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Motivated by the Hilfer fractional derivative (which interpolates the Riemann-Liouville derivative and the Caputo derivative), we
consider a new type of fractional derivative (which interpolates the Hadamard derivative and its Caputo counterpart). We prove
the well-posedness for a basic Cauchy type fractional differential equation involving this kind of derivative.This is established in an
appropriate underlying space after proving the equivalence of this problemwith a certain corresponding Volterra integral equation.

1. Introduction

In this work, we are concerned with the Hadamard derivative
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Its Caputo counterpart is
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(see [1–5]). Here, we consider the following fractional deriva-
tive
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This type of fractional derivative interpolates the Hadamard
fractional derivative (𝛽 = 0) and the Caputo-Hadamard
fractional derivative (𝛽 = 1). It has been introduced recently
in [6]. In introducing this new fractional derivative we were

motivated by the Hilfer fractional derivative of order 0 < 𝛼 <
1 and type 0 ≤ 𝛽 ≤ 1 (see [7])
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which interpolates the Riemann-Liouville derivative and the
Caputo derivative.

We study the existence and uniqueness of solutions of a
basic fractional differential equation
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𝑎
+
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with an appropriate initial condition in a suitable underlying
space after proving the equivalence of this problem with a
corresponding Volterra integral equation. In addition to that,
we discuss the stability of solutions for a large and important
class of nonlinearities. We find that solutions decay to zero
at a logarithmic rate as time goes to infinity. To this end, we
prove an inequality (which is important by itself).

The literature is very rich in works on well-posedness for
fractional differential equations [8–17] (see also the books
[1, 2, 4, 5] and the survey paper [18]) to cite but a few. The
Hadamard fractional derivative may be found in the books
[1, 2, 4–6]. Differential equations involving such a derivative
and others have been treated in [2, 3]. In contrast with the
well-posedness, the stability issue and the long time behavior
is not well studied [6, 12, 19–23].
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The rest of the paper is organized as follows: the next
section contains some material needed in our proofs. The
different fractional derivatives as well as the new one are
defined there. In Section 3, we present our problem and
prove an existence anduniqueness result after establishing the
equivalence of the differential problemwith its corresponding
integral equation. Section 4 is devoted to a stability result.

2. Preliminaries

In this section we present some definitions, lemmas, proper-
ties, and notation which will be used in our theorems later.

Definition 1 (see [2]). Let Ω = [𝑎, 𝑏] (0 < 𝑎 < 𝑏 < ∞) be a
finite interval and 0 ≤ 𝛾 < 1, we introduce the weighted space
𝐶
𝛾,log[𝑎, 𝑏] of continuous functions 𝑔 on (𝑎, 𝑏]
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Definition 2 (see [2]). Let 𝛿 = 𝑥(𝑑/𝑑𝑥) be the 𝛿-derivative,
for 𝑛 ∈ N we denote by 𝐶𝑛
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with the norm
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When 𝑛 = 0, we set
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Definition 3 (see [2]). Let (𝑎, 𝑏) (0 ≤ 𝑎 < 𝑏 ≤ ∞) be a finite
or infinite interval of the half-axis R+ and let 𝛼 > 0. The
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provided that the integral exists. When 𝛼 = 0, we set
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Definition 4 (see [2]). Let (𝑎, 𝑏) (0 ≤ 𝑎 < 𝑏 ≤ ∞) be a
finite or infinite interval of the half-axis R+ and let 𝛼 > 0.
The Hadamard right-sided fractional integral J𝛼
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provided that the integral exists. When 𝛼 = 0, we set
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Definition 5 (see [2]). The left-sided Hadamard fractional
derivative of order 𝛼 (0 ≤ 𝛼 < 1) on (𝑎, 𝑏) is defined by
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In particular, when 𝛼 = 0 we have
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Definition 6 (see [2]). The right-sided Hadamard fractional
derivative of order 𝛼 (0 ≤ 𝛼 < 1) on (𝑎, 𝑏) is defined by
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Definition 7. Let (𝑎, 𝑏) be a finite interval of the half-axis R+.
The fractional derivative 𝑐
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where 𝛿 = 𝑥(𝑑/𝑑𝑥), is called the Hadamard-Caputo frac-
tional derivative of order 𝛼.

In the rest of the paper we shall assume 𝑎 ̸= 0 when
considering an interval (𝑎, 𝑏).
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0
= {0, 1, . . .} and let 𝜇

1
and 𝜇

2

be real numbers such that

0 ≤ 𝜇
1
≤ 𝜇
2
< 1. (23)



Abstract and Applied Analysis 3

The following embeddings hold:
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In particular,
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Lemma 9 (see [2]). If 𝛼 > 0, 𝛽 > 0 and 0 < 𝑎 < 𝑏 < ∞, then
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In particular, if𝛽 = 1 and 𝛼 ≥ 0, then theHadamard fractional
derivative of a constant is not equal to zero:
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when 0 < 𝛼 < 1.

Lemma 10 (see [2]). Let 𝛼 > 0, 𝛽 > 0 and 0 ≤ 𝜇 < 1. If
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holds at any point 𝑥 ∈ (𝑎, 𝑏]. When 𝑓 ∈ 𝐶[𝑎, 𝑏] this relation is
valid at any point 𝑥 ∈ [𝑎, 𝑏].

Lemma 11 (see [2]). Let 0 < 𝛼 ≤ 1 and 0 < 𝑎 < 𝑏 < ∞. The
equality (
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Theorem 12 (see [2]). Let 0 < 𝛼 < 1 and 0 < 𝑎 < 𝑏 < ∞. Also
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𝑎
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holds at any point 𝑥 ∈ (𝑎, 𝑏]. If 𝑓 ∈ 𝐶[𝑎, 𝑏] and J1−𝛼
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Lemma 13 (see [2]). Let 0 < 𝑎 < 𝑏 < ∞, 𝛼 > 0 and 0 ≤ 𝜇 <
1.
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In particular,J𝛼
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In particular,J𝛼
𝑎
+ is bounded in 𝐶𝜇,log[𝑎, 𝑏].

Lemma 14 (see [2]). The Hadamard fractional integration
operator J𝛼

𝑎
+ of order 𝛼 (𝛼 > 0) is a mapping from 𝐶[𝑎, 𝑏] to
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Lemma 15 (see [17]). Let 0 ≤ 𝛾 < 1, 0 < 𝑎 < 𝑐 < 𝑏 < ∞, 𝑔 ∈
𝐶
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𝑎
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󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐶[𝑐,𝑏]} . (38)

Lemma 16 (see [24]). Let 𝑓, 𝑔 be two continuous, positive
functions defined on [𝑡

0
,∞), 𝑡

0
≥ 0, and𝑤 : [0,∞) → [0,∞)

be a continuous monotonic nondecreasing function such that
𝑤(0) = 0 and𝑤(𝑥) > 0 for 𝑥 > 0. If 𝑢 is a positive differentiable
function on [𝑡

0
,∞) that satisfies

𝑢󸀠 (𝑡) ≤ 𝑓 (𝑡) 𝑤 (𝑢 (𝑡)) + 𝑔 (𝑡) , 𝑡 ∈ [𝑡0,∞) , (39)

then we have

𝑢 (𝑡) ≤ 𝑊−1 [𝑊(𝑢 (𝑡0) + ∫
𝑡

𝑡
0

𝑔 (𝑠) 𝑑𝑠) + ∫
𝑡

𝑡
0

𝑓 (𝑠) 𝑑𝑠] ,

(40)

for the values of 𝑡, for which the right-hand side is well-defined,
where

𝑊(𝑟) = ∫
𝑟

𝑟
0

𝑑𝑠

𝑤 (𝑠)
, 𝑟 > 𝑟

0
> 0. (41)
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Theorem 17 (Banach fixed point theorem [2]). Let (𝑈, 𝑑) be
a non-empty complete metric space, let 0 ≤ 𝑤 < 1, and let
𝑇 : 𝑈 → 𝑈 be a map such that, for every 𝑢, V ∈ 𝑈, the relation

𝑑 (𝑇𝑢, 𝑇V) ≤ 𝑤𝑑 (𝑢, V) , 0 ≤ 𝑤 < 1 (42)

holds. Then, the operator 𝑇 has a unique fixed point 𝑢∗ ∈ 𝑈.
Furthermore, if 𝑇𝑘 (𝑘 ∈ N) is the sequence of operators

defined by

𝑇1 = 𝑇, 𝑇𝑘 = 𝑇𝑇𝑘−1𝑘 ∈ N \ {1} , (43)

then, for any 𝑢
0
∈ 𝑈, the sequence {𝑇𝑘𝑢

0
}
∞

𝑘=1
converges to the

above fixed point 𝑢∗.

