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Vanishing pressure limits of Riemann solutions to relativistic Euler system for Chaplygin gas are identified and analyzed in detail.
Unlike the polytropic or barotropic gas case, as the parameter decreases to a critical value, the two-shock solution converges firstly to
a delta shockwave solution to the same system. It is shown that, as the parameter decreases, the strength of the delta shock increases.
Then as the pressure vanishes ultimately, the solution is nothing but the delta shock wave solution to the zero pressure relativistic
Euler system. Meanwhile, the two-rarefaction wave solution and the solution containing one-rarefaction wave and one-shock wave
tend to the vacuum solution and the contact discontinuity solution to the zero pressure relativistic Euler system, respectively.

1. Introduction

The relativistic fluid dynamics plays a basic and significant
role in many physics fields, such as astrophysics, cosmology,
and nuclear physics [1].TheEuler systemof conservation laws
of energy and momentum in special relativity reads

((𝜌𝑐2 + 𝑝)V2𝑐2(𝑐2 − V2) + 𝜌)
𝑡

+ ((𝜌𝑐2 + 𝑝)V𝑐2 − V2
)
𝑥

= 0,

((𝜌𝑐2 + 𝑝)V𝑐2 − V2
)
𝑡

+ ((𝜌𝑐2 + 𝑝)V2𝑐2 − V2
+ 𝑝)
𝑥

= 0.
(1)

Here 𝜌, 𝑝 represent the proper mass-energy density and the
pressure, respectively, constant 𝑐 is the light speed, the sonic
speed√𝑝󸀠(𝜌) should be not more than the light speed 𝑐, and
V is the particle speed satisfying the relativistic constraint V2 <𝑐2. In this paper, we consider the limit behavior of Riemann
solutions of (1) for Chaplygin gas as pressure vanishes.

Formally, system (1) in theNewtonian limit reduces to the
classical isentropic Euler equations for compressible fluids as
V/𝑐 → 0:

𝜌
𝑡
+ (𝜌V)

𝑥
= 0,

(𝜌V)
𝑡
+ (𝜌V2 + 𝑝)

𝑥
= 0. (2)

Thus system (1) can also be viewed as the relativistic general-
ization of system (2). System (2) and its generalized equation
have been investigated intensively and widely as the typical
system of nonlinear hyperbolic conservation laws [2–8]. One
can refer to [9–11] for more systematic results on the systems
of nonlinear hyperbolic conservation laws. For Chaplygin
gas, Brenier obtained the Riemann solutions to system (2),
in which there appears concentration phenomenon for some
certain initial data [12]. That is, for Chaplygin gas, there
exists a unique Riemann solution to system (2) involving
the so-called delta shock wave in some cases. Chaplygin gas
dynamics was widely studied recently, and there are some
interesting and important results, especially for Riemann
problems. We refer to [13, 14] and the references cited therein
for more related results.
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System (1) can be formally transformed into the following
model as the pressure vanishes:

( 𝜌
𝑐2 − V2

)
𝑡

+ ( 𝜌V
𝑐2 − V2

)
𝑥

= 0,

( 𝜌V
𝑐2 − V2

)
𝑡

+ ( 𝜌V2
𝑐2 − V2

)
𝑥

= 0.
(3)

We call system (3) the zero pressure relativistic Euler system.
In fact, it can be viewed as a relativistic version of the
transport equations:

𝜌
𝑡
+ (𝜌V)

𝑥
= 0,

(𝜌V)
𝑡
+ (𝜌V2)

𝑥
= 0, (4)

which can be used to describe the motion process of free
particles sticking under collision in the low temperature and
the information of large-scale structures in the universe [15,
16]. System (4) has been investigated extensively in the past
two decades. In [17], Sheng and Zhang obtained the Riemann
solutions of (4) involving delta shock wave or vacuum. The
delta shockwave is characterized by the location, propagation
speed, andweight which is themass of concentrated particles.
This shows that the delta shock can be regarded as the galaxies
in the universe or the concentration of particles. We can also
see [18–20] for the related results about the delta shock wave.

As for system (1), we recommend [21–23] for some results,
in which the elementary nonlinear waves have been analyzed.
The Riemann solutions and the BV weak solutions of Cauchy
problem for system (1) under the equation of state 𝑝 = 𝜎2𝜌
(𝜎 is the sound speed satisfying 0 < 𝜎 < 𝑐) were obtained
analytically by Smoller and Temple [24]. Then in [25], Chen
generalized their results with the general equation of state𝑝 = 𝑝(𝜌) satisfying 𝑝󸀠(𝜌) > 0 and 𝑝󸀠󸀠(𝜌) ≥ 0. Based on
the results in [25], Hsu et al. [26] proved the existence of
global weak solutions to (1) with a more realistic equation
of state and 𝐿∞ initial data containing vacuum state in the
framework of compensated compactness. The existence of
entropy solutions for problems without vacuum state was
established by LeFloch andYamazaki [27].More results about
entropy solutions to system (1) can be found in [28–31]. We
also refer to [32] for a multidimensional piston problem and
[33] for the blow-up of solutions. For Chaplygin gas, Cheng
and Yang [34] considered the Riemann problem of system
(1). The solutions are a bit different from those for polytropic
gas. System (1) in this case is linearly degenerate. Thus there
appear five kinds of solutions, in which four cases involve
contact discontinuities and another contains delta shock for
some certain initial data.

In the present paper, we focus on the limit of Riemann
solutions to system

((𝜌𝑐2 + 𝜀𝑝)V2𝑐2(𝑐2 − V2) + 𝜌)
𝑡

+ ((𝜌𝑐2 + 𝜀𝑝)V𝑐2 − V2
)
𝑥

= 0,

((𝜌𝑐2 + 𝜀𝑝)V𝑐2 − V2
)
𝑡

+ ((𝜌𝑐2 + 𝜀𝑝)V2𝑐2 − V2
+ 𝜀𝑝)

𝑥

= 0,
(5)

as pressure vanishes with the pressure function for Chaplygin
gas:

𝑝 = −1𝜌 . (6)

It is clear to see that the Chaplygin equations can be math-
ematically expressed as an isentropic gas dynamics system
with a negative pressure and can be used to depict some dark-
energy models in cosmology [35].

