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We obtain generalizations of Hartley-Hilbert and Fourier-Hilbert transforms on classes of distributions having compact support.
Furthermore, we also study extension to certain space of Lebesgue integrable Boehmians. New characterizing theorems are also
established in an adequate performance.

1. Introduction

The classical theory of integral transforms and their applica-
tions have been studied for a long time, and they are applied
in many fields of mathematics. Later, after [1], the extension
of classical integral transformations to generalized functions
has comprised an active area of research. Several integral
transforms are extended to various spaces of generalized
functions, distributions [2], ultradistributions, Boehmians
[3, 4], and many more.

In recent years, many papers are devoted to those integral
transforms which permit a factorization identity (of Fourier
convolution type) such as Fourier transform, Mellin trans-
form, Laplace transform, and few others that have a lot of
attraction, the reason that the theory of integral transforms,
generally speaking, became an object of study of integral
transforms of Boehmian spaces.

The Hartley transform is an integral transformation that
maps a real-valued temporal or spacial function into a real-
valued frequency function via the kernel

𝑘 (𝜐; 𝑥) = cas (𝜐𝑥) . (1)

This novel symmetrical formulation of the traditional Fourier
transform, attributed to Hartley 1942, leads to a parallelism
that exists between a function of the original variable and that
of its transform. In any case, signal and systems analysis and

design in the frequency domain using the Hartley transform
may be deserving an increased awareness due to the necessity
of the existence of a fast algorithm that can substantially
lessen the computational burden when compared to the
classical complex-valued fast Fourier transform.

The Hartley transform of a function 𝑓(𝑥) can be
expressed as either [5]

A (𝜐) =:
1

√2𝜋
∫

∞

−∞

𝑓 (𝑥) cas (𝜐𝑥) 𝑑𝑥 (2)

or

A (𝑓) =: ∫
∞

−∞

𝑓 (𝑥) cas (2𝜋𝑓𝑥) 𝑑𝑥, (3)

where the angular or radian frequency variable 𝜐 is related to
the frequency variable 𝑓 by 𝜐 = 2𝜋𝑓 and

A (𝑓) = √2𝜋A (2𝜋𝑓) = √2𝜋A (𝜐) . (4)

The integral kernel, known as cosine-sine function, is
defined as

cas (𝜐𝑥) = cos 𝜐𝑥 + sin (𝜐𝑥) . (5)

Inverse Hartley transform may be defined as either

𝑓 (𝑥) =
1

√2𝜋
∫

∞

−∞

A (𝜐) cas (𝜐𝑥) 𝑑𝜐 (6)
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or

𝑓 (𝑥) = ∫

∞

−∞

A (𝑓) cas (2𝜋𝑓𝑥) 𝑑𝑓. (7)

The theory of convolutions of integral transforms has been
developed for a long time and is applied in many fields of
mathematics. Historically, the convolution product [2]

(𝑓 ∗ 𝑔) (𝑦) = ∫

∞

−∞

𝑓 (𝑥) 𝑔 (𝑥 − 𝑦) 𝑑𝑦 (8)

has a relationship with the Fourier transform with the factor-
ization property

F (𝑓 ∗ 𝑔) (𝑦) = F (𝑓) (𝑦)F (𝑔) (𝑦) . (9)

Themore complicated convolution theorem of Hartley trans-
forms, compared to that of Fourier transforms, is that

A (𝑓 ∗ 𝑔) (𝑦) =
1

2
G (A𝑓 ×A𝑔) (𝑦) , (10)

where

G (𝑓 ∗ 𝑔) (𝑦) = 𝑓 (𝑦) 𝑔 (𝑦) + 𝑓 (𝑦) 𝑔 (−𝑦)

+ 𝑓 (𝑦) 𝑔 (𝑦) − 𝑓 (−𝑦) 𝑔 (−𝑦) .

(11)

Some properties of Hartley transforms can be listed as
follows.

(i) Linearity: if 𝑓 and 𝑔 are real functions then

A (𝑎𝑓 + 𝑏𝑔) (𝑦) = 𝑎A (𝑓) (𝑦) + 𝑏A (𝑔) (𝑦) , 𝑎, 𝑏 ∈R.

