∫

𝑠

0

𝑦2(𝑡) 𝑑𝑡 =
1

3!

𝑠
3
,

...

(13)

and so on. Consequently, the series solution is obtained as

𝑦(𝑠) =

∞

∑

𝑛=0

𝑦𝑛(𝑠) = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋅ ⋅ ⋅

= 1 + 𝑠 +

1

2!

𝑠
2
+

1

3!

𝑠
3
+ ⋅ ⋅ ⋅ ,

(14)

so that the closed form of the solution is

𝑦(𝑠) = 𝑒
𝑠
. (15)

Problem 2. We consider Fredholm integro-differential equa-
tion which is given as follows [20]:

𝑦
󸀠󸀠
(𝑠) − 𝑦(𝑠) +

1

20

∫

1

0

𝑡
39
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2
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󸀠
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(1) = 9.

(16)

Proceeding as before, we obtain

𝑦0 = 𝑦(0) + 𝑠𝑦
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2
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4
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0
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𝑠

0
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1

0

𝑡
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1
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5
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𝑦2 = ∫

𝑠

0

∫

𝑠

0

(𝑦1 (𝑠)) 𝑑𝑠𝑑𝑠

−

1

20

∫

𝑠

0

∫

𝑠

0

(∫

1

0

𝑡
39
𝑦1(𝑡) 𝑑𝑡) 𝑑𝑠𝑑𝑠

=

−5478328678327
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...

(17)

Consequently, the series solution is found as

𝑦(𝑥) =

∞

∑

𝑛=0

𝑦𝑛(𝑥) = 𝑦0 + 𝑦1 + 𝑦2 + ⋅ ⋅ ⋅

= 2 + 2𝑠 +

2111
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𝑠
2
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𝑠
3
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1
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𝑠
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𝑠
2
+

1

3

𝑠
3
+ ⋅ ⋅ ⋅ .

(18)

In Table 1, ADM and TM values are presented which corre-
spond to the various values of 𝑠. As it is seen in this table, the
values obtained by [20] and the results we obtained which are
close and but present method better accuracy and easy to use
than the TM. It is to be noted that only few iterations were
needed to obtain the accuracy for approximate solutions.The
overall errors can be made even much smaller by adding new
terms of the decomposition. Thus the convergence would be
seen more rapidly.

The numerical solutions showed that ADM is a very
convenient method for such linear and nonlinear integral
and integro-differential equations. By using this method, it
is possible to obtain more precise results than the traditional
methods, with less calculations and consuming the less time.

Problem 3. In [4, 28],Wazwaz proposed that the construction
of the zeroth component of the decomposition series can be
defined in a slightly differentway. In [4, 28], he assumed that if
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Table 1: Numerical results for Problem 2.

𝑠 Exact Tau (𝑛) ADM (𝜙) Tau-Er. ADM-Er.
𝑛 = 2, 𝜙2

0.00 2.00000 1.99878 2.00000 1.2200𝑒 − 03 0.000𝑒 + 00

0.20 2.44000 2.43858 2.43989 1.4152𝑒 − 03 1.051𝑒 − 04

0.40 2.96000 2.95849 2.95782 1.5128𝑒 − 03 2.175𝑒 − 03

0.60 3.56000 3.55849 3.54811 1.5128𝑒 − 03 1.200𝑒 − 02

𝑛 = 5, 𝜙3

0.00 2.00000 1.99885 2.00000 1.1525𝑒 − 03 0.000𝑒 + 00

0.20 2.44000 2.43867 2.44000 1.3342𝑒 − 03 2.228𝑒 − 06

0.40 2.96000 2.95858 2.95999 1.4226𝑒 − 03 1.049𝑒 − 06

0.60 3.56000 3.55858 3.55988 1.4211𝑒 − 03 1.114𝑒 − 04

0.80 4.24000 4.23867 4.23924 1.3308𝑒 − 03 7.522𝑒 − 04

1.00 5.00000 4.99885 4.99691 1.1485𝑒 − 03 3.089𝑒 − 03

𝑛 = 15, 𝜙5

0.00 2.00000 1.99884 2.00000 1.1567𝑒 − 03 0.000𝑒 + 00

0.20 2.44000 2.43866 2.44000 1.3394𝑒 − 03 6.597𝑒 − 08

0.40 2.96000 2.95857 2.96000 1.4289𝑒 − 03 2.671𝑒 − 07

0.60 3.56000 3.55857 3.56000 1.4288𝑒 − 03 6.143𝑒 − 07

0.80 4.24000 4.23866 4.24000 1.3394𝑒 − 03 1.940𝑒 − 06

1.00 5.00000 4.99884 5.00000 1.1567𝑒 − 03 1.380𝑒 − 06

the zeroth component is𝑦0 = 𝑓 and the function𝑓 is possible
to be divided into two parts such as 𝑓1 and 𝑓2, then one can
formulate the recursive algorithm in a form of a modified
recursive scheme as follows:

𝑦0(𝑠) = 𝑓1,

𝑦1(𝑠) = 𝑓2 + 𝐿
−1
[𝑓(𝑥)] + 𝐿

−1
(∫

𝑥

0

𝐾(𝑥, 𝑡) 𝑦1(𝑡) 𝑑𝑡) ,

𝑦𝑛+1(𝑠) = 𝐿
−1
(∫

𝑥

0

𝐾(𝑥, 𝑡) 𝑦𝑛(𝑡) 𝑑𝑡) , 𝑛 ≥ 1.

(19)

We finally consider the Volterra integral equation in the
following form [20]:

𝑦(𝑠) = 1 + 120𝑠 − 100 (1 − 𝑒
−𝑠
)

+ ∫

𝑠

0

(100𝑒
𝑡−𝑠
− 120) 𝑦(𝑡) 𝑑𝑡, 0 ≤ 𝑠 ≤ 20.

(20)

Using the modified decomposition method, we first decom-
pose the function 𝑓(𝑠) into two parts as 𝑓1 and 𝑓2, namely,

𝑓1(𝑠) = 1,

𝑓2(𝑠) = 120𝑠 − 100 (1 − 𝑒
−𝑠
) .

(21)

Consequently, we obtain

𝑦0(𝑠) = 1,

𝑦1(𝑠) = 120𝑠 − 100 (1 − 𝑒
−𝑠
)

+ ∫

𝑠

0

(100𝑒
𝑡−𝑠
− 120) 𝑦0(𝑡) 𝑑𝑡 = 0.

(22)

Other components 𝑦𝑛(𝑠) = 0 for 𝑛 ≥ 2. Therefore, the exact
solution

𝑦(𝑠) = 1 (23)

follows immediately. It is clear that two components are
calculated to determine the exact solution.

4. Concluding Remarks

In this paper, we calculated the approximate solutions of
the integral and Volterra integro-differential equations by
using Adomian decomposition method. We demonstrated
that the decomposition procedure is quite efficient in order
to determine the solution in closed form by using initial and
boundary conditions. Our present method avoids the tedious
work needed by traditional techniques. In the studies by
Hosseini and Shahmorad in [20], they spent more time, and
boring operations were done to get approximate solutions
by using TM. In our study, however, we got more accurate
approximate solutions by using the initial condition in this
method; Hosseini and Shahmorad in [20] obtained the
approximate solutions for Problems 1 and 3, such that, the
Tau-error is 2.73127𝑒 − 08 for 𝑛 = 10 and 𝑠 = 1.00 in
Problem 1. Moreover, the exact solutions are obtained by our
present method for Problems 1 and 3. Our method avoids the
difficulties andmassive computational work that usually arise
fromWavelet-Galerkin, Tau, and finite difference methods.
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