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We intend to establish some results on the data dependence of fixed points of certain contractive-like operators for the multistep
and CR iterative processes in a Banach space setting. One of our results generalizes the corresponding results of Soltuz and Grosan
(2008) and Chugh and Kumar (2011).

1. Introduction

Throughout this paper, N denotes the set of all nonnegative
integers. Let𝑋 be a Banach space, 𝐸 ⊂ 𝑋 a nonempty closed,
convex subset of𝑋, and𝑇 a self-map on𝐸. Suppose that𝐹

𝑇
:=

{𝑝 ∈ 𝑋 : 𝑝 = 𝑇𝑝} is the set of all fixed points of 𝑇. Iterative
schemes abound in the literature of fixed point theory for
which the fixed points of operators have been approximated
over the years by many authors.

It is well known that the Picard iteration procedure [1] is
defined by

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 ∈ N.

(1)

Let {𝛼
𝑛
}
∞

𝑛=0
, {𝛽
𝑛
}
∞

𝑛=0
, {𝛾
𝑛
}
∞

𝑛=0
and {𝛽𝑖

𝑛
}
∞

𝑛=0
, 𝑖 = 1, 𝑘 − 2, 𝑘 ≥ 2 be

the real sequences in [0, 1) satisfying certain conditions.
The Mann iterative scheme [2] is defined by

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(2)

If 𝛼
𝑛
= 𝜆 (constant) in (2), then the resulting iteration will be

called Krasnoselkij iteration procedure [3].

A sequence {𝑥
𝑛
}
∞

𝑛=0
, defined by

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(3)

is commonly known as the Ishikawa iterative method [4].
The Noor iterative procedure [5] is defined by

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(4)

In 2004, Rhoades and Soltuz [6] introduced a multistep
iterative process as follows:

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
1

𝑛
,

𝑦
𝑖

𝑛
= (1 − 𝛽

𝑖

𝑛
) 𝑥
𝑛
+ 𝛽
𝑖

𝑛
𝑇𝑦
𝑖+1

𝑛
,

𝑦
𝑘−1

𝑛
= (1 − 𝛽

𝑘−1

𝑛
) 𝑥
𝑛
+ 𝛽
𝑘−1

𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(5)
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The iteration processes (2), (3), and (4) can be viewed as the
special cases of the iteration procedure (5).

Recently, Chugh et al. introduced a CR iterative scheme
in [7] as follows:

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(6)

Now we mention some important contractive type oper-
ators.

Any mapping 𝑇 is called a Kannan mapping, see [8], if
there exists 𝑏 ∈ (0, 1/2) such that, for all 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑏 (‖𝑥 − 𝑇𝑥‖ +

󵄩󵄩󵄩󵄩𝑦 − 𝑇𝑦
󵄩󵄩󵄩󵄩) . (7)

Similar mapping is called a Chatterjea mapping, see [9],
if there exists 𝑐 ∈ (0, 1/2) such that, for all 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑐 (

󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦 − 𝑇𝑥
󵄩󵄩󵄩󵄩) . (8)

In [10] Zamfirescu collected these classes of operators and
proved an important result which states that an operator 𝑇 :

𝑋 → 𝑋 satisfies condition Z (Zamfirescu condition) if and
only if there exist the real numbers 𝑎, 𝑏, and 𝑐 satisfying 0 <

𝑎 < 1, 0 < 𝑏, and 𝑐 < 1/2 such that, for each pair 𝑥, 𝑦 ∈ 𝑋,
at least one of the following conditions is true:

(z
1
) ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝑎‖𝑥 − 𝑦‖,

(z
2
) ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝑏(‖𝑥 − 𝑇𝑥‖ + ‖𝑦 − 𝑇𝑦‖),

(z
3
) ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝑐(‖𝑥 − 𝑇𝑦‖ + ‖𝑦 − 𝑇𝑥‖).