(12)

(ii) Scaling: if 𝑓 is a real function then

∫

∞

−∞

𝑓 (𝛼𝜍) cas (2𝜋𝑦𝜍) 𝑑𝜍 = 1
𝑎
(A𝑓) (

𝑦

𝑎
) . (13)

2. Distributional Hartley-Hilbert Transform
of Compact Support

TheHilbert transform via the Hartley transform is defined by
[6, 7]

B
A
(𝑦) = −

1

𝜋
∫

∞

0

(A
𝑜

(𝑥) cos (𝑥𝑦) +A𝑒 (𝑥) sin (𝑥𝑦)) 𝑑𝑥,

(14)

where

A
𝑜

(𝑥) =
A (𝑥) −A (−𝑥)

2
,

A
𝑒

(𝑥) =
A (𝑥) +A (−𝑥)

2

(15)

are the respective odd and even components of (2).
We denote, C(R), C(R) = C, the space of smooth

functions and C󸀠(R), C󸀠(R) = C󸀠, the strong dual of C of
distributions of compact support overR.

Following is the convolution theorem ofBA.

Theorem 1 (ConvolutionTheorem). Let 𝑓 and 𝑔 ∈ C then

B
A
(𝑓 ∗ 𝑔) (𝑦) = ∫

∞

0

(𝑘
1
(𝑥) cos (𝑦𝑥) + 𝑘

2
(𝑥) sin (𝑦𝑥)) 𝑑𝑥,

(16)

where

𝑘
1
(𝑥) = A

𝑒

𝑓 (𝑥)A
𝑜

𝑔 (𝑥) +A
𝑜

𝑓 (𝑥)A
𝑒

𝑔 (𝑥) ,

𝑘
2
(𝑥) = A

𝑒

𝑓 (𝑥)A
𝑒

𝑔 (𝑥) −A
𝑜

𝑓 (𝑥)A
𝑜

𝑔 (𝑥) .

(17)

Proof. To prove this theorem it is sufficient to establish that

𝑘
1
(𝑥) = A

𝑜

(𝑓 ∗ 𝑔) (𝑥) , (18)

𝑘
2
(𝑥) = A

𝑒

(𝑓 ∗ 𝑔) (𝑥) . (19)

Therefore, we have

A
𝑜

(𝑓 ∗ 𝑔) (𝑥)

= ∫

∞

−∞

(∫

∞

−∞

𝑓 (𝛾) 𝑔 (𝑦 − 𝛾) 𝑑𝑟) cas (𝑥𝑦) 𝑑𝑦

= ∫

∞

−∞

𝑓 (𝛾)∫

∞

−∞

𝑔 (𝑦 − 𝛾) cas (𝑥𝑦) 𝑑𝑦𝑑𝑟.

(20)

The substitution 𝑦 − 𝛾 = 𝑧 and using of (1) together with
Fubini theorem imply

A
𝑜

(𝑓 ∗ 𝑔) (𝑥)

= ∫

∞

−∞

𝑓 (𝛾)∫

∞

−∞

𝑔 (𝑧) (cos (𝑥 (𝑧 + 𝛾)) + sin (𝑥 (𝑧 + 𝛾)))

× 𝑑𝑧𝑑𝑟.

(21)

By invoking the formulae

cos (𝑥 (𝑧 + 𝛾)) = cos (𝑥𝑧) cos (𝑥𝛾) − sin (𝑥𝑧) sin (𝑥𝛾) ,

sin (𝑥 (𝑧 + 𝛾)) = sin (𝑥𝑧) cos (𝑥𝛾) + cos (𝑥𝑧) sin (𝑥𝛾) ,
(22)

then (18) follows from simple computation. Proof of (19) has
a similar technique.Hence, the theorem is completely proved.

It is of interest to know that cos(𝑥𝑦) and sin(𝑥𝑦) are
members of C and, therefore, A𝑜𝑓,A𝑒𝑓 ∈ C󸀠. This leads to
the following statement.