Theorem 18 (Young’s inequality). If 𝑎 and 𝑏 are nonnegative
real numbers and 𝑝 and 𝑞 are positive real numbers such that
1/𝑝 + 1/𝑞 = 1 then we have

𝑎𝑏 ≤
𝑎𝑝

𝑝
+
𝑏𝑞

𝑞
. (44)

Equality holds if and only if 𝑎𝑝 = 𝑏𝑞.

Finally, we refer the reader to the nice treatments of
Hadamard-type fractional calculus in [25, 26]

3. Existence and Uniqueness for an FDE with
Hilfer-Hadamard Fractional Derivative

In this section we discuss the existence, uniqueness and the
stability of solutions of the Cauchy type problem (46) (below)
with Hilfer-Hadamard fractional derivative.

Definition 19 (Hilfer-Hadamard fractional derivative
(HHFD)). The left sided fractional derivative of order 𝛼,
(0 < 𝛼 < 1) and type 0 ≤ 𝛽 ≤ 1 with respect to 𝑥 is defined
by

(
𝐻
D
𝛼,𝛽

𝑎
+
𝑓) (𝑥) = (J

𝛽(1−𝛼)

𝑎
+
⋅
𝐻
D
𝛼+𝛽−𝛼𝛽

𝑎
+

𝑓) (𝑥) (45)

for functions for which the expression on the right hand side
exists, where

𝐻
D
𝛼+𝛽−𝛼𝛽

𝑎
+

is theHadamard fractional derivative
(Definition 5).

This new fractional derivative (introduced for the first
time in [6]) may be viewed as interpolating the Hadamard
fractional derivative and the Hadamard-Caputo fractional
derivative. Indeed for 𝛽 = 0 this derivative (46) reduces to
the Hadamard fractional derivative (Definition 5) and when
𝛽 = 1, we recover theHadamard-Caputo fractional derivative
(Definition 7).

We will study the existence and uniqueness for the
Cauchy type problem

(
𝐻
D
𝛼,𝛽

𝑎
+
𝑦) (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 𝑥 > 𝑎 > 0

(J(1−𝛽)(1−𝛼)
𝑎
+

𝑦) (𝑎) = 𝑐.
(46)

We consider the underlying spaces defined by

𝐶𝛼,𝛽
1−𝛾,𝜇

[𝑎, 𝑏]

= {𝑦 ∈ 𝐶
1−𝛾,log [𝑎, 𝑏] , 𝐻D

𝛼,𝛽

𝑎
+
𝑦 ∈ 𝐶

𝜇, log [𝑎, 𝑏]} ,
(47)

𝐶𝛾
1−𝛾,log [𝑎, 𝑏]

= {𝑦 ∈ 𝐶
1−𝛾,log [𝑎, 𝑏] , 𝐻D

𝛾

𝑎
+
𝑦 ∈ 𝐶

1−𝛾, log [𝑎, 𝑏]} ,
(48)

where 𝛾 = 𝛼 + 𝛽 − 𝛼𝛽 and 0 ≤ 𝜇 < 1. It is clear that 0 < 𝛾 < 1
for 0 < 𝛼, 𝛽 < 1.

Here, 𝐶
1−𝛾,log[𝑎, 𝑏] and 𝐶𝜇,log[𝑎, 𝑏] are weighted spaces of

continuous functions on (𝑎, 𝑏] defined by

𝐶
𝛾,log [𝑎, 𝑏] = {𝑔 : (𝑎, 𝑏] 󳨀→ R : (log 𝑥

𝑎
)
𝛾

𝑔 (𝑥) ∈ 𝐶 [𝑎, 𝑏]} .

(49)

Our investigations are based on reducing the fractional
differential problem to a Volterra integral equation of the
second kind:

𝑦 (𝑥) =
𝑐

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

+
1

Γ (𝛼)

× ∫
𝑥

𝑎

(log 𝑥
𝑡
)
𝛼−1

𝑓 [𝑡, 𝑦 (𝑡)]
𝑑𝑡

𝑡
, 𝑥 > 𝑎,

(50)

and then using the Banach fixed point theorem.

3.1. Equivalence of the Cauchy Type Problem and the Volterra
Integral Equation. Here, we prove the equivalence of the
Cauchy type problem (46) and the nonlinearVolterra integral
equation (50) in the sense that, if 𝑦 ∈ 𝐶𝛾

1−𝛾,log[𝑎, 𝑏] satisfies
one of them, then it also satisfies the other one. To establish
this result, we assume that the function 𝑓[⋅, 𝑦(⋅)] belongs to
𝐶
𝜇,log[𝑎, 𝑏] for any 𝑦 ∈ 𝐶𝜇,log[𝑎, 𝑏]. We need the following

lemma.

Lemma 20. Let 0 < 𝑎 < 𝑏 < ∞, 𝛼 > 0, 0 ≤ 𝜇 < 1 and
𝑔 ∈ 𝐶

𝜇,log[𝑎, 𝑏]. If 𝛼 > 𝜇, then J𝛼
𝑎
+𝑔 is continuous on [𝑎, 𝑏]

and
J
𝛼

𝑎
+𝑔 (𝑎) = lim

𝑥→𝑎
+

J
𝛼

𝑎
+𝑔 (𝑥) = 0. (51)

Proof. Since 𝑔 ∈ 𝐶
𝜇,log[𝑎, 𝑏] then (log(𝑥/𝑎))

𝜇𝑔(𝑥) is continu-
ous on [𝑎, 𝑏] and on [𝑎, 𝑏] we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(log 𝑥

𝑎
)
𝜇

𝑔 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀, (52)

for some positive constant𝑀. Therefore,

󵄨󵄨󵄨󵄨(J
𝛼

𝑎+
𝑔) (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑀(J

𝛼

𝑎+
(log 𝑡

𝑎
)
−𝜇

) (𝑥) , (53)

and by using Lemma 9 (with 𝛽 = 1 − 𝜇 > 0) we have

󵄨󵄨󵄨󵄨(J
𝛼

𝑎+
𝑔) (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑀

Γ (1 − 𝜇)

Γ (𝛼 + 1 − 𝜇)
(log 𝑥

𝑎
)
𝛼−𝜇

. (54)

As 𝛼 > 𝜇, we obtain the result.
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Theorem 21. Let 𝛾 = 𝛼+𝛽−𝛼𝛽where 0 < 𝛼 < 1 and 0 ≤ 𝛽 ≤
1. Let 𝑓 : (𝑎, 𝑏] × R → R be a function such that 𝑓(⋅, 𝑦(⋅)) ∈
𝐶
𝜇,log[𝑎, 𝑏] for any𝑦 ∈ 𝐶𝜇,log[𝑎, 𝑏]with 1−𝛾 ≤ 𝜇 < 1−𝛽(1−𝛼).
If 𝑦 ∈ 𝐶𝛾

1−𝛾,log[𝑎, 𝑏], then 𝑦 satisfies the (CFDP) (46) if and
only if 𝑦 satisfies the (IE) (50).

