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Inspired by the note on split common fixed-point problem for quasi-nonexpansive operators presented by Moudafi (2011), based
on the very recent work by Dang et al. (2012), in this paper, we propose an inertial iterative algorithm for solving the split common
fixed-point problem for quasi-nonexpansive operators in the Hilbert space. We also prove the asymptotical convergence of the
algorithm under some suitable conditions. The results improve and develop previously discussed feasibility problems and related
algorithms.

1. Introduction

The convex feasibility problem (CFP), as an important opti-
mization problem [1], is to find a common point in the
intersection of finitely many convex sets. It has been applied
to many areas, for instance, approximation theory [2], image
reconstruction from projections [3, 4], control [5], and so on.
When there are only two sets and constraints are imposed
on the solutions in the domain of a linear operator as well
as in this operator’s ranges, the problem is said to be a split
feasibility problem (SFP) which has the following formula:
finding a point 𝑥 satisfying

𝑥 ∈ 𝐶, 𝐴𝑥 ∈ 𝑄, (1)

where 𝐶 is a closed convex subset of a Hilbert space 𝐻
1
, 𝑄

is a closed convex subset of a Hilbert space 𝐻
2
, and 𝐴 :

𝐻
1

→ 𝐻
2
is a bounded linear operator. The SFP was

originally introduced in [6], and it has also broad applications
in many fields, such as image reconstruction problem, signal
processing, and radiation therapy. Many projection methods
have also been developed for solving the SFP; see [7–9].
Denote by 𝑃

𝐶
the orthogonal projection onto 𝐶; that is,

𝑃
𝐶
(𝑥) = argmin

𝑦∈𝐶
‖𝑥 − 𝑦‖, over all 𝑥 ∈ 𝐶. Assuming that

the SFP is consistent (i.e., (1) has a solution), it is not hard to
see that 𝑥 ∈ 𝐶 solves (1) if and only if it solves the fixed-point
equation:

𝑥 = 𝑃
𝐶
[(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) (𝑥)] , (2)

where 0 < 𝛾 is any positive constant and 𝐴
∗ denotes the

adjoint of 𝐴.
To solve (2), in [10], Byrne introduced the so-called CQ

algorithm, which generates a sequence {𝑥𝑘} by

𝑥
𝑘+1

= 𝑃
𝐶
[(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) (𝑥

𝑘
)] , (3)

where 0 < 𝛾 < 2/𝜌(𝐴
𝑇
𝐴) and 𝜌(𝐴

𝑇
𝐴) is the spectral radius

of 𝐴∗𝐴.
The split common fixed-point problem (SCFP) is a gener-

alization of the split feasibility problem (SFP) and the convex
feasibility problem (CFP); see [11]. Our main purpose here is
to give an extension of the results developed in [12] to the split
common fixed-point problem for quasi-nonexpansive oper-
ators, and we will introduce weak symposium convergence
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result of the algorithm under some suitable conditions. This
will be done in the context of general Hilbert spaces.

The paper is organized as follows. In Section 2, we recall
some preliminaries. In Section 3, we present an inertial CQ
algorithm and show its convergence.

2. Preliminaries

Throughout the rest of the paper, 𝐼 denotes the identity
operator and Fix(𝑇) denotes the set of the fixed points of an
operator 𝑇, that is, Fix(𝑇) := {𝑥 | 𝑥 = 𝑇(𝑥)}.

Recall that a mapping 𝑇 is said to be quasi-nonexpansive
(𝜀Q) if

󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑞

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑞

󵄩
󵄩
󵄩
󵄩
, ∀ (𝑥, 𝑞) ∈ 𝐻 × Fix (𝑇) . (4)

A mapping 𝑇 is called nonexpansive (𝜀N) if

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑥) − 𝑇 (𝑦)

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀ (𝑥, 𝑦) ∈ 𝐻 × 𝐻. (5)

A mapping 𝑇 is called firmly nonexpansive (𝜀FN) if

󵄩
󵄩
󵄩
󵄩
𝑇(𝑥) − 𝑇(𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
(𝑥 − 𝑦) − (𝑇 (𝑥) − 𝑇 (𝑦))

󵄩
󵄩
󵄩
󵄩

2

,

∀ (𝑥, 𝑦) ∈ 𝐻 × 𝐻.