Definition 2. Let 𝑓 ∈ C󸀠 then we define the distributional
Hartley-Hilbert transform of 𝑓 as

̂
B

A
𝑓 (𝑦) = ⟨A

𝑜

𝑓 (𝑥) , cos (𝑥𝑦)⟩ + ⟨A𝑒𝑓 (𝑥) , sin (𝑥𝑦)⟩ .
(23)

The extended transform̂BA
𝑓 is clearly well defined for

each 𝑓 ∈ C󸀠.
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Theorem 3. The distributional Hartley-Hilbert transform
̂
BA
𝑓 is linear.

Proof. Let 𝑓, 𝑔 ∈ C󸀠 then their components A𝑒𝑓,A𝑜𝑓,A𝑒𝑔,
A𝑜𝑔 ∈ C󸀠. Hence,
̂
B

A
(𝑓 + 𝑔) (𝑦) = ⟨A

𝑜

(𝑓 + 𝑔) (𝑥) , cos (𝑥𝑦)⟩

+ ⟨A
𝑒

(𝑓 + 𝑔) (𝑥) , sin (𝑥𝑦)⟩ .
(24)

By factoring and rearranging components we get that
̂
B

A
(𝑓 + 𝑔) (𝑦) =

̂
B

A
𝑓 (𝑦) +

̂
B

A
𝑔 (𝑦) . (25)

Furthermore,
̂
B

A
(𝑘𝑓) (𝑦) = ⟨𝑘A

𝑜

𝑓 (𝑥) , cos (𝑥𝑦)⟩

+ ⟨𝑘A
𝑒

𝑓 (𝑥) , sin (𝑥𝑦)⟩ .
(26)

Hence,
̂
B

A
(𝑘𝑓) (𝑦) = 𝑘

̂
B

A
𝑓 (𝑦) . (27)

This completes the proof of the theorem.

Theorem 4. Let 𝑓 ∈ C󸀠 then̂BA
𝑓 is a continuous mapping

onC󸀠.

Proof. Let𝑓
𝑛
, 𝑓 ∈ C󸀠, 𝑛 ∈N and𝑓

𝑛
→ 𝑓 as 𝑛 → ∞.Then,

̂
B

A
𝑓
𝑛
(𝑦) = ⟨A

𝑜

𝑓
𝑛
(𝑥) , cos (𝑥𝑦)⟩ + ⟨A𝑒𝑓

𝑛
(𝑥) , sin (𝑥𝑦)⟩

󳨀→ ⟨A
𝑜

𝑓 (𝑥) , cos (𝑥𝑦)⟩ + ⟨A𝑒𝑓 (𝑥) , sin (𝑥𝑦)⟩

=
̂
B

A
𝑓 (𝑦) as 𝑛 󳨀→ ∞.

(28)

Hence we have the following theorem.

Theorem 5. The mappinĝBA
𝑓 is one-to-one.

Proof. Let 𝑓, 𝑔 ∈ C󸀠 and that̂BA
𝑓 =
̂
BA
𝑔 then, using (23)

we get

⟨A
𝑜

𝑓 (𝑥) , cos𝑥𝑦⟩ + ⟨A𝑒𝑓 (𝑥) , sin𝑥𝑦⟩

= ⟨A
𝑜

𝑔 (𝑥) , cos𝑥𝑦⟩ + ⟨A𝑒𝑔 (𝑥) , sin𝑥𝑦⟩ .
(29)

Basic properties of inner product implies

⟨A
𝑜

𝑓 (𝑥) −A
𝑜

𝑔 (𝑥) , cos (𝑥𝑦)⟩

+ ⟨A
𝑒

𝑓 (𝑥) −A
𝑒

𝑔 (𝑥) , sin (𝑥𝑦)⟩ = 0.
(30)

Hence,

A
𝑜

𝑓 (𝑥) = A
𝑜

𝑔 (𝑥) , A
𝑒

𝑓 (𝑥) = A
𝑒

𝑔 (𝑥) . (31)

Therefore,
A𝑓 (𝑥) = A

𝑜

𝑓 (𝑥) +A
𝑒

𝑓 (𝑥)

= A
𝑜

𝑔 (𝑥) +A
𝑒

𝑔 (𝑥) = A𝑔 (𝑥)
(32)

for all 𝑥. This completes the proof of the theorem.