Proof. First we prove the necessity. Let 𝑦 ∈ 𝐶𝛾
1−𝛾,log[𝑎, 𝑏] be a

solution of problem (46). We want to prove that 𝑦 is also a
solution of the integral equation (50). By the definition of the
space 𝐶𝛾

1−𝛾,log[𝑎, 𝑏] (relation (48)) we have

𝛿 (J1−𝛾
𝑎
+
𝑦) =
𝐻
D
𝛾

𝑎
+
𝑦 ∈ 𝐶

1−𝛾,log [𝑎, 𝑏] . (55)

Moreover, by Lemma 13(b) we have J
1−𝛾

𝑎
+
𝑦 ∈ 𝐶[𝑎, 𝑏] since

𝑦 ∈ 𝐶
1−𝛾,log[𝑎, 𝑏]. Then, by Definition 2, we have

J
1−𝛾

𝑎
+
𝑦 ∈ 𝐶1

𝛿,1−𝛾
[𝑎, 𝑏] . (56)

Thus, we can apply Theorem 12 (with 𝑓 replaced by 𝑦) to get

(J𝛾
𝑎
+
𝐻
D
𝛾

𝑎
+
𝑦) (𝑥) = 𝑦 (𝑥) −

(J1−𝛾
𝑎
+
𝑦) (𝑎)

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

,

𝑥 ∈ (𝑎, 𝑏] ,

(57)

or

(J𝛾
𝑎
+
𝐻
D
𝛾

𝑎
+
𝑦) (𝑥) = 𝑦 (𝑥) −

𝑐

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

, 𝑥 ∈ (𝑎, 𝑏] ,

(58)

where 𝑐 comes from the initial condition in (46). By our
hypothesis 𝑓[⋅, 𝑦(⋅)] ∈ 𝐶

𝜇,log[𝑎, 𝑏], since 𝑦 ∈ 𝐶1−𝛾,log[𝑎, 𝑏] ⊂
𝐶
𝜇,log[𝑎, 𝑏], Lemma 13(a) and (b) we see that the integral

J𝛼
𝑎
+𝑓[⋅, 𝑦(⋅)] ∈ 𝐶𝜇−𝛼,log[𝑎, 𝑏] for 𝜇 > 𝛼 and J𝛼

𝑎
+𝑓[⋅, 𝑦(⋅)] ∈

𝐶[𝑎, 𝑏] for 𝜇 ≤ 𝛼. Applying the operatorJ𝛼
𝑎
+ to both sides of

(46) we get

J
𝛼

𝑎
+J
𝛽(1−𝛼)

𝑎
+

(
𝐻
D
𝛾

𝑎
+
𝑦) (𝑥) = J

𝛼

𝑎
+𝑓 [𝑥, 𝑦 (𝑥)] , 𝑥 ∈ (𝑎, 𝑏] .

(59)

We can sum up the exponents by Lemma 10 to get

J
𝛼+𝛽(1−𝛼)

𝑎
+
𝐻

D
𝛾

𝑎
+
𝑦 (𝑥) = J

𝛼

𝑎
+𝑓 [𝑥, 𝑦 (𝑥)] , 𝑥 ∈ (𝑎, 𝑏] , (60)

or

(J𝛾
𝑎
+
𝐻
D
𝛾

𝑎
+
𝑦) (𝑥) = (J𝛼

𝑎
+𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) , 𝑥 ∈ (𝑎, 𝑏] . (61)

From (58) and (61) we obtain

𝑦 (𝑥) =
𝑐

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

+ (J𝛼
𝑎
+𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) , (62)

which is (50), and hence the necessity is proved.
Now, we prove the sufficiency. Let 𝑦 ∈ 𝐶𝛾

1−𝛾,log[𝑎, 𝑏]

satisfy (50), then
𝐻
D
𝛾

𝑎
+
𝑦 exists and

𝐻
D
𝛾

𝑎
+
𝑦 ∈ 𝐶

1−𝛾,log[𝑎, 𝑏].

Applying the operator
𝐻
D
𝛾

𝑎
+
to both sides of the last identity

we find

(
𝐻
D
𝛾

𝑎
+
𝑦) (𝑥) =

𝑐

Γ (𝛾)𝐻
D
𝛾

𝑎
+
(log 𝑡

𝑎
)
𝛾−1

(𝑥)

+ (
𝐻
D
𝛾

𝑎
+
J
𝛼

𝑎
+𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) .

(63)

By using Lemma 10, Definition 5, Lemma 23 and the hypoth-
esis 𝑓[⋅, 𝑦(⋅)] ∈ 𝐶

𝜇,log[𝑎, 𝑏], we have

(
𝐻
D
𝛾

𝑎
+
𝑦) (𝑥) = 𝛿 (J

1−𝛾

𝑎
+
J
𝛼

𝑎
+𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥)

= 𝛿 (J1−𝛽(1−𝛼)
𝑎
+

𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥)

= (
𝐻
D
𝛽(1−𝛼)

𝑎
+

𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) , 𝑥 ∈ (𝑎, 𝑏] .
(64)

From (64) and the fact that
𝐻
D
𝛾

𝑎
+
𝑦 ∈ 𝐶

1−𝛾,log[𝑎, 𝑏], we obtain
that

𝐻
D
𝛽(1−𝛼)

𝑎
+
𝑓 [⋅, 𝑦 (⋅)] ∈ 𝐶1−𝛾,log [𝑎, 𝑏] . (65)

Next, applying the operator J𝛽(1−𝛼)
𝑎
+

to both sides of (64) we
get

(J𝛽(1−𝛼)
𝑎
+
𝐻

D
𝛾

𝑎
+
𝑦) (𝑥) = (J

𝛽(1−𝛼)

𝑎
+
𝐻

D
𝛽(1−𝛼)

𝑎
+
𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) ;

(66)

that is,

J
𝛽(1−𝛼)

𝑎
+
𝛿 (J1−𝛾
𝑎
+
𝑦) (𝑥) = (J

𝛽(1−𝛼)

𝑎
+
𝐻

D
𝛽(1−𝛼)

𝑎
+
𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) .

(67)

By virtue of

𝛿 (J1−𝛽(1−𝛼)
𝑎
+

𝑓 [𝑡, 𝑦 (𝑡)])

=
𝐻
D
𝛽(1−𝛼)

𝑎
+

𝑓 [⋅, 𝑦 (⋅)] ∈ 𝐶1−𝛾,log [𝑎, 𝑏] ,
(68)

and 𝛾 > 𝛽(1 − 𝛼) and Definition 2, we have J
1−𝛽(1−𝛼)

𝑎
+

𝑓 ∈

𝐶1
𝛿;1−𝛾
[𝑎, 𝑏] (see the first part of the proof, or Lemma 13(b),

for the continuity of J1−𝛽(1−𝛼)
𝑎
+

𝑓 for 𝜇 < 1 − 𝛽(1 − 𝛼)). Then,
Theorem 12 allows us to write

(
𝐻
D
𝛼,𝛽

𝑎
+
𝑦) (𝑥) = 𝑓 (𝑥, 𝑦) −

(J1−𝛽(1−𝛼)
𝑎
+

𝑓) (𝑎)

Γ [𝛽 (1 − 𝛼)]

× (log 𝑥
𝑎
)
𝛽(1−𝛼)−1

, 𝑥 ∈ (𝑎, 𝑏] .

(69)

Lemma 20 implies that

(J1−𝛽(1−𝛼)
𝑎
+

𝑓) (𝑎) = 0 (70)

because 1 − 𝛽(1 − 𝛼) > 𝜇. Hence, the relation (69) reduces to

(
𝐻
D
𝛼,𝛽

𝑎
+
𝑦) (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 𝑥 > 𝑎. (71)
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Now, we show that the initial condition in (46) also holds. To
this end we apply the operatorJ1−𝛾

𝑎
+

to both sides of (50):

(J1−𝛾
𝑎
+
𝑦) (𝑥) =

𝑐

Γ (𝛾)
J
1−𝛾

𝑎
+
(log 𝑡

𝑎
)
𝛾−1

(𝑥)

+ (J1−𝛾
𝑎
+
J
𝛼

𝑎
+𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥)

(72)

and use the Lemma 8 (with 𝛼 replaced by 1 − 𝛾 and 𝛽 by 𝛾)
and the Lemma 9 to obtain

(J1−𝛾
𝑎
+
𝑦) (𝑥) = 𝑐 + (J

1−𝛽(1−𝛼)

𝑎
+

𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) . (73)

In (73), taking the limit as 𝑥 → 𝑎, we obtain

(J1−𝛾
𝑎
+
𝑦) (𝑎) = 𝑐, (74)

mentioned above J
1−𝛽(1−𝛼)

𝑎
+

𝑓[𝑡, 𝑦(𝑡)](𝑎) = 0). Therefore,
the sufficiency is proved, which completes the proof of
Theorem 21.