The sameproblem to Euler system for isothermal casewas
carried out in [36]. Li proved that when temperature drops
to zero, the solution containing two shock waves converges
to the delta shock solution to transport equations (4) and
the solution containing two rarefaction waves converges to
the solution involving vacuum to system (4). Instead of
isothermal case, Chen and Liu [37] considered the formation
of delta shock and vacuum state of the Riemann solutions
to Euler system for polytropic gas in which they took the
equation of state as 𝑃 = 𝜀𝑝 for 𝑝 = 𝜌𝛾/𝛾 (𝛾 > 1). Then,
in [38, 39], Yin and Sheng extended the results above to
system (1). In [40], Mitrović and Nedeljkov considered the
generalized pressureless gas dynamics model with a scaled
pressure term:

𝜌
𝑡
+ (𝜌𝑔 (𝑢))

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢𝑔 (𝑢) + 𝜀𝑝 (𝜌))

𝑥
= 0, (7)

where 𝑝 = 𝜅𝜌𝛾 for 1 < 𝛾 < 3 and 𝑔 is a nondecreasing
function. They extended the results in [37] to the system (7)
and found that the delta shock wave appears as the limit of
the solution involving two shock waves as 𝜀 goes to zero. We
also refer to [41, 42] for the related results.

In this paper, we mainly describe the limit of Riemann
solutions to system (5)-(6) as pressure vanishes. Unlike
the cases we mentioned above, system (5)-(6) is linearly
degenerate. That is, there appears delta shock in Riemann
solutions. Thus, it is natural for us to guess that different
structures or components of Riemann solutions in this case
may directly cause some difference and interest during the
process of vanishing pressure limit. This motivates us to do
this work.

We will show that, as 𝜀 drops to a certain critical value𝜀
1
> 0 which only depends on the given Riemann initial data(V
±
, 𝜌
±
), the solution involving two shock waves converges

to a delta shock wave of the same system (5)-(6). When 𝜀
continues to decrease, we find that the strength of the delta
shock wave increases. Eventually, when 𝜀 drops to zero, the
delta shock wave solution is exactly the solution to system
(3). Thus, we find that the process of delta shock wave
formation is obviously different from those in [36, 37] and
so forth. Meanwhile, any Riemann solution involving two
rarefactionwaves converges to the vacuum solution to system
(3). Furthermore, the limit of the solution involving one
rarefaction wave 𝑅

1
(or 𝑅
2
) and one shock wave 𝑆

2
(or 𝑆
1
)

is just the contact discontinuity connecting the two constant
states (V

±
, 𝜌
±
).

The organization of this paper is as follows: in Sections 2
and 3, we give some results on the Riemann solutions to
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system (5)-(6) and system (3). In Section 4, we study the
limit of Riemann solutions involving two shocks to system
(5)-(6) as pressure vanishes when V

−
> V
+
. In Section 5, we

investigate the limit of solution containing two rarefaction
waves to system (5)-(6) when V

−
< V
+
. In Section 6, we

analyze the limit of solution when V
−
= V
+
.

2. Riemann Problems for System (5)-(6)
In this section, we mainly consider the solutions of (5)-(6)
with initial data:

(V, 𝜌) (0, 𝑥) = (V
±
, 𝜌
±
) , (±𝑥 > 0) . (8)

As mentioned in the introduction, the process without the
parameter 𝜀 has been done in [34] for system (1) of Chaplygin
gas. However, we provide the Riemann solution of (5)-(6) for
concreteness.

2.1. Elementary Waves and Riemann Problems. Noticing the
relativistic constraint |V| < 𝑐 and √𝜀𝑝󸀠 ≤ 𝑐, we see that the
physically relevant region for solutions is

Λ = {(V, 𝜌) | |V| < 𝑐, 𝜌 ≥ √𝜀
𝑐 } , (9)

which is obviously different from that for polytropic and
barotropic gas. The eigenvalues of system (5) are

𝜆𝜀
1
= 𝑐2 (V − √𝜀𝑝󸀠)

𝑐2 − V√𝜀𝑝󸀠 , 𝜆𝜀
2
= 𝑐2 (V + √𝜀𝑝󸀠)

𝑐2 + V√𝜀𝑝󸀠 (10)

and the corresponding right eigenvectors are 𝑟
1
= ((−1/(𝑐2 −

V2)), (√𝜀𝑝󸀠/(𝜀𝑝 + 𝜌𝑐2)))𝑇, 𝑟
2
= ((1/(𝑐2 − V2)), (√𝜀𝑝󸀠/(𝜀𝑝 +

𝜌𝑐2)))𝑇. Thus the fact of ∇𝜆𝜀
𝑖
⋅ 𝑟
𝑖
= 0 (𝑖 = 1, 2) shows that both

the characteristic fields are linearly degenerate. The Riemann
problem (5) and (8) for 𝜉 = 𝑥/𝑡 can be reduced to

−𝜉((𝜌𝑐2 + 𝜀𝑝) V2
𝑐2 (𝑐2 − V2) + 𝜌)

𝜉

+ ((𝜌𝑐2 + 𝜀𝑝) V
𝑐2 − V2

)
𝜉

= 0,

−𝜉((𝜌𝑐2 + 𝜀𝑝) V
𝑐2 − V2

)
𝜉

+ ((𝜌𝑐2 + 𝜀𝑝) V2
𝑐2 − V2

+ 𝜀𝑝)
𝜉

= 0,
(V, 𝜌) (±∞) = (V

±
, 𝜌
±
) .