Then 𝑇 has a unique fixed point 𝑝 and the Picard iteration
{𝑥
𝑛
}
∞

𝑛=0
defined by (1) converges to 𝑝, for any 𝑥

0
∈ 𝑋.

It is well known, see [11], that the conditions (z
1
), (z
2
), and

(z
3
) are independent.
Let 𝑥, 𝑦 ∈ 𝑋. Since 𝑇 satisfies condition Z, at least one

of the conditions from (z
1
), (z
2
), and (z

3
) is satisfied. Then 𝑇

satisfies the inequalities
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤ 𝛿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 2𝛿 ‖𝑥 − 𝑇𝑥‖ , (9)
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤ 𝛿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 2𝛿
󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 , (10)

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛿 := max{𝑎, 𝑏/(1 − 𝑏), 𝑐/(1 − 𝑐)}, 𝛿 ∈

[0, 1), and it was shown that this class of operators is wider
than the class of Zamfirescu operators; see [12]. Anymapping
satisfying condition (9) or (10) is called a quasi-contractive
operator.

Osilike and Udomene [13] extended the previous defini-
tion by considering an operator satisfying the condition that
there exist 𝐿 ≥ 0 and 𝛿 ∈ [0, 1) such that, for all 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝛿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝐿 ‖𝑥 − 𝑇𝑥‖ . (11)

Thereafter, Imoru and Olatinwo [14] further generalized and
extended the previous definition as follows: an operator 𝑇 is

called contractive-like operator if there exist a constant 𝛿 ∈

[0, 1) and a strictly increasing and continuous function 𝜑 :

[0,∞) → [0,∞) with 𝜑(0) = 0, such that, for each 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝛿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝜑 (‖𝑥 − 𝑇𝑥‖) . (12)

Remark 1 (see [15]). A map satisfying (12) need not have a
fixed point. However, using (12) it is obvious that if 𝑇 has a
fixed point, then it is unique.

It is important to know whether an iterative scheme
converges to fixed points of its associatedmap. In this context,
there are numerous works dealing with the convergence of
various iterative schemes in the literature, such as [6, 10, 12,
16–27].

As shown by Soltuz and Grosan [26, Theorem 3.1], in a
real Banach space 𝑋, the Ishikawa iteration {𝑥

𝑛
}
∞

𝑛=0
given by

(3) converges to the fixed point of 𝑇, where 𝑇 : 𝐸 → 𝐸 is a
mapping satisfying condition (12).

It is known from [28, Corollary 2] that there is equiva-
lence between convergence of iterative procedures (3), (5) and
that of some other well-known iterative procedures for the
class of operators satisfying (12).

Hussain et al. [29] introduced a Kirk-CR iterative scheme
and proved the convergence of this iteration for the class of
operators satisfying (12).

Remark 2. Putting 𝑠 = 𝑡 = 𝑖 = 1 in [29, Theorem
2.5], convergence of the CR iteration to a fixed point of
contractive-like operators satisfying (12) can be obtained
easily.

2. Preliminaries

Definition 3 (see [30]). Let 𝑋 be a Banach space and 𝑇, 𝑇̃ :

𝑋 → 𝑋 two operators. We say that 𝑇̃ is an approximate
operator of 𝑇 if for all 𝑥 ∈ 𝑋 and for a fixed 𝜀 > 0 we have

󵄩󵄩󵄩󵄩󵄩
𝑇𝑥 − 𝑇̃𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 𝜀. (13)

Suppose that there exists a certain fixed point iteration
that converges to some fixed point 𝑝 ∈ 𝐹

𝑇
and 𝑇̃ has a fixed

point 𝑞 ∈ 𝐹
𝑇̃
which can be computed by certain method. If

it cannot compute fixed point 𝑝 of 𝑇 due to various results,
then approximate operator 𝑇̃ can be used. One can find some
of works done under this title in the following list [15, 24–
26, 31].

