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We present a new extension of Serrin’s lower semicontinuity theorem. We prove that the variational functional jo fle,u,u')dx

defined on W, (Q2) is lower semicontinuous with respect to the strong convergence in L}, _, under the assumptions that the integrand
f(x,s,&) has the locally absolute continuity about the variable x.

1. Introduction and Main Results

The aim of this paper is to give some new sufficient conditions
for lower semicontinuity with respect to the strong conver-

gence in L%O . for integral functionals

F(u,Q) = J-Q f (x,u(x),Du(x))dx, 1)

where Q is an open set of R", u ¢ Wlf)’cl(Q), defined on
WEH(Q) = {u: u € L'(K),Du € L'(K), for all K cc Q} [1],
Du denotes the generalized gradient of u, and the integrand
f(x,58) : Qx RxR" — [0,00) satisfies the following

condition:

(H1) f iscontinuousin QO x Rx R", and f(x,s, &) is convex
in & € R” for any fixed (x,s) € Q x R.

The integral functional F is called lower semicontinuous
in W, (Q) with respect to the strong convergence in L, if,

for every u,,,u € W'l(l)’cl(()), such that u,, — wuin L], then
l,ilnlL%EF (th,, Q) = F (u, Q). (2)

It is well known that condition (H1) is not sufficient for
lower semicontinuity of the integral F in (1) (see book [2]).
In addition to (HI), Serrin [3] proposed some sufficient
conditions for lower semicontinuity of the integral F. One of
the most known conclusions is the following one.

Theorem 1 (see [3]). In addition to (HI), if f satisfies one of the
following conditions:

(@) f(x,s,8) — +oo when |E] — +oo, forall (x,s) €
QO X R,

(b) f(x,s,8) is strictly convex in & € R" for all (x,s) €
Q xR,

(c) the derivatives f,(x,s,8), fi(x,5,8), and fr.(x,s,§)
exist and are continuous for all (x,s,&) € QO x Rx R".

then F(u, Q) is lower semicontinuous in Wlicl (Q) with respect
to the strong convergence in L%O .

Conditions (a), (b), and (c) quoted above are clearly inde-
pendent, in the sense that we can find a continuous function
f satistying just one of them but none of the others. Many
scholars have weakened the conditions of integrand f and
generalized Theorem 1, such as Ambrosio et al. [4], Cicco and
Leoni [5], Fonseca and Leoni [6, 7]. In particular Gori et al.
[8, 9] proved the following theorems.

Theorem 2 (see [8, 9]). Let one assume that f satisfies (HI)
and that, for every compact set K C Q0 x R x R", there exists a
constant L = L(K) such that

'ff (155 f) - fz (%355, 5)| < L|x1 - le’

V(x1,88), (%58 €K,

3)



and, for every compact set K; € Q x R, there exists a constant
L, = L(K,) such that

|fe (5,8 <Ly, V(xs) ek, VEeR,

|f£ (x,5,81) — fe (x>5>€2)| <Lf§ -&l (4)

V(x,s) € K, VE&,& eR

Then F(u, Q) is lower semicontinuous in WIL’CI(Q) with respect
to the strong convergence in L%OC.

Theorem 3 (see [8, 9]). Let f satisfy (HI) such that, for every
open set Q' x H x K cc Q x R x R, there exists a constant
L = Lgypyx such that, for every x,,x, € Q', s € H, and
Eek,

|f(x1,5,f) _f(xz’s’f)l < L|X1 _le' (5)

Then the functional F(u,Q) is lower semicontinuous in
WiL(Q) with respect to the L

loc loc COnvergence.

Condition (5) means that f is locally Lipschitz contin-
uous with respect to x, that is, the Lipschitz constant is
not uniform for (s,&) € R x R”. This is an improvement
of (c) of Serrin’s Theorem 1. Then a question arises, that
is whether there are weaker enough conditions more than
locally Lipschitz continuity. In this paper, we consider abso-
lute continuity. Obviously, absolute continuity is weaker than
Lipschitz continuity. The following theorems show that, in
addition to (HI), the locally absolute continuity on f about
x is sufficient for the lower semicontinuity of the variational
functional.