Theorem 6. Let 𝑓 ∈ C󸀠 then 𝑓 is analytic and

D
𝑘

𝑦

̂
B

A
𝑓 (𝑦) = ⟨A

𝑜

𝑓 (𝑥) ,D
𝑘

𝑦
cos (𝑥𝑦)⟩

+ ⟨A
𝑒

𝑓 (𝑥) ,D
𝑘

𝑦
sin (𝑥𝑦)⟩ .

(33)

Proof of this theorem is analogous to that of the previous
theorem and is thus avoided.

Denote by 𝛿 the dirac delta function then it is easy to see
that

A
𝑒

𝛿 (𝑦) = 1, A
𝑒

𝛿 (𝑦) = 0. (34)

3. Lebesgue Space of Boehmians for
Hartley-Hilbert Transforms

The original construction of Boehmians produce a concrete
space of generalized functions. Since the space of Boehmians
was introduced, many spaces of Boehmians were defined. In
references, we list selected papers introducing different spaces
of Boehmians. One of the main motivations for introducing
different spaces of Boehmians was the generalization of
integral transforms. The idea requires a proper choice of a
space of functions for which a given integral transform is
well defined, a choice of a class of delta sequences that is
transformed by that integral transform to a well-behaved
class of approximate identities, and finally a convolution
product that behaves well under the transform. If these
conditions are met, the transform has usually an extension
to the constructed space of Boehmians and the extension has
desirable properties. For general construction of Boehmians,
see [8–12].

LetD be the space of test functions of bounded support.
By delta sequence, we mean a subset of D of sequences (𝛿

𝑛
)

such that

∫

∞

−∞

𝛿
𝑛
(𝑥) 𝑑𝑥 = 1,

󵄩󵄩󵄩󵄩𝛿𝑛
󵄩󵄩󵄩󵄩 = ∫

∞

−∞

󵄨󵄨󵄨󵄨𝛿𝑛 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 <M, 0 <M ∈R,

lim
𝑛→∞

∫
|𝑥|>𝜀

󵄨󵄨󵄨󵄨𝛿𝑛 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 = 0 for each 𝜀 > 0,

(35)

where 𝜀(𝛿
𝑛
)(𝑥) = {𝑥 ∈R : 𝛿

𝑛
(𝑥) ̸= 0}.

The set of all such delta sequences is usually denoted asΔ.
Each element in Δ corresponds to the dirac delta function 𝛿,
for large values of 𝑛.

Proposition 7. Let (𝛿
𝑛
) ∈ Δ then

A
𝑒

𝛿
𝑛
(𝑦) = ∫

∞

−∞

𝛿
𝑛
(𝑥) cos (𝑥𝑦) 𝑑𝑥 󳨀→ 1 as 𝑛 󳨀→ ∞,

A
𝑜

𝛿
𝑛
(𝑦) = ∫

∞

−∞

𝛿
𝑛
(𝑥) sin (𝑥𝑦) 𝑑𝑥 󳨀→ 0 as 𝑛 󳨀→ ∞.

(36)

Let L1(R), L1(R) = L1, be the space of complex
valued Lebesgue integrable functions. From Proposition 7 we
establish the following theorem.



4 Abstract and Applied Analysis

Theorem 8. Let 𝑓 ∈ L1 then BA
(𝑓 ∗ 𝛿

𝑛
)(𝑦) → BA

𝑓(𝑦)

as 𝑛 → ∞.

Proof. For 𝑓 ∈L1, (𝛿
𝑛
) ∈ Δ, then using of (14) implies

B
A
(𝑓 ∗ 𝛿

𝑛
) (𝑦)

= ∫

∞

−∞

(A
𝑜

(𝑓 ∗ 𝛿
𝑛
) (𝑥) cos𝑥𝑦 +A𝑒 (𝑓 ∗ 𝛿

𝑛
) (𝑥) sin𝑥𝑦) 𝑑𝑥.