3.2. Existence and Uniqueness of a Solution. In this section
we establish the existence of a unique solution to the Cauchy
type problem (46) in the space 𝐶𝛼,𝛽

1−𝛾,𝜇
[𝑎, 𝑏] defined in (47)

above under the conditions of Theorem 21 and an additional
Lipschitz condition
󵄩󵄩󵄩󵄩𝑓 [𝑥, 𝑦1] − 𝑓 [𝑥, 𝑦2]

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑏]

≤ 𝐴󵄩󵄩󵄩󵄩𝑦1 − 𝑦2
󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑏] (75)

for some positive constant 𝐴 and every 𝑥 ∈ [𝑎, 𝑏].

Theorem22. Let 𝛾 = 𝛼+𝛽−𝛼𝛽where (0 < 𝛼 < 1, 0 ≤ 𝛽 ≤ 1).
Assume that 𝑓 : (𝑎, 𝑏] × R → R (𝑎 > 0) is a function such
that𝑓[⋅, 𝑦(⋅)] ∈ 𝐶

𝜇,log[𝑎, 𝑏] for any 𝑦 ∈ 𝐶𝜇,log[𝑎, 𝑏]with 1−𝛾 ≤
𝜇 < 1 − 𝛽(1 − 𝛼) and is Lipschitz continuous with respect to its
second variable. Then, there exists a unique solution 𝑦 for the
Cauchy type problem (46) in the space 𝐶𝛼,𝛽

1−𝛾,𝜇
[𝑎, 𝑏].

Proof. First we prove the existence of a unique solution 𝑦 in
the space 𝐶

1−𝛾,log[𝑎, 𝑏]. According to Theorem 21, it suffices
to prove the existence of a unique solution 𝑦 ∈ 𝐶

1−𝛾,log[𝑎, 𝑏]
to the nonlinear Volterra integral equation (50).

Let us select 𝑥
1
in (𝑎, 𝑏) such that

𝑤
1
:=
𝐴Γ (𝛾)

Γ (𝛼 + 𝛾)
(log 𝑥1

𝑎
)
2𝛼

< 1, (76)

where 𝐴 > 0 is the Lipschitz constant. We start by proving
that a unique solution 𝑦 ∈ 𝐶

1−𝛾,log[𝑎, 𝑥1] to (50) exists on the
interval (𝑎, 𝑥

1
]. It is easy to see that the space 𝐶

1−𝛾,log[𝑎, 𝑥1]
is a complete metric space when equipped with the distance
given by

𝑑 (𝑦
1
, 𝑦
2
) = 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

:= max
𝑥∈[𝑎,𝑥1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(log 𝑥

𝑎
)
1−𝛾

[𝑦
1 (𝑥) − 𝑦2 (𝑥)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(77)

The integral equation (50) takes the form

𝑦 (𝑥) = (𝑇𝑦) (𝑥) , (78)

where

(𝑇𝑦) (𝑥) = 𝑦0 (𝑥) + (J
𝛼

𝑎
+𝑓 [𝑡, 𝑦 (𝑡)]) (𝑥) (79)

with

𝑦
0 (𝑥) =

𝑐

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

. (80)

We claim that 𝑇 maps 𝐶
1−𝛾,log[𝑎, 𝑥1] into itself. Indeed, 𝑦

0

given by (80) is clearly in 𝐶
1−𝛾,log[𝑎, 𝑥1]. Also, since 𝑓[⋅, 𝑦] ∈

𝐶
𝜇,log[𝑎, 𝑏] for any 𝑦 ∈ 𝐶𝜇,log[𝑎, 𝑏] with 𝜇 ∈ R (0 ≤ 𝜇 < 1),

then, by Lemma 13(a) and (b), the integral in the right-hand
side of (79) belongs to 𝐶

𝜇−𝛼,log[𝑎, 𝑏] for 𝜇 > 𝛼 and to 𝐶[𝑎, 𝑏]
for 𝜇 ≤ 𝛼. Since 𝜇 − 𝛼 < 1 − 𝛾, by Lemma 16 the right-hand
side of (79) belongs to 𝐶

1−𝛾,log[𝑎, 𝑏].
Our second claim is that 𝑇 is a contraction; that is,
󵄩󵄩󵄩󵄩𝑇𝑦1 − 𝑇𝑦2

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

≤ 𝑤
1

󵄩󵄩󵄩󵄩𝑦1 − 𝑦2
󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

,

0 < 𝑤
1
< 1.

(81)

This follows from (79), Lemma 13(a), and the fact that
󵄩󵄩󵄩󵄩𝑇𝑦1 − 𝑇𝑦2

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

= 󵄩󵄩󵄩󵄩J
𝛼

𝑎
+𝑓 [𝑡, 𝑦1 (𝑡)] −J

𝛼

𝑎
+𝑓 [𝑡, 𝑦2 (𝑡)]

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

≤ (log 𝑥1
𝑎
)
2𝛼 Γ (𝛾)

Γ (𝛼 + 𝛾)
󵄩󵄩󵄩󵄩𝑓 [𝑡, 𝑦1 (𝑡)] − 𝑓 [𝑡, 𝑦2 (𝑡)]

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

≤ 𝐴(log 𝑥1
𝑎
)
2𝛼 Γ (𝛾)

Γ (𝛼 + 𝛾)
󵄩󵄩󵄩󵄩𝑦1 (𝑡) − 𝑦2 (𝑡)

󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

= 𝑤
1

󵄩󵄩󵄩󵄩𝑦1 (𝑡) − 𝑦2 (𝑡)
󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

.

(82)

Our assumption (76) allows us to apply theBanachfixedpoint
theorem to obtain a unique solution 𝑦∗ ∈ 𝐶

1−𝛾,log[𝑎, 𝑥1] to
(50) on the interval (𝑎, 𝑥

1
].

This solution 𝑦∗ is the limit of a convergent sequence
𝑇𝑚𝑦∗
0
:

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑇
𝑚𝑦∗
0
− 𝑦∗󵄩󵄩󵄩󵄩𝐶

1−𝛾,log[𝑎,𝑥1]
= 0, (83)

where 𝑦∗
0
is any function in 𝐶

1−𝛾,log[𝑎, 𝑥1] and

(𝑇𝑚𝑦∗
0
) (𝑥) = (𝑇𝑇𝑚−1𝑦∗

0
) (𝑥)

= 𝑦
0 (𝑥) + (J

𝛼

𝑎
+𝑓 [𝑡, (𝑇𝑚−1𝑦∗

0
) (𝑡)]) (𝑥) ,

𝑚 ∈ N.

(84)

Let us take 𝑦∗
0
(𝑥) = 𝑦

0
(𝑥) with 𝑦

0
(𝑥) defined by (80). If we

denote by

𝑦
𝑚 (𝑥) := (𝑇

𝑚𝑦∗
0
) (𝑥) , 𝑚 ∈ N (85)
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then, clearly,

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑦𝑚 − 𝑦
∗󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑥1]

= 0. (86)

Next, we consider the interval [𝑥
1
, 𝑏]. From (50) we have

𝑦 (𝑥) =
𝑐

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

+
1

Γ (𝛼)
∫
𝑥
1

𝑎

(log 𝑥
𝑡
)
𝛼−1𝑓 [𝑡, 𝑦 (𝑡)]

𝑡
𝑑𝑡

+
1

Γ (𝛼)
∫
𝑥

𝑥
1

(log 𝑥
𝑡
)
𝛼−1𝑓 [𝑡, 𝑦 (𝑡)]

𝑡
𝑑𝑡.