(6)

A mapping 𝑇 is called firmly quasi-nonexpansive (𝜀FQ) if

󵄩
󵄩
󵄩
󵄩
𝑇(𝑥) − 𝑞

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑞

󵄩
󵄩
󵄩
󵄩

2

− ‖𝑥 − 𝑇 (𝑥)‖
2
,

∀ (𝑥, 𝑞) ∈ 𝐻 × Fix (𝐻) .

(7)

It is easily observed that 𝜀FN ⊂ 𝜀N ⊂ 𝜀Q and that 𝜀FN ⊂ 𝜀FQ ⊂

𝜀Q. Furthermore, 𝜀FN is well known to include resolvents and
projection operators, while 𝜀FQ contains subgradient projec-
tion operators (see, e.g., [13], and the references therein).

Recently, Bauschke and Combettes [14] have considered
a class of mappings satisfying the condition

⟨𝑞 − 𝑇𝑥, 𝑥 − 𝑇𝑥⟩ ≤ 0, ∀ (𝑥, 𝑞) ∈ 𝐻 × Fix (𝑇) . (8)

It can easily be seen that the class of mappings satisfying
the latter condition coincides with that of firmly quasi-
nonexpansive mappings.

Usually, the convergence of fixed-point algorithms
requires some additional smoothness properties of the
mapping 𝑇 such as demiclosedness.

Definition 1. A mapping 𝑇 is said to be demiclosed if for
any sequence {𝑥

𝑘
} which weakly converges to 𝑦 and if the

sequence {𝑇(𝑥𝑘)} strongly converges to 𝑧, then 𝑇(𝑦) = 𝑧.
In what follows, only the particular case of demiclosed-

ness at zero will be used, which is the particular case when
𝑧 = 0.

The following lemmas will be needed in the proof of the
convergence of the algorithm.

Lemma 2. Let 𝑇 be a quasi-nonexpansive mapping. Set 𝑇
𝛼
:=

(1 − 𝛼)𝐼 + 𝛼𝑇. Then, it is immediate that for all (𝑥, 𝑞) ∈ 𝐻 ×

Fix(𝑇):

(1) ⟨𝑥−𝑇(𝑥), 𝑥−𝑞⟩ ≥ (1/2)‖𝑥 − 𝑇(𝑥)‖
2 and ⟨𝑥−𝑇(𝑥), 𝑞−

𝑇(𝑥)⟩ ≤ (1/2)‖𝑥 − 𝑇(𝑥)‖
2;

(2) ‖𝑇
𝛼
(𝑥) − 𝑞‖

2
≤ ‖𝑥 − 𝑞‖

2
− 𝛼(1 − 𝛼)‖𝑥 − 𝑇(𝑥)‖;

(3) ⟨𝑥 − 𝑇
𝛼
(𝑥), 𝑥 − 𝑞⟩ ≥ (𝛼/2)‖𝑥 − 𝑇(𝑥)‖

2.

Lemma 3 (see [8]). Assume 𝜑
𝑘
∈ [0,∞) and 𝛿

𝑘
∈ [0,∞)

satisfy

(1) 𝜑
𝑘+1

− 𝜑
𝑘
≤ 𝜃
𝑘
(𝜑
𝑘
− 𝜑
𝑘−1

) + 𝛿
𝑘
,

(2) ∑+∞
𝑘=1

𝛿
𝑘
< ∞,

(3) {𝜃
𝑘
} ⊂ [0, 𝜃], where 𝜃 ∈ [0, 1).

Then, the sequence {𝜑
𝑘
} is convergent with∑+∞

𝑘=1
[𝜑
𝑘+1

−𝜑
𝑘
]
+
<

∞, where [𝑡]
+
:= max{𝑡, 0} (for any 𝑡 ∈ 𝑅).