Theorem 4. Let Q) C Rbean openset; f(x,s,E) : QXRXR —
[0, +00) satisfies the following conditions:

(H1) f(x,s,£&) is continuous on Q x Rx R, and, f(x,s,8) is
convex in& € R forall (x,s) € QX R;

(H2) fe(x,s, &) is continuous on Q) X R x R, and for every
compact set of Q x R x R, fe(x,s,§) is absolutely
continuous about x;

(H3) for every compact set K; € QXR, there exists a constant
L, = L\(K,), such that

|fE|gL1, V(x,s) € K,, VE€R, (6)
|f§ (x>5>51)_f5 (x)5>fz)| SLIlEl —€2|> )
V(x,s) € Ky, V&,& eR

Then the functional F(u,Q) = jQ flx, u(x), u' (x))dx is
lower semicontinuous in Wli’Cl(Q) with respect to the strong

convergence in L}OC(Q).

Theorem 5. Let Q) C R be an open set; f(x,5,8) : QXRxR —
[0, +00) satisfies (HI) and the following condition:

(H4) for every compact set of QX RxXR, f(x, s, &) is absolutely
continuous about x.
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Then the functional F(u,Q) is lower semicontinuous in
VVhI)’CI(Q) with respect to the strong convergence in L}OC(Q).

2. Preliminaries

In this section, we will collect some basic facts which will be
used in the proofs of Theorems 4 and 5.

It is well know that a real function f: [a,b] — Ris called
an absolutely continuous function on [a,b], if, for all ¢ >
0, 38 > O, such that for any finite disjoint open interval
{(a;, b))}, on [a,b], when Y_ (b, — a;) < &, we have

317 (0) - f(a)] < ®

Obviously, if f(x) is Lipschitz continuous on [a,b], f(x) is
absolutely continuous on [a, b].

One of the main tool, used in the present paper, in order
to prove the lower semicontinuity of the functional F(u, (2)
in (1), is an approximation result for convex functions due to
De Giorgi [10].

Lemma 6 (see [10]). Let U € R? be an open set and f : U x
R" — [0,+00) a continuous function with compact support
on U, such that, for every t € U, f(t,-) is convex on R". Then

there exists a sequence {,}72, € C2°(R"), 1,20, [, n,dp =

1, and supp(#,) < B(0,1), such that, if we let

a,(t) = JRn f(tp) [+ Dng(p) + (1, (p) . p)} dp,
)
b, (t) = — Lﬂ f(t:p) Vi (p) dp,

one has

£; 68 = max {0.a, ) + (b, ).5)}, jeN. (o)

satisfying the following results:

(i) for every j € N,f; : U x R" — [0,+00) is a
continuous function with compact support on U such
that, for all t € U, fi(t,-) is convex on R". Moreover,

for all (t,&) € UxR", fi(t,€) < f,,(t,§), and

ft.8= ?S—Efj .8, (11)

(ii) for every j € N, there exists a constant M; > 0, such
that, for all (t,£) € U x R",
|f; 8] < M; (1+ &), (12)

and, for all t € U, and &,&, € R";

|f; (66 - f; (66)| < M;[E, - &]. (13)



Abstract and Applied Analysis

3. Proof of Theorem 4

We will divide four steps to complete the proof of Theorem 4.

Step 1. Let {3;(x, s)};cny be a sequence of smooth functions
satisfying

(1) there exists a compact set Q' x H cc Q x R, such that
Bi(x,s) = 0,for all (x,s) € (Q\ Q') x (R\ H);

(2) for every i € N, B;(x,s) < B;.1(x,s),for all (x,s) €
Q' x H;

(3) lim; _, , Bi(x,s) = 1,for all (x,s) € Q' x H.

Let

fi(x%,88) =B (x8) f(x,s8), i=12,.... (14)

Itis clear that, for each i € N, f; satisfies all the hypotheses
in Theorem 4 and also vanishes if (x, s) is outside Q' x H; thus

= f (%58, Y(xs&eQ xHXR,

fi(x,S,E) < fi+1 (x,S,E) < f(x,s,f),
VieN, V(xs&eQ xHxR

lim f; (x,5,8)

(15)

By Levi’s Lemma, we have

lim J-Ql fi(x,5,8)dx = J-Q, f(x,s,8)dx. (16)

i— +00

Thus, without loss of generality, we can assume that there
exists an open set Q' x H cc Q x R, such that

fs8) =0 V(xsEe(Q\Q)x(R\H) xR (17)
Let u,,,u € W'hl)’cl(Q) such that u,, — wuin LIOC(Q). We

will prove that
liminf F (u,,, Q) > F (u, Q). (18)

m— +00

Without loss of generality, we can assume that

liminf F (u,,, Q) = lim F (4, Q) < +00.  (19)

m— +00

By (17), we have F(u,,Q) = F(u,, Q') and F(u,Q) =
F(u, Q'); thus we will only prove the following inequality:

lim F(u,,Q')>F(uQ"). (20)

m— +00

Step 2. Let , € C2°(R) be a mollifier, and, for € > 0, define
Ve (X) = 1 * u(x)
(21)
- | nelx=puG)dy xelal,

3
where [Q,] 2 {x € Q : dist(x,0Q) > €}. We have
@)= [| =) un)dy]
= L [ (x = )] u (y) dy )

Jo =D WOy =[], 0,

x € Q,.