= 𝑦
01 (𝑥) +

1

Γ (𝛼)
∫
𝑥

𝑥
1

(log 𝑥
𝑡
)
𝛼−1𝑓 [𝑡, 𝑦 (𝑡)]

𝑡
𝑑𝑡,

(87)

where 𝑦
01
(𝑥) is defined by

𝑦
01 (𝑥) =

𝑐

Γ (𝛾)
(log 𝑥

𝑎
)
𝛾−1

+
1

Γ (𝛼)
∫
𝑥
1

𝑎

(log 𝑥
𝑡
)
𝛼−1𝑓 [𝑡, 𝑦 (𝑡)]

𝑡
𝑑𝑡,

(88)

and is a known function. We note that 𝑦
01
∈ 𝐶[𝑥

1
, 𝑏].

We want to prove the existence of a unique solution 𝑦 ∈
𝐶[𝑥
1
, 𝑏] of (50) on the interval [𝑥

1
, 𝑏]. For this, we also use

Banach fixed point theorem for the space 𝐶[𝑥
1
, 𝑥
2
] where

𝑥
2
∈ (𝑥
1
, 𝑏] satisfies

𝑤
2
=
𝐴

𝛼Γ (𝛼)
(log 𝑥2

𝑥
1

)
𝛼

< 1. (89)

The space 𝐶[𝑥
1
, 𝑥
2
] is a complete metric space with the

distance given by

𝑑 (𝑦
1
, 𝑦
2
) = 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2

󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]
= max
𝑥∈[𝑥1 ,𝑥2]

󵄨󵄨󵄨󵄨𝑦1 (𝑥) − 𝑦2 (𝑥)
󵄨󵄨󵄨󵄨 .

(90)

The integral equation (87) may be written shortly as

𝑦 (𝑥) = (𝑇𝑦) (𝑥) , (91)

where the operator (again denoted by 𝑇) is given by

(𝑇𝑦) (𝑥) = 𝑦01 (𝑥) +
1

Γ (𝛼)
∫
𝑥

𝑥
1

(log 𝑥
𝑡
)
𝛼−1𝑓 [𝑡, 𝑦 (𝑡)]

𝑡
𝑑𝑡.

(92)

As in the first part of this proof, since 𝑦
01
∈ 𝐶[𝑥

1
, 𝑥
2
] and

𝑓[⋅, 𝑦(⋅)] ∈ 𝐶
𝜇,log[𝑎, 𝑏] for any 𝑦 ∈ 𝐶𝜇,log[𝑎, 𝑏], then, 𝑓[⋅,

𝑦(⋅)] ∈ 𝐶[𝑥
1
, 𝑥
2
], for any 𝑦 ∈ 𝐶[𝑥

1
, 𝑥
2
], then by Lemma 14,

we deduce that the integral in the right-hand side of (92) also
belongs to 𝐶[𝑥

1
, 𝑥
2
], and hence 𝑇𝑦 ∈ 𝐶[𝑥

1
, 𝑥
2
].

Moreover, using the Lipschitz condition and applying the
Lemma 14, we find
󵄩󵄩󵄩󵄩𝑇𝑦1 − 𝑇𝑦2

󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]

=
󵄩󵄩󵄩󵄩󵄩J
𝛼

𝑥
+

1

𝑓 [𝑡, 𝑦
1 (𝑡)] −J

𝛼

𝑥
+

1

𝑓 [𝑡, 𝑦
2 (𝑡)]

󵄩󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]

≤
1

𝛼Γ (𝛼)
(log 𝑥2

𝑥
1

)
𝛼

󵄩󵄩󵄩󵄩𝑓 [𝑡, 𝑦1 (𝑡)] − 𝑓 [𝑡, 𝑦2 (𝑡)]
󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]

≤
𝐴

𝛼Γ (𝛼)
(log 𝑥2

𝑥
1

)
𝛼

󵄩󵄩󵄩󵄩𝑦1 (𝑡) − 𝑦2 (𝑡)
󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]

= 𝑤
2

󵄩󵄩󵄩󵄩𝑦1 (𝑡) − 𝑦2 (𝑡)
󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]
.

(93)

This, together with our assumption 0 < 𝑤
2
< 1, shows that 𝑇

is a contraction and therefore from Theorem 17, there exists
a unique solution 𝑦∗

1
∈ 𝐶[𝑥

1
, 𝑥
2
] to (50) on the interval

[𝑥
1
, 𝑥
2
]. Notice that 𝑦∗

1
(𝑥
1
) = 𝑦∗(𝑥

1
) = 𝑦

01
(𝑥
1
). Further,

Theorem 17 guarantees that this solution is the limit of a
convergent sequence 𝑇𝑚𝑦∗

01
:

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑇
𝑚𝑦∗
01
− 𝑦∗
1

󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]
= 0, (94)

where 𝑦∗
01

is any function in 𝐶[𝑥
1
, 𝑥
2
], which we can pick

𝑦∗
01
(𝑥) = 𝑦

01
(𝑥) defined by (88). Therefore,

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑦𝑚 − 𝑦
∗

1

󵄩󵄩󵄩󵄩𝐶[𝑥
1
,𝑥
2
]
= 0, (95)

where

𝑦
𝑚 (𝑥) = (𝑇

𝑚𝑦∗
01
) (𝑥)

= 𝑦
01 (𝑥) +

1

Γ (𝛼)

× ∫
𝑥

𝑥
1

(log 𝑥
𝑡
)
𝛼−1𝑓 [𝑡, (𝑇𝑚−1𝑦∗

01
) (𝑡)]

𝑡
𝑑𝑡.

(96)

If 𝑥
2
̸= 𝑏, we consider the interval [𝑥

2
, 𝑥
3
], where 𝑥

3
= 𝑥
2
+ℎ
2
,

ℎ
2
> 0 such that 𝑥

3
≤ 𝑏 and

𝑤
3
=
𝐴

𝛼Γ (𝛼)
(log

𝑥
3

𝑥
2

)
𝛼

< 1. (97)

Using the same arguments as above, we derive that there
exists a unique solution 𝑦∗

2
∈ 𝐶[𝑥

2
, 𝑥
3
] to (50) on the interval

[𝑥
2
, 𝑥
3
]. If 𝑥
3
̸= 𝑏, then we continue the process until we reach

a solution 𝑦 to (50), 𝑦(𝑥) = 𝑦∗
𝑘
(𝑥), and 𝑦∗

𝑘
∈ 𝐶[𝑥

𝑘
, 𝑥
𝑘+1
]

(𝑘 = 1, . . . , 𝐿), where 𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝐿+1
and

𝑤
𝑘+1
=
𝐴

𝛼Γ (𝛼)
(log

𝑥
𝑘+1

𝑥
𝑘

)
𝛼

< 1. (98)

Assume that 𝑏 − 𝑎 > Γ(𝛼 + 𝛾)/𝐴Γ(𝛾) (for otherwise, take
𝑥
1
= 𝑏). Then, divide the length of the interval [𝑎 + Γ(𝛼 +

𝛾)/𝐴Γ(𝛾), 𝑏] by (𝛼Γ(𝛼)/𝐴)1/𝛼. Let 𝑀 be that quotient. It
appears that for 𝐿 = [𝑀] + 1 and 𝑏 is reached after a finite
number of steps, 𝑥

𝐿+1
= 𝑏. Then, there exists a unique

solution 𝑦 ∈ 𝐶[𝑥
1
, 𝑏] to (50) on the interval [𝑥

1
, 𝑏].
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Putting together the solutions in [𝑎, 𝑥
1
] and [𝑥

1
, 𝑏] and

taking into account the Lemma 15, we obtain that there
exists a unique solution 𝑦 ∈ 𝐶

1−𝛾,log[𝑎, 𝑏] to the Volterra
integral equation (50) on the whole interval (𝑎, 𝑏]. Hence,
𝑦 ∈ 𝐶

1−𝛾,log[𝑎, 𝑏] is the unique solution to the Cauchy-type
problem (46).