3. The Inertial Algorithm and
Its Asymptotic Convergence

In what follows, we will focus our attention on the following
general two-operator split common fixed-point problem:

find 𝑥
∗
∈ 𝐶 such that 𝐴𝑥∗ ∈ 𝑄, (9)

where 𝐴 : 𝐻
1
→ 𝐻

2
is a bounded linear operator and 𝑈 :

𝐻
1
→ 𝐻

1
and 𝑇 : 𝐻

2
→ 𝐻

2
are two quasi-nonexpansive

operators with nonempty fixed-point sets Fix(𝑈) = 𝐶 and
Fix(𝑇) = 𝑄, and denote the solution set of the two-operator
SCFP by

Γ = {𝑦 ∈ 𝐶 : 𝐴𝑦 ∈ 𝑄} . (10)

3.1. The Inertial Algorithm. To solve (9), Moudafi [15] pro-
posed and proved, in finite-dimensional spaces, the conver-
gence of the following algorithm:

𝑥
𝑘+1

= 𝑈
𝛼𝑘
(𝑥
𝑘
+ 𝛾 (𝐴

∗
𝑇
𝛽
− 𝐼)𝐴 (𝑥

𝑘
)) , 𝑘 ∈ 𝑁, (11)

where 𝛽 ∈ (0, 1), 𝛼
𝑘
∈ (0, 1) are relaxation parameters and

𝛾 > 0. Inspired by the inertial technique, we introduce the
following inertial method and then present its convergence
analysis.

Algorithm 4.

Initialization: Let 𝑥0 ∈ 𝐻
1 be arbitrary.

Iterative step: For 𝑘 ∈ 𝑁, set 𝑢 = 𝐼 + 𝛾𝜂𝐴
∗
(𝑇 − 𝐼)𝐴,

and let

𝑦
𝑘
= 𝑥
𝑘
+ 𝜃
𝑘
(𝑥
𝑘
− 𝑥
𝑘−1

)

𝑥
𝑘+1

= (1 − 𝛼
𝑘
) 𝑢 (𝑦

𝑘
) + 𝛼
𝑘
𝑈(𝑢 (𝑦

𝑘
)) , 𝑘 ∈ 𝑁,

(12)
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where 𝜂 ∈ (0, 1), 𝛼
𝑘
∈ (0, 1), and 𝛾 ∈ (0, 1/(𝜆𝜂)), with 𝜆 being

the spectral radius of the operator 𝐴∗𝐴, 𝜃
𝑘
∈ [0, 1).

3.2. Asymptotic Convergence of the Inertial Algorithm. In
this subsection, we establish the asymptotic convergence of
Algorithm 4.

Lemma 5 (Opial [16]). Let 𝐻 be a Hilbert space and let {𝑥𝑘}
be a sequence in𝐻 such that there exists a nonempty set 𝑆 ⊂ 𝐻

satisfying

(1) for every 𝑥∗, lim
𝑘
‖𝑥
𝑘
− 𝑥
∗
‖ exists,

(2) any weak cluster point of the sequence {𝑥𝑘} belongs to 𝑆.
Then, there exists 𝑧 ∈ 𝑆 such that {𝑥𝑘}weakly converges
to 𝑧.

Theorem 6. Given a bounded linear operator 𝐴 : 𝐻
1
→ 𝐻
2
,

let 𝑈 : 𝐻
1

→ 𝐻
1
be a quasi-nonexpansive operator with

nonempty Fix(𝑈) = 𝐶 and let 𝑇 : 𝐻
2

→ 𝐻
2
be a quasi-

nonexpansive operator with nonempty Fix(𝑇) = 𝑄. Assume
that 𝑈 − 𝐼 and 𝑇 − 𝐼 are demiclosed at 0. If Γ ̸= 0, then any
sequence {𝑥𝑘} generated by Algorithm 4 weakly converges to a
split common fixed point, provided that we choose 𝜃

𝑘
satisfying

𝜃
𝑘
∈ [0, 𝜃

𝑘
] with 𝜃

𝑘
:= min{𝜃, 1/(𝑘‖𝑥𝑘 − 𝑥

𝑘−1
‖)

2

}, 𝜃 ∈ [0, 1).
𝛾 ∈ (0, 1/(𝜆𝜂)) and 𝛼

𝑘
∈ (𝛿, 1 − 𝛿) for a small enough 𝛿 > 0.