(11)

For smooth solutions, system (11) provides either the
general solutions (constant states) (V, 𝜌)(𝜉) = const (𝜌 >√𝜀/𝑐) or the singular solution

𝜉 = 𝑐2 (𝜌V ± √𝜀)
𝜌𝑐2 ± √𝜀V = 𝑐2 (𝜌

−
V
−
± √𝜀)

𝜌
−
𝑐2 ± √𝜀V

−

. (12)

Given a state (V
−
, 𝜌
−
), the rarefactionwave curves in the phase

plane are the sets of states that can be connected on the right
by a 1-rarefaction or a 2-rarefaction wave in the form:

1-rarefaction wave curve 𝑅
1
(V
−
, 𝜌
−
):

𝜉 = 𝜆𝜀
1
= 𝑐2 (𝜌V − √𝜀)

𝜌𝑐2 − √𝜀V = 𝑐2 (𝜌
−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

, 𝜌 < 𝜌
−
; (13)

2-rarefaction wave curve 𝑅
2
(V
−
, 𝜌
−
):

𝜉 = 𝜆𝜀
2
= 𝑐2 (𝜌V + √𝜀)

𝜌𝑐2 + √𝜀V = 𝑐2 (𝜌
−
V
−
+ √𝜀)

𝜌
−
𝑐2 + √𝜀V

−

, 𝜌 > 𝜌
−
. (14)

For a bounded discontinuity at 𝜉 = 𝜎, the Rankine-
Hugoniot condition reads

−𝜎[(𝜌𝑐
2 + 𝜀𝑝) V2

𝑐2 (𝑐2 − V2) + 𝜌] + [(𝜌𝑐
2 + 𝜀𝑝) V
𝑐2 − V2

] = 0,

−𝜎[(𝜌𝑐
2 + 𝜀𝑝) V
𝑐2 − V2

] + [(𝜌𝑐
2 + 𝜀𝑝) V2
𝑐2 − V2

+ 𝜀𝑝] = 0,
(15)

where 𝜎 is the velocity of the discontinuity. The Lax entropy
conditions imply that

𝜌 > 𝜌
−
(1-shock) , 𝜌 < 𝜌

−
(2-shock) . (16)

Given a state (V
−
, 𝜌
−
), the shock wave curves in the phase

plane are the sets of states that can be connected on the right
by a 1-shock or a 2-shock wave in the form

1-shock wave curve 𝑆
1
(V
−
, 𝜌
−
):

𝜎𝜀
1
= 𝑐2 (𝜌V − √𝜀)

𝜌𝑐2 − √𝜀V = 𝑐2 (𝜌
−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

, 𝜌 > 𝜌
−
; (17)

2-shock wave curve 𝑆
2
(V
−
, 𝜌
−
):

𝜎𝜀
2
= 𝑐2 (𝜌V + √𝜀)

𝜌𝑐2 + √𝜀V = 𝑐2 (𝜌
−
V
−
+ √𝜀)

𝜌
−
𝑐2 + √𝜀V

−

, 𝜌 < 𝜌
−
. (18)

From (13)-(14) and (17)-(18), we can see that the rarefaction
wave curves and the shock wave curves are coincident in the
phase plane, which actually correspond to contact disconti-
nuities. For convenience, we still call them rarefaction waves
and shock waves, denoted by 𝑅 and 𝑆, respectively, although
each of them degenerates to a characteristic.

Given state (V
−
, 𝜌
−
), we draw the curves (13)-(14) and

(17)-(18) for 𝜌 > √𝜀/𝑐 in the phase plane; see Figure 1. The
curves 𝑆

1
and 𝑅

2
have asymptotic lines V = V

1
and V = V

2
,

respectively, where

V
1
= 𝑐2 (𝜌

−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

, V
2
= 𝑐2 (𝜌

−
V
−
+ √𝜀)

𝜌
−
𝑐2 + √𝜀V

−

. (19)

The curves 𝑆
2
and 𝑅

1
have singularity points (−𝑐, √𝜀/𝑐)

and (𝑐, √𝜀/𝑐), respectively. Moreover, starting from the point(V
3
, 𝜌
−
) where V

3
will be shown below, we draw the contact

discontinuity curve (12) with the positive sign, which have the
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Figure 1: Wave curves in the phase plane.

asymptotic line V = V
1
and the singularity point (−𝑐, √𝜀/𝑐),

with V
3
satisfying

𝑐2 (𝜌
−
V
3
+ √𝜀)

𝜌
−
𝑐2 + √𝜀V

3

= 𝑐2 (𝜌
−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

. (20)

Thus the regionΛ can be divided into five regions I, II, III, IV,
and V, as shown in Figure 1.

For any given right state (V
+
, 𝜌
+
), there exists a solution of

(5)-(6) and (8) when (V
+
, 𝜌
+
) ∈ (I ∪ II ∪ III ∪ IV)(V

−
, 𝜌
−
) of

which configurations are as follows:

(1) (V
+
, 𝜌
+
) ∈ I (V

−
, 𝜌
−
) : 𝑅
1
+ 𝑅
2
,

(2) (V
+
, 𝜌
+
) ∈ II (V

−
, 𝜌
−
) : 𝑅
1
+ 𝑆
2
,

(3) (V
+
, 𝜌
+
) ∈ III (V

−
, 𝜌
−
) : 𝑆
1
+ 𝑅
2
,

(4) (V
+
, 𝜌
+
) ∈ IV (V

−
, 𝜌
−
) : 𝑆
1
+ 𝑆
2
.

(21)

For the remaining case (V
+
, 𝜌
+
) ∈ V, we need to seek a

nonclassical solution, which will be considered in the next
subsection.

2.2. Delta Shock Wave Solution. In order to construct the
unique global Riemann solution, we need to consider the case
when (V

+
, 𝜌
+
) ∈ V, in which we have

𝜆𝜀
1+
:= 𝑐2 (𝜌

+
V
+
− √𝜀)

𝜌
+
𝑐2 − √𝜀V

+

< 𝜆𝜀
2+
:= 𝑐2 (𝜌

+
V
+
+ √𝜀)

𝜌
+
𝑐2 + √𝜀V

+

< 𝜆𝜀
1−
:= 𝑐2 (𝜌

−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

< 𝜆𝜀
2−
:= 𝑐2 (𝜌

−
V
−
+ √𝜀)

𝜌
−
𝑐2 + √𝜀V

−

.

(22)

It means that characteristic lines from initial data will overlap
in a domain Ω shown in Figure 2. Thus singularity must

x

t

o

Ω

x = 𝜆𝜀1+t

x = 𝜆𝜀1−t
x = 𝜆𝜀2+t

x = 𝜆𝜀2−t

Figure 2: Characteristic lines for constant states (V
±
, 𝜌
±
).

happen in Ω. The singularity is impossible to be a jump
with finite amplitude; that is, there is no piecewise smooth
and bounded solution. Hence, a weighted 𝛿-measure solution
should be constructed.