(37)

Since

(𝑓 ∗ 𝛿
𝑛
) (𝜁) = ∫

∞

−∞

𝑓 (𝑡) 𝛿
𝑛
(𝜁 − 𝑡) 𝑑𝑡 󳨀→ 𝑓 (𝜁) (38)

as 𝑛 → ∞, we see that

A
𝑜

(𝑓 ∗ 𝛿
𝑛
) (𝑥) = ∫

∞

−∞

(𝑓 ∗ 𝛿
𝑛
) (𝜁) sin𝑥𝜁𝑑𝜁

= ∫

∞

−∞

𝑓 (𝑡) ∫

∞

−∞

𝛿
𝑛
(𝜁 − 𝑡) sin (𝑥𝜁) 𝑑𝜁𝑑𝑡

󳨀→ ∫

∞

−∞

𝑓 (𝑡) sin (𝑥𝑡) 𝑑𝑡

= A
𝑜

(𝑓) (𝑥) .

(39)

Similarly,

A
𝑒

(𝑓 ∗ 𝛿
𝑛
) (𝑥) 󳨀→ A

𝑒

(𝑓) (𝑥) as 𝑛 󳨀→ ∞. (40)

Therefore, invoking the above equations in (37), we get
BA
(𝑓 ∗ 𝛿

𝑛
)(𝑦) → BA

𝑓(𝑦) as 𝑛 → ∞. Hence the
theorem.

Denote by 𝜌L1 the space of integrable Boehmians, then
𝜌L1 is a convolution algebra when multiplication by scalar,
addition, and convolution is defined as [9]

𝑘 [
𝑓
𝑛

𝛿
𝑛

] = [
𝑘𝑓
𝑛

𝛿
𝑛

] ,

[
𝑓
𝑛

𝛿
𝑛

] + [
𝑔
𝑛

𝛾
𝑛

] = [
𝑓
𝑛
∗ 𝛾
𝑛
+ 𝑔
𝑛
∗ 𝛿
𝑛

𝛿
𝑛
∗ 𝛾
𝑛

] ,

[
𝑓
𝑛

𝛿
𝑛

] ∗ [
𝑔
𝑛

𝛾
𝑛

] = [
𝑓
𝑛
∗ 𝑔
𝑛

𝛿
𝑛
∗ 𝛾
𝑛

] .

(41)

Each function 𝑓 ∈ L1 is identified with the Boehmian [𝑓 ∗
𝛿
𝑛
/𝛿
𝑛
]. Also, [𝑓

𝑛
/𝛿
𝑛
] ∗ 𝛿
𝑛
= 𝑓
𝑛
∈ L1, for every 𝑛 ∈ N.

Since [𝛿
𝑛
/𝛿
𝑛
] corresponds to Dirac delta distribution 𝛿, the

𝑘th-derivative of each 𝜌 ∈ 𝜌L1 is defined as

D
𝑘

𝜌 = 𝜌 ∗D
𝑘

𝛿. (42)

The integral of a Boehmian 𝜌 = [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 is defined as

[11]

∫

∞

−∞

𝜌 (𝑥) 𝑑𝑥 = ∫

∞

−∞

𝑓
1
(𝑥) 𝑑𝑥. (43)

It is of great interest to observe the following example.

Example 9. Every infinitely smooth function𝑓(𝑥) ∈L1 such
that D𝑘𝑓(𝑥) ∉ L1 is integrable as Boehmian but not inte-
grable as function.

The following has importance in the sense of analysis.

Theorem 10. Let [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , then the sequence

B
A
(𝑓
𝑛
) (𝑦)

= ∫

∞

−∞

(A
𝑜

𝑓
𝑛
(𝑥) cos (𝑥𝑦) +A𝑒𝑓

𝑛
(𝑥) sin (𝑥𝑦)) 𝑑𝑥

(44)

converges uniformly on each compact subsetK ofR.

Proof. By aid of theTheorem 8 and the concept of quotient of
sequences, we have,

B
A
(𝑓
𝑛
) (𝑦) =B

A
(𝑓
𝑛
∗
𝛿
𝑘

𝛿
𝑘

) (𝑦)

=B
A
(
𝑓
𝑛
∗ 𝛿
𝑘

𝛿
𝑘

) (𝑦)

=B
A
(
𝑓
𝑘

𝛿
𝑘

∗ 𝛿
𝑛
) (𝑦)

󳨀→B
A𝑓𝑘

𝛿
𝑘

(𝑦) as 𝑛 󳨀→ ∞,

(45)

where convergence ranges over compact subsets of R. The
theorem is completely proved.