In this paper, we prove the data dependence results
for the multistep and CR iterative procedures utilizing the
contractive-like operators satisfying (12).

The following lemma will be useful to prove the main
results of this work.

Lemma 4 (see [26]). Let {𝑎
𝑛
}
∞

𝑛=0
be a nonnegative sequence

for which one assumes there exists 𝑛
0
(𝜖) ∈ N, such that for all

𝑛 ≥ 𝑛
0
one has satisfied the inequality

𝑎
𝑛+1

≤ (1 − 𝜇
𝑛
) 𝑎
𝑛
+ 𝜇
𝑛
𝜂
𝑛
, (14)
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where 𝜇
𝑛
∈ (0, 1), for all 𝑛 ∈ N, ∑∞

𝑛=0
𝜇
𝑛
= ∞ and 𝜂

𝑛
≥ 0, for

all 𝑛 ∈ N. Then the following holds:

0 ≤ lim
𝑛→∞

sup 𝑎
𝑛
≤ lim
𝑛→∞

sup 𝜂
𝑛
. (15)

3. Main Results

For simplicity we use the following notation through this
section.

For any iterative process, {𝑥
𝑛
}
∞

𝑛=0
and {𝑢

𝑛
}
∞

𝑛=0
denote

iterative sequences associated to 𝑇 and 𝑇̃, respectively.

Theorem 5. Let 𝑇 : 𝐸 → 𝐸 be a map satisfying (12)
with 𝐹

𝑇
̸= 0, and let 𝑇̃ be an approximate operator of 𝑇 as

in Definition 3. Let {𝑥
𝑛
}
∞

𝑛=0
, {𝑢
𝑛
}
∞

𝑛=0
be two iterative sequences

defined by the multistep iteration (5) and with real sequences
{𝛽
𝑖

𝑛
}
∞

𝑛=0
⊂ [0, 1), 𝑖 = 1, 𝑘 − 1, and {𝛼

𝑛
}
∞

𝑛=0
⊂ [0, 1) satisfying

∑𝛼
𝑛
= ∞. If 𝑝 = 𝑇𝑝 and 𝑞 = 𝑇̃𝑞, then one has

󵄩󵄩󵄩󵄩𝑝 − 𝑞
󵄩󵄩󵄩󵄩 ≤

𝑘𝜀

1 − 𝛿
. (16)

Proof. For a given 𝑥
0
∈ 𝐸 and 𝑢

0
∈ 𝐸 we consider the

following multistep iteration for 𝑇 and 𝑇̃:

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
1

𝑛
, 𝑛 ∈ N,

𝑦
𝑖

𝑛
= (1 − 𝛽

𝑖

𝑛
) 𝑥
𝑛
+ 𝛽
𝑖

𝑛
𝑇𝑦
𝑖+1

𝑛
, 𝑖 = 1, 𝑘 − 2,

𝑦
𝑘−1

𝑛
= (1 − 𝛽

𝑘−1

𝑛
) 𝑥
𝑛
+ 𝛽
𝑘−1

𝑛
𝑇𝑥
𝑛
, 𝑘 ≥ 2,

𝑢
0
∈ 𝐸,

𝑢
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑇̃V1
𝑛
, 𝑛 ∈ N,

V𝑖
𝑛
= (1 − 𝛽

𝑖

𝑛
) 𝑢
𝑛
+ 𝛽
𝑖

𝑛
𝑇̃V𝑖+1
𝑛
, 𝑖 = 1, 𝑘 − 2,

V𝑘−1
𝑛

= (1 − 𝛽
𝑘−1

𝑛
) 𝑢
𝑛
+ 𝛽
𝑘−1

𝑛
𝑇̃𝑢
𝑛
, 𝑘 ≥ 2.