Now let us give the definition of a 𝛿-shock wave type
solution for system (5) with (6), in which we use the concept
introduced in [43].

Suppose that Γ = {𝛾
𝑖
| 𝑖 ∈ 𝐼} is a graph in the closed upper

half-plane {(𝑥, 𝑡) | 𝑥 ∈ R, 𝑡 ∈ [0, +∞)} ⊂ R2 containing
smooth arcs 𝛾

𝑖
, 𝑖 ∈ 𝐼, and 𝐼 is a finite set. Let 𝐼

0
be a subset of𝐼 such that an arc 𝛾

𝑘
for 𝑘 ∈ 𝐼

0
starts from the points of the𝑥-axis, and let Γ

0
= {𝑥0
𝑘
| 𝑘 ∈ 𝐼

0
} be the set of initial points of

arc 𝛾
𝑘
, 𝑘 ∈ 𝐼

0
. Let us consider 𝛿-shock wave type initial data(V0(𝑥), 𝜌0(𝑥)), where

𝜌0 (𝑥) = 𝜌
0
(𝑥) + 𝑤0𝛿 (Γ

0
) , (23)

V0, 𝜌
0

∈ 𝐿∞(R;R), 𝑤0𝛿(Γ
0
) = ∑

𝑘∈𝐼0
𝑤0
𝑘
𝛿(𝑥 − 𝑥0

𝑘
), and

𝑤0
𝑘
are constants for 𝑘 ∈ 𝐼

0
. Furthermore, the pressure𝑝 = −1/𝜌 in (5) is a nonlinear term with respect to 𝜌, and𝑝0(𝑥, 𝑡) is defined by −1/𝜌

0
, where the deltameasure does not

contribute [12].

Definition 1. A pair of distributions (V(𝑥, 𝑡), 𝜌(𝑥, 𝑡)) and a
graph Γ, where 𝜌(𝑥, 𝑡) and 𝑝(𝑥, 𝑡) have the form

𝜌 (𝑥, 𝑡) = 𝜌 (𝑥, 𝑡) + 𝑤𝜀 (𝑥, 𝑡) 𝛿 (Γ) , 𝑝 (𝑥, 𝑡) = − 1
𝜌 (𝑥, 𝑡) ,

(24)

V,𝜌 ∈ 𝐿∞(R × R
+
;R), 𝑤𝜀(𝑥, 𝑡)𝛿(Γ) = ∑

𝑖∈𝐼
𝑤𝜀
𝑖
(𝑥, 𝑡)𝛿(𝛾

𝑖
), and𝑤𝜀

𝑖
(𝑥, 𝑡) ∈ 𝐶(Γ) for 𝑖 ∈ 𝐼, is called a generalized 𝛿-shock wave

type solution of system (5) with the initial data (V0(𝑥), 𝜌0(𝑥))
if the integral identities

∫+∞
0

∫+∞
−∞

(((𝜀𝑝 + 𝜌𝑐2) V2
𝑐2 (𝑐2 − V2) + 𝜌)𝜙

𝑡

+((𝜀𝑝 + 𝜌𝑐2) V
𝑐2 − V2

)𝜙
𝑥
)𝑑𝑥𝑑𝑡

+∑
𝑖∈𝐼

∫
𝛾𝑖

𝑤𝜀
𝑖
(𝑥, 𝑡) 𝑐2
𝑐2 − V2

𝛿

𝜕𝜙
𝜕𝑙 𝑑𝑙
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+ ∫+∞
−∞

((𝜀𝑝0 + 𝜌
0
𝑐2) (V0)2

𝑐2 (𝑐2 − (V0)2) + 𝜌
0
)𝜙 (𝑥, 0) 𝑑𝑥

+ ∑
𝑘∈𝐼0

𝑤0
𝑘
𝑐2

𝑐2 − (V0
𝛿
(𝑥0
𝑘
))2 𝜙 (𝑥

0

𝑘
, 0) = 0,

∫+∞
0

∫+∞
−∞

(((𝜀𝑝 + 𝜌𝑐2) V
𝑐2 − V2

)𝜙
𝑡

+((𝜀𝑝 + 𝜌𝑐2) V2
𝑐2 − V2

+ 𝜀𝑝)𝜙
𝑥
)𝑑𝑥𝑑𝑡

+∑
𝑖∈𝐼

∫
𝛾𝑖

𝑤𝜀
𝑖
(𝑥, 𝑡) 𝑐2V

𝛿𝑐2 − V2
𝛿

𝜕𝜙
𝜕𝑙 𝑑𝑙

+ ∫+∞
−∞

((𝜀𝑝0 + 𝜌
0
𝑐2) V0

𝑐2 − (V0)2 ) (𝑥) 𝜙 (𝑥, 0) 𝑑𝑥

+ ∑
𝑘∈𝐼0

𝑤0
𝑘
𝑐2V0
𝛿
(𝑥0
𝑘
)

𝑐2 − (V0
𝛿
(𝑥0
𝑘
))2 𝜙 (𝑥

0

𝑘
, 0) = 0

(25)

hold for any test functions𝜙(𝑥, 𝑡) ∈ D(R×R
+
), where 𝜕𝜙/𝜕𝑙 is

the tangential derivative on the graph Γ, ∫
𝛾𝑖

𝑑𝑙 is a line integral
along the arc 𝛾

𝑖
, V
𝛿
(𝑥, 𝑡) is the velocity of the 𝛿-shock wave,

and V0
𝛿
(𝑥0
𝑘
) = V
𝛿
(𝑥0
𝑘
, 0), 𝑘 ∈ 𝐼

0
.

Under the above definition, it is not difficult to get the
following result.