In the following, we denote the derivative of u, by u.. When
u e W1 1(Q) we know u e LlOC(Q). By the properties of
convolutlon, we know u € C;°(Q) and

(Q) ase — 0, (23)
That is, for all & > 0, Je > 0, such that

! ! L
u,—u in loc

Ly |u£ - u" dx < 6. (24)

Now we estimate the difference for the integrand values
on different points:

f(x, um,u:n) - f(x,u, u')
=f (x,um,u:n) - f(x, um,ué)

(25)
+f (x, um,ué) -f (x, u, ué)
+ f(x,u,ué) B f(x,u,u').
By the convexity of f(x, s, &) with respect to &, we have
F (0t 17,) = (36t 1)
> fr (x, um,ué) . (u:n - u;)
= fr (x, um,u;) - fe (x, u, ui) ! (26)
+ fe (x, u, u;) . (u’ - ué)
+ [fg (x, u, u;) ~ fe (x,um,ué)] .
By (25) and (26), we have
LI [f (x, um,u:n) - f(x, u,u’)] dx
> L, [fg (x, um,ué) u - fe (x, u, ué) . u'] dx
+L, [ff X, Uy Ul (u —u)]dx
(27)
+ L, [fg X, U, u — fe (x, )] ‘u dx
+L, [f X, U, u f(x,u,us)]dx
+Ll[f X, U, U f(xu,u)]dx.



Step 3. Now, we estimate the right side of inequality (27).
By (6) and (24), we have

[ s Comnd) (o )

>-L, J 'u' - ué' dx > -L,6.
o

(28)

Thus

e—0

lim j [fg (x, u,u ) (u’ - ué)] dx = 0. (29)

Since f(x,s,§) and fz(x,s,§) are continuous functions, they
are bounded functions on compact subset. By Lebesgue
Dominated Convergence Theorem, we obtain

lim J'Q, [ff(x,u,u;)—fg(xu u)] uldx =0

m— +00 (30)
lim J [f (x, um,u;) -f (x, u,u )] dx = 0.
Q/

m— +00

Now, we will prove

lim J , [f (x, u, ui_) - f(x, u,u')] dx > 0. (31)

e—0 Jo

By Lemma 6, there exists a sequence of nonnegative contin-
uous functions fj(x, s,€) (j € N), such that fj(x, 5, &) is

convex on &, and, for all (x,s,&) € Q' x HxR,
688 < fn (5.9,
f (x) S, g) = ilellgf] (x’ S, 5) > (32)

'fj (x’5’51)_fj(x)5>fz)| < M;[§ - &,

By Levi’s Lemma, we obtain

lim J fj(x,u,u;)dxzj f(x,u,ué)dx,
Q/

e . (33)

jEl};loo J-Ql f (x, u, u') dx = JQI f (x, u, u') dx.
In order to prove (31), we only need to prove

shinoJ’ [fj(xu, ) f](xuu)]dxzo, i)

VjeN.
By (33), we have
[, 1f (o) = £ (ow')
’ (33)

> —M]-J' |ufg - u'|dx > —MJB.
o

Thus (31) holds.
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Step 4. Now, we need to prove

i [ UGt

(36)
—fe (x, u, ué) -u'] dx = 0.
Let
g(x,5) = fr (x, s, u:_) , xeQ, (37)
G, (x) 2 Ju(mjx) glxs)ds, xeq (38)

By triangle inequality and (7), we have
|f§ (J’i’ S ’/‘; ()’i)) - fe (xi’s’ ué (xz))|
< |f£ (J’i)s’ ”2 (J’i)) - fe (xi’s’ ”2 (J’z))'

Hfe s 00) - fe (s ()] G9)

< |fe (s (5)) = fr (35,0 (30)|
u, (7;) - u, (xi)| .
By (39), condition (H2) and u; € C;°(Q), we know that
g(x,s) is a locally absolute continuous function about x.
So g(x, s) is almost everywhere differentiable; that is, dg/0x

exists almost everywhere. Taking derivatives in both sides of
(38), we obtain

G, (x)=g(xuy,) u, —gbu) u
Uy, () (40)
+ J a—gds, ae xeQ.
ux) OX
Because G,,(x) vanishes outside Q', we obtain
J G, (x)dx = 0. (41)
Q/
By (40), we have
[ e Gt -, = i (1) o ]
Ql
*) 9g dg
= |- 9 dsd —|dxds,
| jQ’ Ju(x) 0x o JDm ox ras
where
D,, = {(x, s) € Q' x H | min {u,, (x),u (x)}
(43)
< s(x) < max{u,, (x),u(x)}}.
We note
ID,| =IJ J " dsdx
Q' Ju
(44)