(17)

Then from (17), we get

𝑥
𝑛+1

− 𝑢
𝑛+1

= (1 − 𝛼
𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝛼
𝑛
(𝑇𝑦
1

𝑛
− 𝑇̃V1
𝑛
) . (18)

Thus, we have the following estimates by using (18) and (12):

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝛼
𝑛
(𝑇𝑦
1

𝑛
− 𝑇̃V1
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
1

𝑛
− 𝑇̃V1
𝑛

󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
1

𝑛
− 𝑇V1
𝑛
+ 𝑇V1
𝑛
− 𝑇̃V1
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
1

𝑛
− 𝑇V1
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇V1
𝑛
− 𝑇̃V1
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝛿
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− V1
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝜀,

(19)
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− V1
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

1

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝛽
1

𝑛
(𝑇𝑦
2

𝑛
− 𝑇̃V2
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
2

𝑛
− 𝑇̃V2
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
2

𝑛
− 𝑇V2
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇V2
𝑛
− 𝑇̃V2
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
1

𝑛
𝛿
󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− V2
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
1

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑇𝑦
2

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛽
1

𝑛
𝜀,

(20)

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− V2
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

2

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝛽
2

𝑛
(𝑇𝑦
3

𝑛
− 𝑇̃V3
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
2

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
3

𝑛
− 𝑇̃V3
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
2

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
3

𝑛
− 𝑇V3
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇V3
𝑛
− 𝑇̃V3
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
2

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
2

𝑛
𝛿
󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− V3
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
2

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑇𝑦
3

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛽
2

𝑛
𝜀,

(21)

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− V3
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

3

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝛽
3

𝑛
(𝑇𝑦
4

𝑛
− 𝑇̃V4
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
3

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
3

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
4

𝑛
− 𝑇̃V4
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
3

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
3

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
4

𝑛
− 𝑇V4
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
3

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇V4
𝑛
− 𝑇̃V4
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
3

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
3

𝑛
𝛿
󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− V4
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
3

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑇𝑦
4

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛽
3

𝑛
𝜀.

(22)

Combining (19), (20), (21), and (22) we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩

≤ [(1 − 𝛼
𝑛
) + 𝛼
𝑛
𝛿 (1 − 𝛽

1

𝑛
) + 𝛼
𝑛
𝛿
2
𝛽
1

𝑛
(1 − 𝛽

2

𝑛
)

+𝛼
𝑛
𝛿
3
𝛽
1

𝑛
𝛽
2

𝑛
(1 − 𝛽

3

𝑛
)]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝛿
4
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− V4
𝑛

󵄩󵄩󵄩󵄩󵄩
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+ 𝛼
𝑛
𝛿
3
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑇𝑦
4

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝛿
3
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛
𝜀

+ 𝛼
𝑛
𝛿
2
𝛽
1

𝑛
𝛽
2

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑇𝑦
3

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝛿
2
𝛽
1

𝑛
𝛽
2

𝑛
𝜀

+ 𝛼
𝑛
𝛿𝛽
1

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑇𝑦
2

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝛿𝛽
1

𝑛
𝜀

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝜀.

(23)

Thus, inductively, we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩

≤ [(1 − 𝛼
𝑛
) + 𝛿𝛼

𝑛
(1 − 𝛽

1

𝑛
) + 𝛿
2
𝛼
𝑛
𝛽
1

𝑛
(1 − 𝛽

2

𝑛
)

+ 𝛿
3
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
(1 − 𝛽

3

𝑛
) + 𝛿
4
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛
(1 − 𝛽

4

𝑛
)

+ ⋅ ⋅ ⋅ + 𝛿
𝑘−2

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−3

𝑛
(1 − 𝛽

𝑘−2

𝑛
)]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝛿
𝑘−1

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− V𝑘−1
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛿
𝑘−2

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑇𝑦
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ ⋅ ⋅ ⋅ + 𝛿
3
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑇𝑦
4

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛿
2
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑇𝑦
3

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛿𝛼
𝑛
𝛽
1

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑇𝑦
2

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛿
𝑘−2

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝜀 + ⋅ ⋅ ⋅ + 𝛿

2
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝜀

+ 𝛿𝛼
𝑛
𝛽
1

𝑛
𝜀 + 𝛼
𝑛
𝜀.