Theorem 2. When (V
+
, 𝜌
+
) ∈ V, for the Riemann problem (5)-

(6) and (8), there is a 𝛿-shock wave solution (V(𝑥, 𝑡), 𝜌(𝑥, 𝑡)) of
the form

V (𝑥, 𝑡) = V
−
+ [V]𝐻 (𝑥 − 𝑥 (𝑡)) ,

𝜌 (𝑥, 𝑡) = 𝜌
−
+ [𝜌]𝐻 (𝑥 − 𝑥 (𝑡)) + 𝑤𝜀 (𝑥, 𝑡) 𝛿 (𝑥 − 𝑥 (𝑡)) ,

(26)

which satisfies the integral identities (25) in the sense of
Definition 1, where Γ = {(𝑥, 𝑡) | 𝑥 = 𝑥(𝑡) = 𝜎

𝛿
𝑡, 𝑡 ≥ 0},𝜌(𝑥, 𝑡) = 𝜌

−
+ [𝜌]𝐻(𝑥 − 𝑥(𝑡)),

∫
Γ

𝑤𝜀 (𝑥, 𝑡) 𝜕𝜙 (𝑥, 𝑡)𝜕𝑙 = ∫∞
0

𝑤𝜀 (𝑥 (𝑡) , 𝑡) 𝑑𝜙 (𝑥 (𝑡) , 𝑡)𝑑𝑡 ,
(27)

and𝐻(𝑥) is the Heaviside function.
The proof of this theorem is very similar to the Theorem

6 in [43], so we omit its proof.

Definition 3. Suppose that Ω ⊂ R × R
+
is a region cut by a

smooth curve Γ = {(𝑥, 𝑡) | 𝑥 = 𝑥(𝑡)} into a left and right
hand parts Ω

±
= {(𝑥, 𝑡) | ±(𝑥 − 𝑥(𝑡)) > 0}, (V(𝑥, 𝑡), 𝜌(𝑥, 𝑡))

is a generalized 𝛿-shock wave solution of system (5), and

functions 𝜌(𝑥, 𝑡), V(𝑥, 𝑡) are smooth inΩ
±
and have one-side

limits 𝜌
±
, V
±
on the curve Γ. Then the generalized Rankine-

Hugoniot conditions for 𝛿-shock wave are
𝑑𝑥 (𝑡)
𝑑𝑡 = 𝜎

𝛿
,

𝑑
𝑑𝑡 (

𝑤𝜀 (𝑥 (𝑡) , 𝑡) 𝑐2
𝑐2 − (𝜎

𝛿
)2 ) = 𝜎

𝛿
[(𝜌𝑐
2 + 𝜀𝑝) V2

𝑐2 (𝑐2 − V2) + 𝜌]

− [(𝜌𝑐
2 + 𝜀𝑝) V
𝑐2 − V2

] ,
𝑑
𝑑𝑡 (

𝑤𝜀 (𝑥 (𝑡) , 𝑡) 𝜎
𝛿
𝑐2

𝑐2 − (𝜎
𝛿
)2 )

= 𝜎
𝛿
[(𝜌𝑐
2 + 𝜀𝑝) V
𝑐2 − V2

] − [(𝜌𝑐
2 + 𝜀𝑝) V2
𝑐2 − V2

+ 𝜀𝑝] ,

(28)

with initial data 𝑤𝜀(𝑥(0), 0) = 0.
To guarantee uniqueness, the generalized entropy condi-

tion

𝜆𝜀
2+
≤ 𝜎
𝛿
≤ 𝜆𝜀
1−

(29)

should be satisfied, which means that all the characteristic
lines on both sides of the delta shock wave are not out-
coming.

Denote

𝐸 = [(𝜌𝑐
2 + 𝜀𝑝) V2

𝑐2 (𝑐2 − V2) + 𝜌] , 𝐹 = [(𝜌𝑐
2 + 𝜀𝑝) V
𝑐2 − V2

] ,

𝐺 = [(𝜌𝑐
2 + 𝜀𝑝) V2
𝑐2 − V2

+ 𝜀𝑝] .
(30)

Thus from (28) and (29), we have, for 𝐸 ̸= 0, that
𝜎
𝛿
= 𝐹 + √𝐹2 − 𝐸𝐺

𝐸 ,

𝑤𝜀 (𝑥 (𝑡) , 𝑡) = √𝐹2 − 𝐸𝐺(1 − (𝐹 − √𝐹2 − 𝐸𝐺
𝑐𝐸 )

2

) 𝑡,
(31)

and for 𝐸 = 0,
𝜎
𝛿
= 𝐺
2𝐹,

𝑤𝜀 (𝑥 (𝑡) , 𝑡) = 𝐹(1 − ( 𝐺
2𝐹𝑐)
2) 𝑡.

(32)

3. Riemann Problems for System (3)
In this section, we show some results briefly on Riemann
problems to system (3) with initial data (8).The idea is similar
with that in [17], so we omit the details here.
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Figure 3: Riemann solutions when (V
+
, 𝜌
+
) ∈ IV(V

−
, 𝜌
−
).

The system has a double eigenvalue 𝜆 = V and only one
right eigenvector 𝑟 = (1, 0)⊤. System (3) is obviously linearly
degenerate by ∇𝜆 ⋅ 𝑟 = 0. We seek the self-similar solution(V, 𝜌)(𝑡, 𝑥) = (V, 𝜌)(𝜉), 𝜉 = 𝑥/𝑡, for which the Riemann
problem can be transformed into the infinity boundary value
problem:

−𝜉( 𝜌
𝑐2 − V2

)
𝜉

+ ( 𝜌V
𝑐2 − V2

)
𝜉

= 0,

−𝜉( 𝜌V
𝑐2 − V2

)
𝜉

+ ( 𝜌V2
𝑐2 − V2

)
𝜉

= 0,
(V, 𝜌) (±∞) = (V

±
, 𝜌
±
) .

(33)

For the case V
−
< V
+
, the solution consists of two contact

discontinuities plus a vacuum state between them and can be
expressed as

(V, 𝜌) (𝜉) = {{{{{
(V
−
, 𝜌
−
) , −∞ < 𝜉 < V

−
,

(V (𝜉) , 0) , V
−
≤ 𝜉 ≤ V

+
,

(V
+
, 𝜌
+
) , V

+
< 𝜉 < +∞,

(34)

where V(𝜉) is an arbitrary smooth function satisfying V(V
−
) =

V
−
and V(V

+
) = V
+
.