It remains to show that such a unique solution is actually
in 𝐶𝛼,𝛽
1−𝛾,𝜇
[𝑎, 𝑏]. To this end we need to prove that

𝐻
D
𝛼,𝛽

𝑎
+
𝑦 ∈

𝐶
𝜇,log[𝑎, 𝑏]. Let us recall that our 𝑦 is a limit of the sequence
𝑦
𝑚
, where 𝑦

𝑚
= 𝑇𝑚𝑦∗

0
∈ 𝐶
1−𝛾,log[𝑎, 𝑏]; that is,

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑦𝑚 − 𝑦
󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑏]

= 0, (99)

with a certain choice of 𝑦∗
0
(𝑥) on each subinterval [𝑎, 𝑥

1
],

. . . , [𝑥
𝐿
, 𝑏]. Indeed, this is a consequence of the construc-

tion adopted, the initial values are selected in the space
𝐶
1−𝛾,log[𝑎, 𝑏] (see (80) and (88)) and the operator maps this

space into itself (see argument right after (80) and (92)). As
for the convergence in that space it has been proved in (83)
and (95).

If 𝑦
0
(𝑥) ̸= 0,then we can take 𝑦∗

0
(𝑥) = 𝑦

0
(𝑥). Since 𝜇 ≥

1 − 𝛾, then by (46), the Lipschitz condition and Lemma 8, we
have

󵄩󵄩󵄩󵄩󵄩󵄩𝐻
D
𝛼,𝛽

𝑎
+
𝑦
𝑚
−
𝐻
D
𝛼,𝛽

𝑎
+
𝑦
󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜇,log[𝑎,𝑏]

= 󵄩󵄩󵄩󵄩𝑓 [𝑥, 𝑦𝑚] − 𝑓 [𝑥, 𝑦]
󵄩󵄩󵄩󵄩𝐶
𝜇,log[𝑎,𝑏]

≤ 𝐴(log 𝑏
𝑎
)
𝜇−1+𝛾

󵄩󵄩󵄩󵄩𝑦𝑚 − 𝑦
󵄩󵄩󵄩󵄩𝐶
1−𝛾,log[𝑎,𝑏]

.

(100)

In virtue of (99) and (100), it follows that

lim
𝑚→∞

󵄩󵄩󵄩󵄩󵄩󵄩𝐻
D
𝛼,𝛽

𝑎
+
𝑦
𝑚
−
𝐻
D
𝛼,𝛽

𝑎
+
𝑦
󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜇,log[𝑎,𝑏]

= 0. (101)

We entail from this relation that (
𝐻
D
𝛼,𝛽

𝑎
+
𝑦) ∈ 𝐶

𝜇,log[𝑎, 𝑏] if
(
𝐻
D
𝛼,𝛽

𝑎
+
𝑦
𝑚
) ∈ 𝐶

𝜇,log[𝑎, 𝑏], 𝑚 = 1, 2, . . .This latter property
holds in as much as

𝐻
D
𝛼,𝛽

𝑎
+
𝑦
𝑚
(𝑥) = 𝑓[𝑥, 𝑦

𝑚−1
(𝑥)] and

𝑓[⋅, 𝑦(⋅)] ∈ 𝐶
𝜇,log[𝑎, 𝑏] for any 𝑦 ∈ 𝐶𝜇,log[𝑎, 𝑏].

Consequently, 𝑦 ∈ 𝐶𝛼,𝛽
1−𝛾,𝜇
[𝑎, 𝑏]. This completes the proof

of Theorem 22.

4. Stability

In this section, we consider the weighted Cauchy-type prob-
lem

𝐻
D
𝛼,𝛽

𝑎
+
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 𝑎 > 0,

(log 𝑡
𝑎
)
(1−𝛽)(1−𝛼)

𝑢 (𝑡)|𝑡=𝑎 = 𝑏,
(102)

where
𝐻
D
𝛼,𝛽

+
is the Hilfer-Hadamard fractional derivative

(HHFD) of order 0 < 𝛼 < 1 and type 0 ≤ 𝛽 ≤ 1 and
𝑏 ∈ R∗ (the set of all real numbers except 0). It is interesting to
note that, using an argument similar to the one in the proof of

Lemma 3.5 in [2] (see also Lemma 3.2), we can prove that the
initial condition in (102) and the one in (46) are equivalent.

We will assume the following hypotheses on the function
𝑓:

(F∗) 𝑓(𝑡, 𝑢) is a continuous (nonlinear) function on
(𝑎,∞) × R and is such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡))
󵄨󵄨󵄨󵄨 ≤ (log

𝑡

𝑎
)
𝜇

𝜑 (𝑡) |𝑢 (𝑡)|𝑚, 𝜇 ≥ 0, 𝑚 > 1, 𝑡 ≥ 𝑎,

(103)

where 𝜑 is a continuous (nonnegative) function on [𝑎,∞).
We first prove the following inequality.

Lemma 23. If 𝜆, ], 𝜔 > 0, then for any 𝑡 > 𝑎, 𝑎 > 0 we have

(log 𝑡
𝑎
)
1−]

∫
𝑡

𝑎

(log 𝑡
𝑠
)
]−1

(log 𝑠
𝑎
)
𝜆−1

(
𝑠

𝑎
)
−𝜔 𝑑𝑠

𝑠
≤ 𝐶𝜔−𝜆,

(104)

where 𝐶 is a positive constant independent of 𝑡.

Proof. Let us denote by 𝐼(𝑡) the left-hand side of the inequal-
ity in the Lemma. We consider the change of variable, 𝜉 =
(log(𝑠/𝑎))/(log(𝑡/𝑎)) then 𝑠/𝑎 = (𝑡/𝑎)𝜉 and log(𝑡/𝑠) = (1 −
𝜉)(log(𝑡/𝑎)). It follows that

𝐼 (𝑡) = (log 𝑡
𝑎
)
𝜆

∫
1

0

(1 − 𝜉)]−1𝜉𝜆−1(
𝑡

𝑎
)
−𝜔𝜉

𝑑𝜉, (105)

or

𝐼 (𝑡) = (log 𝑡
𝑎
)
𝜆

∫
1

0

(1 − 𝜉)]−1𝜉𝜆−1 exp(−𝜔𝜉 log( 𝑡
𝑎
)) 𝑑𝜉.

(106)

Observe that, for 𝜉 ≥ 1 and [𝜆] + 1 ≥ 𝜆 we have 𝜉[𝜆]+1 ≥
𝜉𝜆. Also since 𝜆 + 2 ≥ [𝜆] + 2 and the Gamma function is
increasing in [2,∞)we have Γ(𝜆+2) ≥ Γ([𝜆]+2) or 1/Γ([𝜆]+
2) ≥ 1/Γ(𝜆+2).Moreover, 𝑒𝜉 ≥ (𝜉[𝜆]+1/Γ([𝜆]+2)) (Γ([𝜆]+2) =
([𝜆] + 1)!), and hence

𝑒𝜉 ≥
𝜉[𝜆]+1

Γ ([𝜆] + 2)
≥

𝜉𝜆

Γ ([𝜆] + 2)
≥

𝜉𝜆

Γ (𝜆 + 2)
, (107)

or

𝑒−𝜉 ≤
Γ (𝜆 + 2)

𝜉𝜆
. (108)

Therefore, for 0 ≤ 𝜉 < 1/2 we get

(1 − 𝜉)]−1 ≤ max (1, 21−]) . (109)

For 1/2 < 𝜉 ≤ 1 and 𝑡 such that 𝜔𝜉 log(𝑡/𝑎) ≥ 1 we have

exp(−𝜔𝜉 log( 𝑡
𝑎
)) ≤

Γ (𝜆 + 2)

(𝜔𝜉 log (𝑡/𝑎))𝜆
≤
𝜔−𝜆

𝜉
Γ (𝜆 + 2)

≤ 2𝜔−𝜆Γ (𝜆 + 2) .
(110)
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This means that

(log 𝑡
𝑎
)
𝜆

(1 − 𝜉)]−1𝜉𝜆−1 exp(−𝜔𝜉 log( 𝑡
𝑎
))

≤

{{{{{
{{{{{
{

max (1, 21−]) (log 𝑡
𝑎
)
𝜆

𝜉𝜆−1

× exp(−𝜔𝜉 log( 𝑡
𝑎
)) , 0 ≤ 𝜉 <

1

2
,

2(1 − 𝜉)]−1Γ (𝜆 + 2) 𝜔−𝜆,
1

2
< 𝜉 ≤ 1.