SJ |um—u|dx—>0 (m — +00).
Q,
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By Fubini’s Theorem, we have

J dxds = j dsj
QxR H ar

Since g(x,s) is absolutely continuous about x, dg/dx is
integrable and absolutely integrable with respect to x; that is,

X

By (17) and (46), we obtain

JQXR

Because of the absolute continuity of integral, we have

99
ox

dg
—~ | dx. 45
ax‘ . (45)

dg

dx < +00. (46)
o0x

dg

dxds < +00. (47)
ox

. g ~
i JDm 29l dxds = . (48)

By (42), we obtain

lim
m— +00

L, [fE (x, um’ué) u

—fe (x, u, u:_) ~u'] dxl =0.

(49)

Thus we just proved (36). By (29)-(31) and (36), we have

. ! !
mlinJrloo J;;r [f (x, um,um) -f (x, U, u )] dx>0. (50)
Thus we deduce that the functional F(u, Q) is lower semicon-
tinuous in W'lz)cl (Q) with respect to the strong convergence in

L},.(Q). We complete the proof.

4. Proof of Theorem 5

In order to prove Theorem 5, we will verify all the conditions
in Theorem 4 under the assumptions in Theorem 5. Now we
will divide three steps to complete the proof of Theorem 5.

Step 1. Similar to the first step of the proof in Theorem 4,
without loss of generality, we assume that the integrand
f(x,s,&) vanishes outside a compact subset of Q x R. Thus
we assume that there exists an open set Q' x H cc Q x R,
such that

fs8=0, V(xsEe(Q\Q)x((R\H)xR. (51)

Let u,,,u € W21 (Q), such that u,, — wuin L} (Q); we
need to prove
lim F (um, Q’) >F (u, Q’) . (52)

m — +00

By Lemma 6, there exists a function sequence { f 4 (x,s,8)} jeN
such that, for all j € N, f; is a continuous function on

Q' x Hcc QxR,forall(x,s) € Q' x H, fj(x, s, +) is convex
on R, and, for all (x,s,&) € Q' x HxR,

fi (68,8 < fi (x,8,8), (53)
f (X’ S, E) = jggf] (x) S5 E) > (54)

|fj (x,5,&) - fj (x,s,fz)' < M; € - &),

(x,5) € Q' x H, .8 eR

(55)

Let 5, € C°(R) (0 < & < 1) be a mollifier, and define the
fj,s = fj * 1],; that is,

fie(x,8,8) = L fi(x5.8 - 2)n, (2)dz. (56)
By (55), we have
'fj,s (xa S, E) - f] (X, S, €)|
< jR |fJ (sz’E_Z) _fj (X,S,E)

1 (2) dz (57)
SJ Mj|z|-11£(z)dz§Mj-s.
Supp 77
Choose € = g = l/ij — 0. By (57), we have
1
'fj)sj (x58) - f; (x,s,f)' <Me; = 7 (58)

So

fj(x)s)f)_ % < fj,ej (x,s,f)—%

(59)
< f; (%58 < f(xs8).
By (53), (54), and Levi’s Lemma, we have
lim J f]- (x, u(x),u (x)) dx
i—+oo Joy!
(60)

= L, f (x,u (x),u' (x)) dx.
Let
F (u, Q') = JQ, [fj)sj (x,u (x),u’ (x)) - %] dx.  (61)
By (59)-(61), we have
lim F, (u, Q') = F(u, Q')

j— +oo

(62)
= L, f (x, u(x),u’ (x)) dx.

Obviously,

F. (u, Q’) <F (u, Q’),

; VjeN. (63)



Thus

SllpF ( Q’) =F(u,Q’). (64)
JEN

Therefore F(u, Q'), being the supremum of the family of
functionals {Fj(u, N} jen will be lower semicontinuous if

every {F j(u, Q")} is lower semicontinuous.