For the case V
−
> V
+
, singularity must happen. According

to the procedure in Section 2, a 𝛿-shock wave type solution
can be constructed. We omit the details here and just give
a description of the solution because of the similarity. With
the definitions in Section 2, for the case V

−
> V
+
, one can

construct a 𝛿-shock wave type solution with this form

V = V
−
+ [V]𝐻 (𝑥 − 𝑥 (𝑡)) ,

𝜌 = 𝜌
−
+ [𝜌]𝐻 (𝑥 − 𝑥 (𝑡)) + 𝑤 (𝑥 (𝑡) , 𝑡) 𝛿 (𝑥 − 𝑥 (𝑡)) , (35)

where 𝑥(𝑡) and 𝑤(𝑥, 𝑡) should satisfy the generalized
Rankine-Hugoniot condition:

𝑑𝑥
𝑑𝑡 = V

𝛿
,

𝑑
𝑑𝑡 (

𝑤 (𝑥 (𝑡) , 𝑡)
𝑐2 − V2

𝛿

) = V
𝛿
[ 𝜌
𝑐2 − V2

] − [ 𝜌V
𝑐2 − V2

] ,
𝑑
𝑑𝑡 (

𝑤 (𝑥 (𝑡) , 𝑡) V
𝛿𝑐2 − V2

𝛿

) = V
𝛿
[ 𝜌V
𝑐2 − V2

] − [ 𝜌V2
𝑐2 − V2

] .

(36)

Here [ℎ] = ℎ(𝑡, 𝑥(𝑡)+0)−ℎ(𝑡, 𝑥(𝑡)−0) is the jump of ℎ across
discontinuity.

In order to ensure the uniqueness of the Riemann solu-
tion, the generalized entropy condition should be proposed
as

V
+
< 𝑑𝑥
𝑑𝑡 < V

−
, (37)

which means that all the characteristic lines on either side of
a delta shock run into the line of the delta shock in the (𝑥, 𝑡)-
plane; this is to say that a delta shock is an overcompressive
shock. From (36) and (37), we determine that

V
𝛿
= V
+
√𝜌
+
/ (𝑐2 − V2

+
) + V
−
√𝜌
−
/ (𝑐2 − V2

−
)

√𝜌
+
/ (𝑐2 − V2

+
) + √𝜌

−
/ (𝑐2 − V2

−
) ,

𝑥 (𝑡) = V
𝛿
𝑡,

𝑤 (𝑥 (𝑡) , 𝑡) = √ 𝜌
+𝑐2 − V2
+

𝜌
−𝑐2 − V2
−

(V
−
− V
+
) (𝑐2 − V2

𝛿
) 𝑡.

(38)

4. Limit of Riemann Solutions to
(5)-(6) for V

−
> V
+

In this section, we deal with the limit behavior of Riemann
solutions to system (5)-(6) in the case (V

+
, 𝜌
+
) ∈ IV∪V(V

−
, 𝜌
−
)

(see Figure 3(a)) as pressure vanishes. Let us assume that
V
−

> V
+
, 𝜌
±

> √𝜀/𝑐 and then we divide our discussion
into two parts. First, we identify the formation of delta shock
wave in the case (V

+
, 𝜌
+
) ∈ IV(V

−
, 𝜌
−
) and compare them

with the delta shock solution to (5)-(6). Then, we show how
the strength and propagation speed of the delta shock wave
change along with the values of 𝜀, when 𝜀 becomes smaller
and smaller and ultimately goes to zero. Here two critical
values 𝜀

0
and 𝜀
1
for 𝜀 should be introduced, which will play

very important roles in the following discussion.

Lemma 4. If V
−
> V
+
, then there exist 𝜀

0
, 𝜀
1
> 0 such that(V

+
, 𝜌
+
) ∈ IV(V

−
, 𝜌
−
) when 𝜀

1
< 𝜀 < 𝜀

0
; (V
+
, 𝜌
+
) ∈ V(V

−
, 𝜌
−
)

when 0 < 𝜀 < 𝜀
1
.

Proof. It follows from (17) and (18) that all possible states(V, 𝜌) which can be connected on the right to the left state
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(V
−
, 𝜌
−
) by a 1-shock wave 𝑆

1
or a 2-shock wave 𝑆

2
should

satisfy

𝑆
1
: 𝜌V − √𝜀
𝜌𝑐2 − √𝜀V = 𝜌

−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

, 𝜌 > 𝜌
−
,

𝑆
2
: 𝜌V + √𝜀
𝜌𝑐2 + √𝜀V = 𝜌

−
V
−
+ √𝜀

𝜌
−
𝑐2 + √𝜀V

−

, 𝜌 < 𝜌
−
.

(39)

The states that can be connected on the right to the left state(V
−
, 𝜌
−
) directly by a delta shock wave 𝑆

𝛿
should satisfy

𝑆
𝛿
: 𝜌V + √𝜀
𝜌𝑐2 + √𝜀V = 𝜌

−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

. (40)

If 𝜌
+

̸= 𝜌
−
and (V

+
, 𝜌
+
) ∈ IV ∪ V(V

−
, 𝜌
−
), then we observe

that both (𝜌V−√𝜀)/(𝜌𝑐2−√𝜀V) and (𝜌V+√𝜀)/(𝜌𝑐2+√𝜀V) are
monotone increasing with V. Also we can see intuitively from
Figure 3(a) together with (39) that 𝜀 should satisfy

𝜌
+
V
+
− √𝜀

𝜌
+
𝑐2 − √𝜀V

+

< 𝜌
−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

, if 𝜌
+
> 𝜌
−
,

𝜌
+
V
+
+ √𝜀

𝜌
+
𝑐2 + √𝜀V

+

< 𝜌
−
V
−
+ √𝜀

𝜌
−
𝑐2 + √𝜀V

−

, if 𝜌
+
< 𝜌
−
,

(41)

which imply that

(V
−
− V
+
) 𝜀 + 󵄨󵄨󵄨󵄨𝜌− − 𝜌+󵄨󵄨󵄨󵄨 (𝑐2 − V

+
V
−
)√𝜀

− 𝑐2𝜌
+
𝜌
−
(V
−
− V
+
) < 0. (42)

Thus we can take

√𝜀0 =
󵄨󵄨󵄨󵄨𝜌− − 𝜌+󵄨󵄨󵄨󵄨 (V+V− − 𝑐2)

2 (V
−
− V
+
)

+ √(𝜌
−
− 𝜌
+
)2(𝑐2 − V

+
V
−
)2 + 4𝑐2𝜌

+
𝜌
−
(V
−
− V
+
)2

2 (V
−
− V
+
) .