Let [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , then by virtue ofTheorem 10 we define

the Hartley-Hilbert transform of the Lebesgue Boehmian
[𝑓
𝑛
/𝛿
𝑛
] as

̃
B

A
[
𝑓
𝑛

𝛿
𝑛

] = lim
𝑛→∞

B
A
𝑓
𝑛
. (46)

on compact subsets ofR.
The next objective is to establish that our definition is well

defined. Let [𝑓
𝑛
/𝛿
𝑛
] = [𝑔

𝑛
/𝛾
𝑛
] in 𝜌L1 , then

𝑓
𝑛
∗ 𝛾
𝑚
= 𝑔
𝑚
∗ 𝛿
𝑛
, for every 𝑚, 𝑛 ∈N. (47)

Hence, applying the Hartley-Hilbert transform to both sides
of the above equation and using the concept of quotients of
sequences imply

B
A
(𝑓
𝑛
∗ 𝛾
𝑚
) =B

A
(𝑔
𝑚
∗ 𝛿
𝑛
) =B

A
(𝑔
𝑛
∗ 𝛿
𝑚
) . (48)

Thus, in particular, for 𝑛 = 𝑚, and considering Theorem 3,
we get

lim
𝑛→∞

B
A
𝑓
𝑛
= lim
𝑛→∞

B
A
𝑔
𝑛
. (49)

Hence,

̃
B

A
[
𝑓
𝑛

𝛿
𝑛

] =
̃
B

A
[
𝑔
𝑛

𝛾
𝑛

] . (50)

Definition (46) is therefore well defined.

Theorem 11. The generalized transform̃BA is linear.
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Proof. Let 𝜌
1
= [𝑓
𝑛
/𝛿
𝑛
] and 𝜌

2
= [𝑔
𝑛
/𝛾
𝑛
] be arbitrary in 𝜌L1

and 𝛼 ∈ C then 𝜌
1
+𝜌
2
= [(𝑓
𝑛
∗𝛾
𝑛
+𝑔
𝑛
∗𝛿
𝑛
)/𝛿
𝑛
∗𝛾
𝑛
]. Hence,

employing (46) yields

̃
B

A
(𝜌
1
+ 𝜌
2
) = lim
𝑛→∞

(B
A
(𝑓
𝑛
∗ 𝛾
𝑛
) +B

A
(𝑔
𝑛
∗ 𝛿
𝑛
)) .

(51)

ByTheorem 8, we get

̃
B

A
(𝜌
1
+ 𝜌
2
) = lim
𝑛→∞

B
A
𝑓
𝑛
+ lim
𝑛→∞

B
A
𝑔
𝑛
. (52)

Hence,

̃
B

A
(𝜌
1
+ 𝜌
2
) =
̃
B

A
𝜌
1
+
̃
B

A
𝜌
2
. (53)

Also, for each complex number 𝛼, we have

̃
B

A
(𝛼𝜌
1
) =
̃
B

A
[
𝛼𝑓
𝑛

𝛿
𝑛

]

= 𝛼 lim
𝑛→∞

B
A
𝑓
𝑛

= 𝛼
̃
B

A
𝜌
1
.

(54)

Hence we have the following theorem.

Theorem 12. Let 𝜌 ∈ 𝜌L1 and (𝜖𝑛) ∈ Δ, then

̃
B

A
(𝜌 ∗ 𝜖

𝑛
) =
̃
B

A
𝜌 =
̃
B

A
(𝜖
𝑛
∗ 𝜌) . (55)

Proof. Let 𝜌 = [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , then

̃
BA
(𝜌 ∗ 𝜖

𝑛
) =
̃
BA
[𝑓
𝑛
∗

𝜖
𝑛
/𝛿
𝑛
] = lim

𝑛→∞
BA
(𝑓
𝑛
∗ 𝜖
𝑛
).