Step 2. In order to prove that, for all j € N,F;(u, Q') is
lower semicontinuous in Wli)’Cl(Q) with respect to the strong
convergence in L;,_(Q), we will prove that, for all j € N,
the integrand f])sj (x, u(x),u'(x)) satisfies all conditions of
Theorem 4. Obviously, for all j € N, fj,sj satisfies condition

(H1).
For all (x,s) € Q' x H and &,,&, € R, by (55), we have

i, (65.8) = fe, (5:5.6))]
< JR 'fj (.88 —2) = f; (%88 - Z)| 1, (2)dz (65)

< M; (&) - &, (2)dz < M; [§, - &
SUpp e
Thus
f .,
S| <My (66)

So fj,ej satisfies (6) in condition (H3) of Theorem 4.

Now, we will prove that f i, satisfies (7) in condition (H3)
of Theorem 4. By supp(nsj) € B(0,¢;), we have

afj,ej _ af] (xr S)f - Z)
3% (x,5,8) = L ' (z)dz
afj (x,8,&-2)
= | = . 67
J.R =~ e, (2) dz (67)
ore, (2)
= JRfj(x,s,f—z) dz.
By (55) and (67), we have
f . f :
= (x)s)gl) = (X’S’Ez)
77s (z )
<[ 1 msti-) fy (st -2
R
or, (2)
SM}'|51—€2|'J‘ 1d —LM|E1 |
R
(68)
where
one, (2)

L= | || (69)
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is a constant depending on ¢;. Thus fj’s]_ satisfies (7). So we
proved that f i satisfies condition (H3).

Step 3. Next we will prove that f Je; satisfies condition (H2).

By condition (H4), for every compact subset Q' x H x
K, f(x,s,£) is absolutely continuous about x, that is, for all
& > 0, 36 > 0 such that for any finite disjoint open interval
{(x y)¥, in Q',when Y. (y; — x;) < 8, we have

Z |f (3i:5,8) = f (x1,5.8)| < &. (70)
i=1

By Step 1, {fj(x, s, E)}jGN satisfies (53)-(55) and the following
property:

fi(x 5,6 = Pslqasxj {0, a, (x,s) + b, (x,5) f} , JEN, (71)

where

on, (p)
aq(xa5)=JRf(x,s,P)[an(P)w ?)p dp,

9]
b, (x,8) = - L f(xs,p) WSP(P) dp,

(72)

And, for all (x,s,&) € Q' x Hx R, fy € C°(R) (g € N) are

mollifiers satistying 77, > 0, 'fR 1,(p)dp = 1, and supp(n,) <
B(0,1), for all j € N. By (71), without of loss generality, we
assume that there exists [ € {1,..., j}, such that

fj (xa S, g) =q (X, S) + bl (X, S) : E’ (73)

where g, b are given by (72). By (70), we obtain
n
2 la (yios) =y (x;,5)]
i=1

<[ 17 Onsp) - £ Gosp)

ony (P)H (74)
2 +[p M g
[ m(p) ‘P % P
)
ssoj [2111(/))+ p’g—(p)udp
B(0,1) P
S (2 + Al) * 80,
where
A = J o, (P) (75)
B(0,1) ap
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is a constant. Similar to the above proof, we have

3 10 O s) — by (30 9)|

i=1

PSAZ'SO.

Thus

2115 (0n5.8) = £ (5 .8)|

< Zn: |az (yi>5) —a (xi>5)|

(77)

# 3 1h 00s) - ()] 18

<(2+A)g+AgK, =(2+A;+AK,))¢g 2o0.

Since § belongs to a compact set, then K; = sup{[§]} < +oo.
Choose ¢, sufficient small, so that o is small enough. Thus
f j(x, s, &) is absolutely continuous about x for all (x, s, &) € A,
which is a compact subset of Q) X R x R. By (56) and (77), we
have

> [f, (058 i, (558)

<.

SU'J Ne (2)dz =0
B(0e;)

lf](yPSE 2) - f; (% 5,6~ 2)| - 1., (2) dz

nM:

(78)
By (67) and (78), we obtain
. f5 fe
Z 5 0es) = 5 (s ﬂ
< 118 (2)
< [ X15,0ust-2)- £ (s -2)| iz
i=1
0
N O'J ’78,-(2:) dz = Ljo,
R
(79)

where L; are constants depending on ¢; and given by (69)
(for all j € N). By (79), for every compact subset on Q x
R xR, afj’ej /0& is absolutely continuous about x. Thus fj,ej
satisfies condition (H2).

Now, we have proved fjs_ satisfies all conditions in
]

Theorem 4, so Fj(u, Q') is lower semicontinuous in VVlicl(Q)

with respect to the strong convergence in Lj (). Thus
F(u, Q) has the same lower semicontinuity. This completes
the proof of Theorem 5.
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