(111)

Consequently,

𝐼 (𝑡) ≤ max (1, 21−]) (log 𝑡
𝑎
)
𝜆

× ∫
1/2

0

𝜉𝜆−1 exp(−𝜔𝜉 log( 𝑡
𝑎
)) 𝑑𝜉

+ 2𝜔−𝜆Γ (𝜆 + 2) ∫
1

1/2

(1 − 𝜉)]−1𝑑𝜉.

(112)

Let 𝑢 = 𝜔𝜉 log(𝑡/𝑎), we see that

𝐼 (𝑡) ≤ max (1, 21−]) (log 𝑡
𝑎
)
𝜆

× ∫
∞

0

(
𝑢

𝜔 log (𝑡/𝑎)
)
𝜆−1

𝑒−𝑢
𝑑𝑢

𝜔 log (𝑡/𝑎)

+ 2𝜔−𝜆Γ (𝜆 + 2) [−
(1 − 𝜉)]

]
]
1

𝜉=1/2

.

(113)

Thus,

𝐼 (𝑡) ≤ max (1, 21−]) 𝜔−𝜆Γ (𝜆) + 2
1−]𝜔−𝜆Γ (𝜆 + 2)

]
. (114)

As a result, 𝐼(𝑡) ≤ max{1, 21−]}Γ(𝜆)(1 + 𝜆(𝜆 + 1)/])𝜔−𝜆.
For 0 < 𝜂 < 1, 𝑒𝜂 ≥ 1 it is clear that

Γ (𝜆 + 2) 𝑒𝜂 ≥ 1 ≥ 𝜂𝜆 (115)

holds and we proceed in the same manner to conclude that
for 𝑡 such that 0 < 𝜔𝜉 log(𝑡/𝑎) < 1

(log 𝑡
𝑎
)
1−]

∫
𝑡

𝑎

(log 𝑡
𝑠
)
]−1

(log 𝑠
𝑎
)
𝜆−1

(
𝑠

𝑎
)
−𝜔 𝑑𝑠

𝑠
≤ 𝐶𝜔−𝜆,

(116)

where 𝐶 = max{1, 21−]}Γ(𝜆)(1 + 𝜆(𝜆 + 1)/]). The proof is
complete.

Let 𝑝 and 𝑞 be conjugate exponents; that is, 𝑝𝑞 = 𝑝 + 𝑞,
and let 𝜆

1
:= 1+𝑝[𝜇−(1−𝛾)𝑚] and 𝜆

2
:= 1+𝑝(𝛼−1), where

𝛾 := 𝛼 + 𝛽 − 𝛼𝛽. If 𝜇 − (𝑚 − 1)(1 − 𝛾) > 0 and 𝑞 > 1/𝛼, then
𝜆
1
> 0 and 𝜆

2
> 0. We denote by L∗ the positive real number

L∗ := ( Γ (𝛼)

2𝑚+(𝛼−1)|𝑏|𝑚−1
)
𝑚

(
(2𝑎)𝑚

𝑚 − 1
)
1/𝑞

× [
(𝑝 − 1)

𝜆
1

Γ (𝜆
1
) (1 + 𝜆

1
/𝜆
2
)
]

𝑚/𝑝

.

(117)

Theorem24. Suppose that𝑓 satisfies (F∗) and 𝜇 > (𝑚−1)(1−
𝛾). If

(󵄩󵄩󵄩󵄩𝜑 (𝑡)
󵄩󵄩󵄩󵄩𝑞)
𝑚−1
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑡) (log 𝑡

𝑎
)
−𝑚𝛽(1−𝛼)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑞

< L∗ (118)

for some 𝑞 > 1/𝛼, then, for any solution of Problem (102), there
exists a positive constant 𝐶 such that |𝑢(𝑡)| ≤ 𝐶(log(𝑡/𝑎))𝛾−1,
𝑡 > 𝑎, 𝑎 > 0, where 𝛾 = 𝛼 + 𝛽 − 𝛼𝛽.

Proof. Let us consider the Volterra integral equation

𝑢 (𝑡) = 𝑏(log 𝑡
𝑎
)
𝛾−1

+
1

Γ (𝛼)
∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝛼−1

𝑓 [𝑠, 𝑢 (𝑠)]
𝑑𝑠

𝑠
,

𝑡 > 𝑎 > 0
(119)

associated to problem (102). Multiplying both sides of (119)
by (log(𝑡/𝑎))1−𝛾 and using the assumption (F∗) on 𝑓 we get

(log 𝑡
𝑎
)
1−𝛾

|𝑢 (𝑡)|

≤ |𝑏| +
(log (𝑡/𝑎))1−𝛾

Γ (𝛼)

× ∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝛼−1

(log 𝑠
𝑎
)
𝜇

𝜑 (𝑠) |𝑢 (𝑠)|𝑚
𝑑𝑠

𝑠
.

(120)

Let V(𝑡) denote the left-hand side of (120). The insertion of
the term

(log 𝑠
𝑎
)
(1−𝛾)𝑚

(log 𝑠
𝑎
)
−(1−𝛾)𝑚

(121)

inside the integral gives

V (𝑡) ≤ |𝑏| +
(log (𝑡/𝑎))1−𝛾

Γ (𝛼)

× ∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝛼−1

(log 𝑠
𝑎
)
𝜇−(1−𝛾)𝑚

× 𝜑 (𝑠) V𝑚 (𝑠)
𝑑𝑠

𝑠
, 𝑡 > 𝑎.

(122)

Now, the Hölder inequality with exponents 𝑝 and 𝑞 yields

∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝛼−1

(log 𝑠
𝑎
)
𝜇−(1−𝛾)𝑚

𝜑 (𝑠) V𝑚 (𝑠)
𝑑𝑠

𝑠

≤ (∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝑝(𝛼−1)

(log 𝑠
𝑎
)
𝑝(𝜇−(1−𝛾)𝑚) 𝑑𝑠

𝑠𝑝
)
1/𝑝

× (∫
𝑡

𝑎

𝜑𝑞 (𝑠) V𝑞𝑚 (𝑠) 𝑑𝑠)
1/𝑞

≤ 𝑎−1/𝑞(∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝑝(𝛼−1)

(log 𝑠
𝑎
)
𝑝(𝜇−(1−𝛾)𝑚)

(
𝑠

𝑎
)
−(𝑝−1) 𝑑𝑠

𝑠
)
1/𝑝

× (∫
𝑡

𝑎

𝜑𝑞 (𝑠) V𝑞𝑚 (𝑠) 𝑑𝑠)
1/𝑞

, 𝑡 > 𝑎.

(123)
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Since 𝜆
1
− 1 = 𝑝[𝜇 − (1 − 𝛾)𝑚], 𝜆

2
− 1 = 𝑝(𝛼 − 1) and 𝜆

1
, 𝜆
2
,

𝑝 − 1 > 0, we may apply Lemma 9 (with ] replaced by 𝜆
2
, 𝜆

replaced by 𝜆
1
and 𝜔 replaced by 𝑝 − 1) to get

∫
𝑡

𝑎

(log 𝑡
𝑠
)
𝛼−1

(log 𝑠
𝑎
)
𝜇−(1−𝛾)𝑚

𝜑 (𝑠) V𝑚 (𝑠)
𝑑𝑠

𝑠

≤ 𝑎−1/𝑞𝐶
1
(log 𝑡

𝑎
)
𝛼−1

× (∫
𝑡

𝑎

𝜑𝑞 (𝑠) V𝑞𝑚 (𝑠) 𝑑𝑠)
1/𝑞

, 𝑡 > 𝑎,

(124)

where 𝐶
1
is the constant appearing in Lemma 9 correspond-

ing to the present exponents. That is,

𝐶
1
= (2𝑝(𝛼−1)Γ (𝜆

1
) (1 +

𝜆
1
(𝜆
1
+ 1)

𝜆
2

) (𝑝 − 1)
−𝜆
1)
1/𝑝

.