Hence,̃BA
(𝜌 ∗ 𝜖

𝑛
) = lim

𝑛→∞
BA
𝑓
𝑛
=
̃
BA
𝜌.

Similarly, we proceed for̃BA
𝜌 =
̃
BA
(𝜖
𝑛
∗ 𝜌).

This completes the theorem. The following theorem is
obvious.

Theorem 13. If̃BA
𝜌
1
= 0, then 𝜌

1
= 0.

Theorem14. TheHartley-Hilbert transform̃BA is continuous
with respect to the 𝛿-convergence.

Proof. Let 𝜌
𝑛

𝛿

󳨀→ 𝜌 in 𝜌L1 as 𝑛 → ∞, then we show that
̃
BA
𝜌
𝑛

𝛿

󳨀→
̃
BA
𝜌 as 𝑛 → ∞. Using ([11,Theorem2.6]), we find

𝑓
𝑛,𝑘
, 𝑓
𝑘
∈L1, (𝛿

𝑘
) ∈ Δ such that [𝑓

𝑛,𝑘
/𝛿
𝑘
] = 𝜌
𝑛
, [𝑓
𝑘
/𝛿
𝑘
] = 𝜌

and 𝑓
𝑛,𝑘
→ 𝑓
𝑘
as 𝑛 → ∞, 𝑘 ∈N.

Applying the Hartley-Hilbert transform for both sides
implies BA

𝑓
𝑛,𝑘
→ BA

𝑓
𝑘
in the space of continuous

functions. Therefore, considering limits we get

̃
B

A
[
𝑓
𝑛,𝑘

𝛿
𝑘

] 󳨀→
̃
B

A
[
𝑓
𝑘

𝛿
𝑘

] . (56)

This completes the proof of the theorem.

Theorem15. TheHartley-Hilbert transform̃BA is continuous
with respect to the Δ-convergence.

Proof. Let 𝜌
𝑛

Δ

󳨀→ 𝜌 as 𝑛 → ∞ in 𝜌L1 , then there is 𝑓
𝑛
∈ L1

and 𝛿
𝑛
∈ Δ such that

(𝜌
𝑛
− 𝜌) ∗ 𝛿

𝑛
= [
𝑓
𝑛
∗ 𝛿
𝑛

𝛿
𝑘

] , 𝑓
𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞.

(57)

Thus by the aid of Theorem 3 and the hypothesis of the
theorem we have

̃
B

A
((𝜌
𝑛
− 𝜌) ∗ 𝛿

𝑛
) =
̃
B

A
[
𝑓
𝑛
∗ 𝛿
𝑛

𝛿
𝑘

]

󳨀→B
A
(𝑓
𝑛
∗ 𝛿
𝑛
) as 𝑛 󳨀→ ∞

󳨀→B
A
𝑓
𝑛

as 𝑛 󳨀→ ∞

󳨀→ 0 as 𝑛 󳨀→ ∞.
(58)

Therefore,̃BA
(𝜌
𝑛
− 𝜌) → 0 as 𝑛 → ∞. Thus,̃BA

𝜌
𝑛

Δ

󳨀→

̃
BA
𝜌 as 𝑛 → ∞.
This completes the proof.

Lemma 16. Let [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , and 𝛿 has the usual meaning

of (34) then

̃
B

A
([
𝑓
𝑛

𝛿
𝑛

] ∗ 𝛿) =
̃
B

A
[
𝑓
𝑛

𝛿
𝑛

] . (59)

Proof. Let 𝜌 = [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , then

̃
B

A
([
𝑓
𝑛

𝛿
𝑛

] ∗ 𝛿) =
̃
B

A
[
𝑓
𝑛
∗ 𝛿

𝛿
𝑛

]

= lim
𝑛→∞

B
A
(𝑓
𝑛
∗ 𝛿)

= lim
𝑛→∞

B
A
𝑓
𝑛
.

(60)

Hence,

̃
B

A
([
𝑓
𝑛

𝛿
𝑛

] ∗ 𝛿) =
̃
B

A
[
𝑓
𝑛

𝛿
𝑛

] . (61)

Theorem 17. The Hartley-Hilbert transform ̃BA is one-to-
one.