(24)

Using now (17) and (12), we get
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− V𝑘−1
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

𝑘−1

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝛽
𝑘−1

𝑛
(𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑘−1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑘−1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
𝑘−1

𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩

+ 𝛽
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑢
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑘−1

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽
𝑘−1

𝑛
𝛿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑘−1

𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩) + 𝛽

𝑘−1

𝑛
𝜀.

(25)

Substituting (25) in (24) we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩

≤ [(1 − 𝛼
𝑛
) + 𝛿𝛼

𝑛
(1 − 𝛽

1

𝑛
) + 𝛿
2
𝛼
𝑛
𝛽
1

𝑛
(1 − 𝛽

2

𝑛
)

+ 𝛿
3
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
(1 − 𝛽

3

𝑛
) + 𝛿
4
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛
(1 − 𝛽

4

𝑛
)

+ ⋅ ⋅ ⋅ + 𝛿
𝑘−2

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−3

𝑛
(1 − 𝛽

𝑘−2

𝑛
)

+ 𝛿
𝑘−1

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
(1 − 𝛽

𝑘−1

𝑛
)

+𝛿
𝑘
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝛽
𝑘−1

𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝛿
𝑘−1

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝛽
𝑘−1

𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩)

+ 𝛿
𝑘−2

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑇𝑦
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ ⋅ ⋅ ⋅ + 𝛿
3
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝛽
3

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑇𝑦
4

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛿
2
𝛼
𝑛
𝛽
1

n𝛽
2

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑇𝑦
3

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛿𝛼
𝑛
𝛽
1

𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑇𝑦
2

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛿
𝑘−1

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝛽
𝑘−1

𝑛
𝜀

+ 𝛿
𝑘−2

𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
⋅ ⋅ ⋅ 𝛽
𝑘−2

𝑛
𝜀

+ ⋅ ⋅ ⋅ + 𝛿
2
𝛼
𝑛
𝛽
1

𝑛
𝛽
2

𝑛
𝜀 + 𝛿𝛼

𝑛
𝛽
1

𝑛
𝜀 + 𝛼
𝑛
𝜀.

(26)

If this inequality is rearranged using {𝛽𝑖
𝑛
}
∞

𝑛=0
⊂ [0, 1), 𝛿𝑖+1 <

𝛿
𝑖 for each 𝑖 = 1, 𝑘 − 1, then we get the following inequality

as follows:
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛 (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛 (1 − 𝛿)

𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩)

1 − 𝛿

+ 𝛼
𝑛 (1 − 𝛿)

×

{𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑇𝑦
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
) + ⋅ ⋅ ⋅ + 𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝑘𝜀}

1 − 𝛿
.

(27)

Denote
𝑎
𝑛
:=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ,

𝜇
𝑛
:= 𝛼
𝑛 (1 − 𝛿) ∈ (0.1) ,

𝜂
𝑛
:=

𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩)

1 − 𝛿

+

𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑇𝑦
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
) + ⋅ ⋅ ⋅ + 𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝑘𝜀

1 − 𝛿
.

(28)

From [26, Theorem 3.1] and [28, Corollary 2] we have
lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0. Since 𝑇 satisfies condition (12), and

𝑝 ∈ 𝐹
𝑇
, that is, 𝑇𝑝 = 𝑝, it follows from (12) that

0 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑝 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛿
󵄩󵄩󵄩󵄩𝑝 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜑 (
󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩)

= (1 + 𝛿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(29)
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Considering 𝛽𝑖
𝑛
∈ [0, 1), for all 𝑛 ∈ N, 𝑖 = 1, 𝑘 − 1, and using