(43)

Obviously we have (V
+
, 𝜌
+
) ∈ IV ∪ V(V

−
, 𝜌
−
) if 𝜀 < 𝜀

0
.

Furthermore, if 𝜌
+

̸= 𝜌
−
and (V

+
, 𝜌
+
) ∈ V(V

−
, 𝜌
−
), then we

can also see intuitively from Figure 3(a) together with (40)
that 𝜀 should satisfy

𝜌
+
V
+
+ √𝜀

𝜌
+
𝑐2 + √𝜀V

+

< 𝜌
−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

, (44)

which is equivalent to

(V
−
− V
+
) 𝜀 − (𝜌

−
+ 𝜌
+
) (𝑐2 − V

+
V
−
)√𝜀

+ 𝑐2𝜌
+
𝜌
−
(V
−
− V
+
) > 0. (45)

Taking

√𝜀1 = (𝜌
−
+ 𝜌
+
) (𝑐2 − V

+
V
−
)

2 (V
−
− V
+
)

− √(𝜌
−
+ 𝜌
+
)2(𝑐2 − V

+
V
−
)2 − 4𝑐2𝜌

+
𝜌
−
(V
−
− V
+
)2

2 (V
−
− V
+
) ,

(46)

we have (V
+
, 𝜌
+
) ∈ V(V

−
, 𝜌
−
) if 𝜀 < 𝜀

1
. It is not difficult to show

that 𝜀
1
< 𝜀
0
.

In particular, if 𝜌
+
= 𝜌
−
, then (V

+
, 𝜌
+
) ∈ IV∪V(V

−
, 𝜌
−
) for

any 𝜀 > 0, and moreover (V
+
, 𝜌
+
) ∈ V(V

−
, 𝜌
−
) if

(V
−
− V
+
) 𝜀 − 2𝜌

+
(𝑐2 − V

+
V
−
)√𝜀 + 𝑐2𝜌2

+
(V
−
− V
+
) > 0.

(47)

Thus we can take

√𝜀1 := 𝑐2 − V
+
V
−
− √(𝑐2 − V2

+
) (𝑐2 − V2

−
)

V
−
− V
+

𝜌
+

(48)

and arbitrary 𝜀
0
which only needs to satisfy 𝜀

0
> 𝜀
1
in this

special situation.

Lemma 4 shows that the shock wave curves 𝑆
1
and 𝑆

2

become steeper when 𝜀 decreases. There is no delta shock
wave in the Riemann solution of (5)-(6) for a fluidwith strong
pressure. As pressure decreases, delta shock wave occurs in
the Riemann solution. Hence we divide our discussion into
two parts according to different ranges of 𝜀.
4.1. Formation of Delta Shocks. In this subsection, we discuss
the situation 𝜀

1
< 𝜀 < 𝜀

0
, namely (V

+
, 𝜌
+
) ∈ IV(V

−
, 𝜌
−
).

When V
−
> V
+
, the Riemann solution to system (5)-(6) with

initial data (8) consists of two constant states (V
±
, 𝜌
±
), an

intermediate state (V𝜀
∗
, 𝜌𝜀
∗
) and two shock wave curves 𝑆

1
, 𝑆
2

(see Figure 3(a)). Then, we have

𝑆
1
: 𝜎𝜀
1
= 𝑐2 (𝜌𝜀

∗
V𝜀
∗
− √𝜀)

𝜌𝜀
∗
𝑐2 − √𝜀V𝜀

∗

= 𝑐2 (𝜌
−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

= 𝜆𝜀
1−
,

𝜌𝜀
∗
> 𝜌
−
;

𝑆
2
: 𝜎𝜀
2
= 𝑐2 (𝜌𝜀

∗
V𝜀
∗
+ √𝜀)

𝜌𝜀
∗
𝑐2 + √𝜀V𝜀

∗

= 𝑐2 (𝜌
+
V
+
+ √𝜀)

𝜌
+
𝑐2 + √𝜀V

+

= 𝜆𝜀
2+
,

𝜌𝜀
∗
> 𝜌
+
.

(49)

Equations (49) can be easily transformed into the following
form:

𝑆
1
: 𝜎𝜀
1
= 𝜆𝜀
1−
, V𝜀
∗
= 𝑐2 (𝜌𝜀

∗
𝜆𝜀
1−
+ √𝜀)

𝜌𝜀
∗
𝑐2 + √𝜀𝜆𝜀

1−

, 𝜌𝜀
∗
> 𝜌
−
; (50)

𝑆
2
: 𝜎𝜀
2
= 𝜆𝜀
2+
, V𝜀
∗
= 𝑐2 (𝜌𝜀

∗
𝜆𝜀
2+
− √𝜀)

𝜌𝜀
∗
𝑐2 − √𝜀𝜆𝜀

2+

, 𝜌𝜀
∗
> 𝜌
+
. (51)

It is not difficult to derive from (50) and (51) that

𝜆𝜀
1−
− 𝜆𝜀
2+𝑐2

𝜀
(𝜌𝜀
∗
)2 + 2(1 −

𝜆𝜀
1−
𝜆𝜀
2+𝑐2 ) √𝜀

𝜌𝜀
∗

+ 𝜆𝜀
1−
− 𝜆𝜀
2+
= 0.
(52)

For given 𝜌
±
> 0, taking limit 𝜀 → 𝜀

1
in (52), we have

lim
𝜀→𝜀1

(1 − 𝜆𝜀
1−
𝜆𝜀
2+𝑐2 ) √𝜀

𝜌𝜀
∗

= 0, (53)
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in which we use the fact that 𝜆𝜀1
1−

= 𝜆𝜀1
2+
. Noticing that

lim
𝜀→ 𝜀1

𝜆𝜀
1−
, 𝜆𝜀
2+

̸= 𝑐, we obtain
lim
𝜀→ 𝜀1

√𝜀
𝜌𝜀
∗

= 0. (54)

It follows from Lemma 4 that √𝜀1 > 0 is a constant if two
constant states (V

±
, 𝜌
±
) are given. Hence, we deduce that

lim
𝜀→ 𝜀1

𝜌𝜀
∗
= ∞. (55)

Thus we have the following result.