Proof. Let̃BA
[𝑓
𝑛
/𝛿
𝑛
] =
̃
BA
[𝑔
𝑛
/𝛾
𝑛
], then by the aid of (46),

we get

lim
𝑛→∞

B
A
𝑓
𝑛
= lim
𝑛→∞

B
A
𝑔
𝑛
. (62)

Hence,

B
A
( lim
𝑛→∞

𝑓
𝑛
) =B

A
( lim
𝑛→∞

𝑔
𝑛
) , (63)

that is,BA
𝑓 =BA

𝑔. The fact thatBA is one-to-one implies
𝑓 = 𝑔. Hence we have the following theorem.
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4. A Comparative Study: Fourier-Hilbert
Transform

In [6, 7], the Hilbert transform via the Fourier transform of
𝑓(𝑥) is defined as

B
F
(𝑓) (𝑦)

=
1

𝜋
∫

∞

0

(F
𝑖
(𝑓) (𝑥) cos (𝑥𝑦) −F

𝑟
(𝑓) (𝑥) sin (𝑥𝑦)) 𝑑𝑥,

(64)

where

F
𝑟
(𝑓) (𝑥) = ∫

∞

0

𝑓 (𝑡) cos (𝑥𝑡) 𝑑𝑡,

F
𝑖
(𝑓) (𝑥) = ∫

∞

0

𝑓 (𝑡) sin (𝑥𝑡) 𝑑𝑡
(65)

are, respectively, the real and imaginary components of the
Fourier transform of 𝑓, which are related by

F (𝑓) (𝑥) = F
𝑟
(𝑓) (𝑥) − 𝑖F

𝑖
(𝑓) (𝑥) . (66)

It is interesting to know that a concrete relationship between
F
𝑟
,A𝑒 and F

𝑖
,A𝑜 is described as F

𝑟
(𝑥) = A𝑒(𝑥) and

F
𝑖
(𝑥) = A𝑜(𝑥) [2]. Those equations, above, justify the

following statements of the next theorems.

Theorem 18. Let [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , then the sequence of Fourier-

Hilbert transforms of (𝑓
𝑛
) satisfies

B
F
(𝑓
𝑛
) (𝑦)

=
1

𝜋
∫

∞

0

(F
𝑖
(𝑓
𝑛
) (𝑥) cos (𝑥𝑦) −F

𝑟
(𝑓
𝑛
) (𝑥) sin (𝑥𝑦)) 𝑑𝑥

(67)

and converges uniformly on each compact subsetK ofR.

Thus, for [𝑓
𝑛
/𝛿
𝑛
] ∈ 𝜌L1 , the Fourier-Hilbert transform of

[𝑓
𝑛
/𝛿
𝑛
] is similarly defined by

̃
B

F
[
𝑓
𝑛

𝛿
𝑛

] = lim
𝑛→∞

B
F
𝑓
𝑛 (68)

on compact subsets ofR.
The following theorems are stated and their proofs are

justified for similar reasons. We prefer to we omit the details.

Theorem 19. The generalized Fourier-Hilbert transform̃BF

is linear.

Theorem 20. ̃BF
(𝜌 ∗ 𝜖

𝑛
) =
̃
BF
𝜌 =
̃
BF
(𝜖 ∗ 𝜌), (𝜖

𝑛
) ∈ Δ.

Theorem 21. If̃BF
𝜌
1
= 0, then 𝜌

1
= 0.

Theorem 22. If 𝜌
𝑛

Δ

󳨀→ 𝜌 as 𝑛 → ∞ in 𝜌L1 , then
̃
BF
𝜌
𝑛

Δ

󳨀→

̃
BF
𝜌 as 𝑛 → ∞ in 𝜌L1 on compact subsets.

Theorem 23. The Fourier-Hilbert transform̃BF is continu-
ous with respect to the 𝛿-convergence.

Theorem 24. The Fourier-Hilbert transform̃BF is continu-
ous with respect to the Δ-convergence.

Proofs of the above theorems are similar to that given for
the corresponding ones of Hartley-Hilbert transform.
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