(12) and (5) we have

0 ≤
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝 + 𝑝 − 𝑇𝑦

1

𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇𝑝 − 𝑇𝑦

1

𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝛿

󵄩󵄩󵄩󵄩󵄩
𝑝 − 𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝜑 (

󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑝
󵄩󵄩󵄩󵄩)

= (1 + 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

= (1 + 𝛿)
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

1

𝑛
) 𝑦
2

𝑛
+ 𝛽
1

𝑛
𝑇𝑦
2

𝑛
− 𝑝 (1 − 𝛽

1

𝑛
+ 𝛽
1

𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 + 𝛿) {(1 − 𝛽
1

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝛽
1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
2

𝑛
− 𝑇𝑝

󵄩󵄩󵄩󵄩󵄩
}

≤ (1 + 𝛿) {(1 − 𝛽
1

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝛽
1

𝑛
𝛿
󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
}

= (1 + 𝛿) [1 − 𝛽
1

𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

= (1 + 𝛿) [1 − 𝛽
1

𝑛
(1 − 𝛿)]

×
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

2

𝑛
) 𝑦
3

𝑛
+ 𝛽
2

𝑛
𝑇𝑦
3

𝑛
− 𝑝 (1 − 𝛽

2

𝑛
+ 𝛽
2

𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 + 𝛿) [1 − 𝛽
1

𝑛
(1 − 𝛿)]

× {(1 − 𝛽
2

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
3

𝑛
− 𝑇𝑝

󵄩󵄩󵄩󵄩󵄩
}

≤ (1 + 𝛿) [1 − 𝛽
1

𝑛
(1 − 𝛿)]

× [1 − 𝛽
2

𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

...

≤ (1 + 𝛿) [1 − 𝛽
1

𝑛
(1 − 𝛿)]

⋅ ⋅ ⋅ [1 − 𝛽
𝑘−2

𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 + 𝛿) [1 − 𝛽
1

𝑛
(1 − 𝛿)]

⋅ ⋅ ⋅ [1 − 𝛽
𝑘−1

𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 + 𝛿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(30)

It is easy to see from (30) that this result is also valid for ‖𝑇𝑦2
𝑛
−

𝑦
2

𝑛
‖, . . . , ‖𝑇𝑦

𝑘−1

𝑛
− 𝑦
𝑘−1

𝑛
‖.

Making use of the fact that 𝜑 is a continuousmap we have

lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) = lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑇𝑦
1

𝑛

󵄩󵄩󵄩󵄩󵄩
)

= ⋅ ⋅ ⋅ = lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑇𝑦
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0.

(31)

Hence an application of Lemma 4 to (27) leads to

󵄩󵄩󵄩󵄩𝑝 − 𝑞
󵄩󵄩󵄩󵄩 ≤

𝑘𝜀

1 − 𝛿
. (32)

Now we prove result on data dependence for the CR
iterative procedure.

Theorem 6. Let 𝑇 : 𝐸 → 𝐸 be a map satisfying (12)
with 𝐹

𝑇
̸= 0, and let 𝑇̃ be an approximate operator of 𝑇 as

in Definition 3. Let {𝑥
𝑛
}
∞

𝑛=0
, {𝑢
𝑛
}
∞

𝑛=0
be two iterative sequences

defined by the CR iteration (6) and with real sequences {𝛽
𝑛
}
∞

𝑛=0
,

{𝜇
𝑛
}
∞

𝑛=0
,{𝛼
𝑛
}
∞

𝑛=0
⊂ [0, 1] satisfying (i)1/2 ≤ 𝛼

𝑛
, for all 𝑛 ∈ N,

and (ii)∑∞
𝑛=0

𝛼
𝑛
= ∞. If 𝑝 = 𝑇𝑝 and 𝑞 = 𝑇̃𝑞, then one has

󵄩󵄩󵄩󵄩𝑝 − 𝑞
󵄩󵄩󵄩󵄩 ≤

5𝜀

1 − 𝛿
. (33)