Proof. Taking 𝑧 ∈ Γ, and using (2) in Lemma 2, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
(1 − 𝛼

𝑘
) 𝑢 (𝑦

𝑘
) + 𝛼
𝑘
𝑈(𝑢 (𝑦

𝑘
)) − 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 (𝑦
𝑘
) − 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝛼
𝑘
(1 − 𝛼

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(13)

On the other hand, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 (𝑦
𝑘
) − 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
+ 𝛾𝜂𝐴

∗
(𝑇 − 𝐼) (𝐴𝑦

𝑘
) − 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
2
𝜂
2󵄩󵄩
󵄩
󵄩
󵄩
𝐴
∗
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾𝜂 ⟨𝑦
𝑘
− 𝑧, 𝐴

∗
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)⟩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜆𝛾
2
𝜂
2󵄩󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾𝜂 ⟨𝐴𝑦
𝑘
− 𝐴𝑧, (𝑇 − 𝐼) (𝐴𝑦

𝑘
)⟩ ,

(14)

that is,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢(𝑦
𝑘
) − 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜆𝛾
2
𝜂
2󵄩󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝛾𝜂 ⟨𝐴𝑦
𝑘
− 𝐴𝑧, (𝑇 − 𝐼) (𝐴𝑦

𝑘
)⟩ .

(15)

Now, by setting 𝜐 := 2𝛾𝜂⟨𝐴𝑦
𝑘
− 𝐴𝑧, (𝑇 − 𝐼)(𝐴𝑦

𝑘
)⟩ and using

(1) of Lemma 2, we obtain

𝜐 = 2𝛾𝜂 ⟨𝐴𝑦
𝑘
− 𝐴𝑧, (𝑇 − 𝐼) (𝐴𝑦

𝑘
)⟩

= 2𝛾𝜂 ⟨𝐴𝑦
𝑘
− 𝐴𝑧 + (𝑇 − 𝐼) (𝐴𝑦

𝑘
)

− (𝑇 − 𝐼) (𝐴𝑦
𝑘
) , (𝑇 − 𝐼) (𝐴𝑦

𝑘
)⟩

= 2𝛾𝜂 (⟨𝑇 (𝐴𝑦
𝑘
) − 𝐴𝑧, (𝑇 − 𝐼) (𝐴𝑦

𝑘
)⟩

−

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤ 2𝛾𝜂 (

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤ − 𝛾𝜂

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(16)

Combining the key inequality above with (15) yields
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘+1

− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝛾𝜂 (1 − 𝜆𝛾𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝛼
𝑘
(1 − 𝛼

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(17)

Define the auxiliary real sequence 𝜑
𝑘

:= (1/2)‖𝑥
𝑘
− 𝑧‖

2

.
Therefore, from (17), we have

𝜑
𝑘+1

≤

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

1

2

𝛾𝜂 (1 − 𝜆𝛾𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

1

2

𝛼
𝑘
(1 − 𝛼

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(18)

By deducing, we have
1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
+ 𝜃
𝑘
(𝑥
𝑘
− 𝑥
𝑘−1

) − 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜃
𝑘
⟨𝑥
𝑘
− 𝑧, 𝑥

𝑘
− 𝑥
𝑘−1

⟩

+

𝜃
2

𝑘

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

= 𝜑
𝑘
+ 𝜃
𝑘
⟨𝑥
𝑘
− 𝑧, 𝑥

𝑘
− 𝑥
𝑘−1

⟩

+

𝜃
2

𝑘

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

.

(19)

It is easy to check that 𝜑
𝑘
= 𝜑
𝑘−1

+ ⟨𝑥
𝑘
− 𝑧, 𝑥

𝑘
− 𝑥
𝑘−1

⟩ −

(1/2)‖𝑥
𝑘
− 𝑥
𝑘−1

‖

2

.
Hence,

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘
− 𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝜑
𝑘
+ 𝜃
𝑘
(𝜑
𝑘
− 𝜑
𝑘−1

)

+

𝜃
𝑘
+ 𝜃
2

𝑘

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

.

(20)
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Putting (20) into (18), we get

𝜑
𝑘+1

≤ 𝜑
𝑘
+ 𝜃
𝑘
(𝜑
𝑘
− 𝜑
𝑘−1

)

+

𝜃
𝑘
+ 𝜃
2

𝑘

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

−

1

2

𝛾𝜂 (1 − 𝜆𝛾𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

1

2

𝛼
𝑘
(1 − 𝛼

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(21)

Since 𝛾 ∈ (0, 1/(𝜆𝜂)), according to 𝜃
2

𝑘
≤ 𝜃
𝑘
, 𝛼
𝑘
∈ (0, 1) and

(21), we derive

𝜑
𝑘+1

≤ 𝜑
𝑘
+ 𝜃
𝑘
(𝜑
𝑘
− 𝜑
𝑘−1

) + 𝜃
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

. (22)