(125)

Combining (122) and (124) we entail that

V (𝑡) ≤ |𝑏| + 𝐶1(log
𝑡

𝑎
)
−𝛽(1−𝛼)

× (∫
𝑡

𝑎

𝜑𝑞 (𝑠) V𝑞𝑚 (𝑠) 𝑑𝑠)
1/𝑞

, 𝑡 > 𝑎,

(126)

where 𝐶
1
= 𝑎−1/𝑞(𝐶

1
/Γ(𝛼)). Multiplying both sides of (126)

by (log(𝑡/𝑎))𝛽(1−𝛼), we obtain

(log 𝑡
𝑎
)
𝛽(1−𝛼)

V (𝑡)

≤ |𝑏| (log 𝑡
𝑎
)
𝛽(1−𝛼)

+ 𝐶
1
(∫
𝑡

𝑎

𝜑𝑞 (𝑠) V𝑞𝑚 (𝑠) 𝑑𝑠)
1/𝑞

,

𝑡 > 𝑎.

(127)

Let 𝑧(𝑡) denote the left-hand side of (127). The insertion of
the term

(log 𝑠
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

(log 𝑠
𝑎
)
𝑞𝑚𝛽(1−𝛼)

(128)

inside the integral gives

𝑧 (𝑡) ≤ |𝑏| (log 𝑡
𝑎
)
𝛽(1−𝛼)

+𝐶
1
(∫
𝑡

𝑎

𝜑𝑞 (𝑠) (log 𝑠
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝑧𝑞𝑚 (𝑠) 𝑑𝑠)
1/𝑞

.

(129)

Raising both sides of (129) to the power 𝑞 we get

𝑧𝑞 (𝑡) ≤ 2𝑞−1 (|𝑏|𝑞(log 𝑡
𝑎
)
𝑞𝛽(1−𝛼)

+ 𝐶𝑞
1
∫
𝑡

𝑎

𝜑𝑞 (𝑠) (log 𝑠
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝑧𝑞𝑚 (𝑠) 𝑑𝑠) .

(130)

Let us set

𝑤 (𝑡) = 𝐶
𝑞

1
∫
𝑡

𝑎

𝜑𝑞 (𝑠) (log 𝑠
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝑧𝑞𝑚 (𝑠) 𝑑𝑠, 𝑡 > 𝑎.

(131)

Then, clearly 𝑤(𝑎) = 0, and by differentiation

𝑤󸀠 (𝑡) = 𝐶
𝑞

1
𝜑𝑞 (𝑡) (log 𝑡

𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝑧𝑞𝑚 (𝑡) , 𝑡 > 𝑎. (132)

Moreover, it is clear that 𝑤 is a continuous, nonnegative and
nondecreasing function in [𝑎,∞).

Now,wewould like to estimate the right hand side of (132)
in term of 𝑤(𝑡). From (130) and (131) we entail that

𝑧𝑞 (𝑡) ≤ 2𝑞−1 (|𝑏|𝑞(log 𝑡
𝑎
)
𝑞𝛽(1−𝛼)

+ 𝑤 (𝑡)) , 𝑡 > 𝑎. (133)

Raising both sides of (133) to the power𝑚 we get

𝑧𝑞𝑚 (𝑡) ≤ 2𝑚𝑞−1 (|𝑏|𝑚𝑞(log 𝑡
𝑎
)
𝑚𝑞𝛽(1−𝛼)

+ 𝑤𝑚 (𝑡)) , 𝑡 > 𝑎.

(134)

The substitution of (134) in (132) yields

𝑤󸀠 (𝑡) ≤ 2𝑚𝑞−1𝐶
𝑞

1
𝜑𝑞 (𝑡) (log 𝑡

𝑎
)
−𝑞𝑚𝛽(1−𝛼)

× (|𝑏|𝑚𝑞(log 𝑡
𝑎
)
𝑚𝑞𝛽(1−𝛼)

+ 𝑤𝑚 (𝑡))

≤ 2𝑚𝑞−1|𝑏|𝑚𝑞𝐶
𝑞

1
𝜑𝑞 (𝑡) + 2𝑚𝑞−1𝐶

𝑞

1

× (log 𝑡
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝜑𝑞 (𝑡) 𝑤𝑚 (𝑡) .

(135)

Applying Lemma 16 (with 𝑤(𝑢) = 𝑢𝑚) we infer that

𝑤 (𝑡) ≤ 𝐺−1 [𝐺(𝑤 (𝑎) + 2𝑚𝑞−1|𝑏|𝑚𝑞𝐶
𝑞

1
∫
𝑡

𝑎

𝜑𝑞 (𝑠) 𝑑𝑠)

+ 2𝑚𝑞−1𝐶𝑞
1
∫
𝑡

𝑎

(log 𝑠
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝜑𝑞 (𝑠) 𝑑𝑠] .

(136)

Let us set

𝑙 (𝑡) = 2𝑚𝑞−1|𝑏|𝑚𝑞𝐶
𝑞

1
∫
𝑡

𝑎

𝜑𝑞 (𝑠) 𝑑𝑠,

𝑘 (𝑡) = 2𝑚𝑞−1𝐶
𝑞

1
∫
𝑡

𝑎

(log 𝑠
𝑎
)
−𝑞𝑚𝛽(1−𝛼)

𝜑𝑞 (𝑠) 𝑑𝑠,

(137)

then

𝑤 (𝑡) ≤ 𝐺−1 [𝐺 (𝑙 (𝑡)) + 𝑘 (𝑡)] , (138)

where we have used the fact that 𝑤(𝑎) = 0. Since 𝐺(𝑟) =
∫
𝑟

𝑟
0

(𝑑𝑠/𝑠𝑚), 𝑟 > 0, 𝑟
0
> 0, then 𝐺(𝑟) = (𝑟1−𝑚/(1 − 𝑚)) −
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(𝑟1−𝑚
0
/(1 − 𝑚)) and 𝐺−1(𝑦) = [𝑟1−𝑚

0
− (𝑚 − 1)𝑦]

−1/(𝑚−1). That
is,

𝑤 (𝑡) ≤ 𝐺−1 [
𝑙(𝑡)1−𝑚

1 − 𝑚
−
𝑙(𝑡
0
)
1−𝑚

1 − 𝑚
+ 𝑘 (𝑡)]

≤ [𝑙(𝑡
0
)
1−𝑚
− (𝑚 − 1)(

𝑙(𝑡)1−𝑚

1 − 𝑚
−
𝑙(𝑡
0
)
1−𝑚

1 − 𝑚
+ 𝑘 (𝑡))]

−1/(𝑚−1)

≤ [𝑙(𝑡)1−𝑚 − (𝑚 − 1) 𝑘 (𝑡)]
−1/(𝑚−1)

.
(139)

As long as

𝑙(𝑡)𝑚−1𝑘 (𝑡) <
1

𝑚 − 1
. (140)

In particular, if (‖𝜑(𝑡)‖
𝑞
)𝑚−1‖𝜑(𝑡)(log(𝑡/𝑎))−𝑚𝛽(1−𝛼)‖

𝑞
< L∗/2,

then 𝑤(𝑡) ≤ 𝐾
1
for some positive constant 𝐾

1
for all 𝑡 > 𝑎,

and thus, from (129), we see that

𝑧 (𝑡) ≤ |𝑏| (log 𝑡
𝑎
)
𝛽(1−𝛼)

+ 𝐾1/𝑞
1
, (141)

and then

V (𝑡) ≤ |𝑏| + 𝐾
1/𝑞

1
(log 𝑡

𝑎
)
−𝛽(1−𝛼)

≤ 𝐶, 𝑡 ≥ 𝑡
0
> 𝑎 (142)

for some positive constant 𝐶. This yields that |𝑢(𝑡)| ≤
𝐶(log(𝑡/𝑎))𝛾−1 for 𝑡 ≥ 𝑡

0
> 𝑎. The proof is complete.
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