Proof. For a given 𝑥
0
∈ 𝐸 and 𝑢

0
∈ 𝐸 we consider the

following iteration for 𝑇 and 𝑇̃:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑧
𝑛
= (1 − 𝜇

𝑛
) 𝑥
𝑛
+ 𝜇
𝑛
𝑇𝑥
𝑛
,

𝑢
𝑛+1

= (1 − 𝛼
𝑛
) V
𝑛
+ 𝛼
𝑛
𝑇̃V
𝑛
,

V
𝑛
= (1 − 𝛽

𝑛
) 𝑇̃𝑢
𝑛
+ 𝛽
𝑛
𝑇̃𝑤
𝑛
,

𝑤
𝑛
= (1 − 𝜇

𝑛
) 𝑢
𝑛
+ 𝜇
𝑛
𝑇̃𝑢
𝑛
.

(34)

Then from (34) we have

𝑥
𝑛+1

− 𝑢
𝑛+1

= (1 − 𝛼
𝑛
) (𝑦
𝑛
− V
𝑛
) + 𝛼
𝑛
(𝑇𝑦
𝑛
− 𝑇̃V
𝑛
) ,

𝑦
𝑛
− V
𝑛
= (1 − 𝛽

𝑛
) (𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛
) + 𝛽
𝑛
(𝑇𝑧
𝑛
− 𝑇̃𝑤
𝑛
) ,

𝑧
𝑛
− 𝑤
𝑛
= (1 − 𝜇

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝜇
𝑛
(𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛
) .

(35)

Thus, by considering (35), it follows from (6) and (12) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛼

𝑛
) (𝑦
𝑛
− V
𝑛
) + 𝛼
𝑛
(𝑇𝑦
𝑛
− 𝑇̃V
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
𝑛
− 𝑇̃V
𝑛

󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
𝑛
− 𝑇V
𝑛
+ 𝑇V
𝑛
− 𝑇̃V
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑇V𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇V
𝑛
− 𝑇̃V
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝛿
󵄩󵄩󵄩󵄩𝑦𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩) + 𝛼𝑛𝜀
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= [1 − 𝛼
𝑛 (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − V
𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩) + 𝛼𝑛𝜀,

(36)
󵄩󵄩󵄩󵄩𝑦𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

𝑛
) (𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛
) + 𝛽
𝑛
(𝑇𝑧
𝑛
− 𝑇̃𝑤
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑧
𝑛
− 𝑇̃𝑤
𝑛

󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑇𝑥
𝑛
− 𝑇𝑢
𝑛
+ 𝑇𝑢
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑧
𝑛
− 𝑇𝑤
𝑛
+ 𝑇𝑤
𝑛
− 𝑇̃𝑤
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
) {
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇𝑢
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
}

+ 𝛽
𝑛
{
󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑇𝑤𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇𝑤
𝑛
− 𝑇̃𝑤
𝑛

󵄩󵄩󵄩󵄩󵄩
}

≤ (1 − 𝛽
𝑛
) 𝛿

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 + 𝛽𝑛𝛿

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩)

+ (1 − 𝛽
𝑛
) 𝜀 + 𝛽

𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑇𝑤𝑛
󵄩󵄩󵄩󵄩) + 𝛽𝑛𝜀,

(37)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝜇

𝑛
) (𝑥
𝑛
− 𝑢
𝑛
) + 𝜇
𝑛
(𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜇
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝜇𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑥
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

= (1 − 𝜇
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝜇𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇𝑥
𝑛
− 𝑇𝑢
𝑛
+ 𝑇𝑢
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜇
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝜇
𝑛
{
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇𝑢
𝑛
− 𝑇̃𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
}

≤ (1 − 𝜇
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝜇
𝑛
{𝛿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) + 𝜀}

= [1 − 𝜇
𝑛 (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+ 𝜇
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩) + 𝜇𝑛𝜀.