Evidently,
+∞

∑

𝑘=1

𝜃
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

< ∞, (23)

due to 𝜃
𝑘
‖𝑥
𝑘
− 𝑥
𝑘−1

‖

2

≤ 1/𝑘
2. Let 𝛿

𝑘
:= 𝜃
𝑘
‖𝑥
𝑘
− 𝑥
𝑘−1

‖

2

in Lemma 3. We deduce that the sequence {‖𝑥
𝑘
− 𝑧‖} is

convergent (hence, {𝑥𝑘} is bounded). By (23) and Lemma 3,
we obtain ∑

+∞

𝑘=1
[‖𝑥
𝑘
− 𝑧‖

2

− ‖𝑥
𝑘−1

− 𝑧‖

2

]
+
< ∞. By reason of

(21), we have
1

2

𝛾𝜂 (1 − 𝜆𝛾𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜑
𝑘
− 𝜑
𝑘+1

+ 𝜃
𝑘
(𝜑
𝑘
− 𝜑
𝑘−1

)

+ 𝜃
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

,

1

2

𝛼
𝑘
(1 − 𝛼

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜑
𝑘
− 𝜑
𝑘+1

+ 𝜃
𝑘
(𝜑
𝑘
− 𝜑
𝑘−1

)

+ 𝜃
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

.

(24)

Hence,
+∞

∑

𝑘=1

1

2

𝛾𝜂 (1 − 𝜆𝛾𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

< ∞,

+∞

∑

𝑘=1

1

2

𝛼
𝑘
(1 − 𝛼

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

< ∞.

(25)

By 𝛾 ∈ (0, 1/(𝜆𝜂)) and the assumption on 𝛼
𝑘
, we get

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼) (𝐴𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

󳨀→ 0, (26)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑢 (𝑦

𝑘
)) − 𝑢 (𝑦

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

󳨀→ 0. (27)

Denoting by 𝑥
∗ a weak-cluster point {𝑥

𝑘
}, let {𝑥

𝑘𝜎
} be a

subsequence of {𝑥𝑘}. Obviously,

𝑤 − lim
𝜎

𝑦
𝑘𝜎

= 𝑤 − lim
𝜎

𝑥
𝑘𝜎

= 𝑥
∗
. (28)

Then, from (26) and the demiclosedness of 𝑇 − 𝐼 at 0, we
obtain

𝑇 (𝐴𝑥
∗
) = 𝐴𝑥

∗
, (29)

it follows that 𝐴𝑥∗ ∈ 𝑄.

Now, by setting 𝑢
𝑘
= 𝑦
𝑘
+ 𝛾𝜂𝐴

∗
(𝑇 − 𝐼)(𝐴𝑦

𝑘
), it follows

that 𝑤 − lim
𝜎
𝑢
𝑘𝜎

= 𝑥
∗. By the demiclosedness of 𝑈 − 𝐼 at 0,

from (27), we have

𝑈(𝑥
∗
) = 𝑥
∗
. (30)

Hence, 𝑥∗ ∈ 𝐶, and therefore 𝑥∗ ∈ Γ.
Since there is no more than one weak-cluster point, the

weak convergence of the whole sequence {𝑥
𝑘
} follows by

applying Lemma 5 with 𝑆 = Γ.

Remark 7. Since the current value of ‖𝑥𝑘 − 𝑥
𝑘−1

‖ is known
before choosing the parameter 𝜃

𝑘
, then 𝜃

𝑘
is well-defined in

Theorem 6. In fact, from the process of proof for Theorem 6,
we can get the following assert: the convergence result of
Theorem 6 always holds provided that we take 𝜃

𝑘
∈ [0, 𝜃],

𝜃 ∈ [0, 1), for all 𝑘 ≥ 0, with
+∞

∑

𝑘=1

𝜃
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
𝑘−1󵄩󵄩

󵄩
󵄩
󵄩

2

< ∞. (31)

To conclude, we have proposed an algorithm for solving
the SCFP in the wide class of quasi-nonexpansive operators
and proved its convergence in general Hilbert spaces. Next,
we will improve the algorithm to assure the strong conver-
gence in infinite Hilbert spaces.
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