(38)

Combining (36), (37), and (38) we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛 (1 − 𝛿)]

× [(1 − 𝛽
𝑛
) 𝛿 + 𝛽

𝑛
𝛿 [1 − 𝜇

𝑛 (1 − 𝛿)]]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ [1 − 𝛼
𝑛 (1 − 𝛿)]

× {[1 − 𝛽
𝑛
(1 − 𝛿𝜇

𝑛
)] 𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩) + 𝛽𝑛𝜇𝑛𝛿𝜀

+ (1 − 𝛽
𝑛
) 𝜀 + 𝛽

𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩) + 𝛽𝑛𝜀}

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩) + 𝛼𝑛𝜀.

(39)

Itmay be noted that for {𝛽
𝑛
}
∞

𝑛=0
, {𝜇
𝑛
}
∞

𝑛=0
⊂ [0, 1), and𝛿 ∈ [0, 1)

the following inequalities are always true:

1 − 𝜇
𝑛 (1 − 𝛿) < 1, 𝛽

𝑛
𝜇
𝑛
𝛿 < 1, 𝛿𝜇

𝑛
< 𝛿. (40)

Using now the inequality 𝛿𝜇
𝑛
< 𝛿 we get

1 − 𝛽
𝑛
(1 − 𝛿𝜇

𝑛
) < 1 − 𝛽

𝑛 (1 − 𝛿) < 1. (41)

Therefore an application of (40) and (41) to (39) gives us
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛 (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+ [1 − 𝛼
𝑛 (1 − 𝛿)]

× {𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) + 𝜀 + 𝜀 + 𝜑 (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛

󵄩󵄩󵄩󵄩)}

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩) + 𝛼𝑛𝜀.

(42)

Now, by the condition (i) 1/2 ≤ 𝛼
𝑛
, for all 𝑛 ∈ N we have

1 − 𝛼
𝑛
≤ 𝛼
𝑛
. (43)

Utilizing (43) in (42) we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛 (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛 (1 − 𝛿)

{2𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) + 𝜑 (
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩)}

1 − 𝛿

+ 𝛼
𝑛 (1 − 𝛿)

{2𝜑 (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛

󵄩󵄩󵄩󵄩) + 5𝜀}

1 − 𝛿
.

(44)

Denote
𝑎
𝑛
:=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ,

𝜇
𝑛
:= 𝛼
𝑛 (1 − 𝛿) ∈ (0, 1) ,

𝜂
𝑛
:=
{2𝜑 (

󵄩󵄩󵄩󵄩𝑥𝑛−𝑇𝑥𝑛
󵄩󵄩󵄩󵄩)+𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛−𝑇𝑦𝑛
󵄩󵄩󵄩󵄩)+2𝜑 (

󵄩󵄩󵄩󵄩𝑧𝑛−𝑇𝑧𝑛
󵄩󵄩󵄩󵄩)+5𝜀}

1 − 𝛿
.

(45)

From Remark 2, we have lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0. Since 𝑇

satisfies condition (12), and 𝑝 ∈ 𝐹
𝑇
, that is, 𝑇𝑝 = 𝑝, using

similar arguments as in the proof of Theorem 5, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩 = 0.

(46)

Making use of the fact that 𝜑 is a continuous map we have

lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) = lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩)

= lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛

󵄩󵄩󵄩󵄩) = 0.

(47)

Hence an application of Lemma 4 to (44) leads to

󵄩󵄩󵄩󵄩𝑝 − 𝑞
󵄩󵄩󵄩󵄩 ≤

5𝜀

1 − 𝛿
. (48)
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Corollary 7. Since the Mann (2), Ishikawa (3), and Noor (4)
iterative processes are special cases of the multistep iterative
scheme (5), the data dependence results of these iterative
processes can be obtained similarly.
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