Lemma 5. Set 𝜎 = 𝜆𝜀1
1−
= 𝜆𝜀1
2+
. Then, one has

lim
𝜀→ 𝜀1

V𝜀
∗
= lim
𝜀→ 𝜀1

𝜎𝜀
1
= lim
𝜀→𝜀1

𝜎𝜀
2
= 𝜎, (56)

lim
𝜀→ 𝜀1

∫𝜎
𝜀

2
𝑡

𝜎
𝜀

1
𝑡

𝜌𝜀
∗
𝑐2

𝑐2 − (V𝜀
∗
)2 𝑑𝑥

= (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌] − [(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
]) 𝑡.

(57)

Proof. Letting 𝜀 → 𝜀
1
in (50), we have

lim
𝜀→ 𝜀1

V𝜀
∗
= lim
𝜀→𝜀1

𝑐2 (𝜌𝜀
∗
𝜆𝜀
1−
+ √𝜀)

𝜌𝜀
∗
𝑐2 + √𝜀𝜆𝜀

1−

. (58)

Combining (54) and (58), one can obtain

lim
𝜀→ 𝜀1

V𝜀
∗
= lim
𝜀→ 𝜀1

𝑐2 (𝜆𝜀
1−
+ √𝜀/𝜌𝜀

∗
)

𝑐2 + 𝜆𝜀
1−
√𝜀/𝜌𝜀
∗

= 𝜎. (59)

From (50) and (51), we see that

lim
𝜀→𝜀1

𝜎𝜀
1
= lim
𝜀→ 𝜀1

𝜎𝜀
2
= 𝜎. (60)

Thus from (60) the two shocks 𝑆
1
and 𝑆
2
will coalesce together

when 𝜀 arrives at 𝜀
1
. Using the Rankine-Hugoniot condition

(15) for both 𝑆
1
and 𝑆
2
, we have

𝜎𝜀
1
( 𝜌𝜀

∗

𝑐2 − (V𝜀
∗
)2 (𝑐
2 − 𝜀(V𝜀

∗
)2

(𝜌𝜀
∗
)2𝑐2) − 𝜌

−𝑐2 − V2
−

(𝑐2 − 𝜀V2
−𝜌2
−
𝑐2))

= 𝜌𝜀
∗
V𝜀
∗

𝑐2 − (V𝜀
∗
)2 (𝑐
2 − 𝜀

(𝜌𝜀
∗
)2) − 𝜌

−
V
−𝑐2 − V2
−

(𝑐2 − 𝜀
𝜌2
−

) ,

𝜎𝜀
2
( 𝜌
+𝑐2 − V2
+

(𝑐2 − 𝜀V2
+𝜌2
+
𝑐2) − 𝜌𝜀

∗

𝑐2 − (V𝜀
∗
)2 (𝑐
2 − 𝜀(V𝜀

∗
)2

(𝜌𝜀
∗
)2𝑐2))

= 𝜌
+
V
+𝑐2 − V2
+

(𝑐2 − 𝜀
𝜌2
+

) − 𝜌𝜀
∗
V𝜀
∗

𝑐2 − (V𝜀
∗
)2 (𝑐
2 − 𝜀

(𝜌𝜀
∗
)2) ,

(61)

which yields

𝜌𝜀
∗

𝑐2 − (V𝜀
∗
)2 (𝑐
2 − 𝜀(V𝜀

∗
)2

(𝜌𝜀
∗
)2𝑐2)(𝜎𝜀

1
− 𝜎𝜀
2
)

+ 𝜌
+
𝜎𝜀
2𝑐2 − V2
+

(𝑐2 − 𝜀V2
+𝜌2
+
𝑐2) − 𝜌

−
𝜎𝜀
1𝑐2 − V2
−

(𝑐2 − 𝜀V2
−𝜌2
−
𝑐2)

= 𝜌
+
V
+𝑐2 − V2
+

(𝑐2 − 𝜀
𝜌2
+

) − 𝜌
−
V
−𝑐2 − V2
−

(𝑐2 − 𝜀
𝜌2
−

) .
(62)

Letting 𝜀 → 𝜀
1
, we have

lim
𝜀→ 𝜀1

(𝜎𝜀
2
− 𝜎𝜀
1
) 𝜌𝜀
∗
𝑐2

𝑐2 − (V𝜀
∗
)2

= 𝜎[ 𝜌
𝑐2 − V2

(𝑐2 − 𝜀
1
V2

𝜌2𝑐2)] − [
𝜌V

𝑐2 − V2
(𝑐2 − 𝜀

1𝜌2)]

= 𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌] − [(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
] .

(63)
According to

lim
𝜀→𝜀1

∫𝜎
𝜀

2
𝑡

𝜎
𝜀

1
𝑡

𝜌𝜀
∗
𝑐2

𝑐2 − (V𝜀
∗
)2 𝑑𝑥 = lim

𝜀→ 𝜀1

(𝜎𝜀
2
− 𝜎𝜀
1
) 𝜌𝜀
∗
𝑐2

𝑐2 − (V𝜀
∗
)2 𝑡.

(64)
Equation (57) can be easily obtained.

It can be concluded from Lemma 5 that the two shock
waves 𝑆

1
and 𝑆

2
will coincide when 𝜀 tends to 𝜀

1
(see

Figure 3(b)). We give the following result which provides a
very nice depiction of the limit in the case V

−
> V
+
. This

theorem is similar to that in [37].

Theorem 6. Let V
−
> V
+
. For each fixed 𝜀 ∈ (𝜀

1
, 𝜀
0
), assume

that (V𝜀, 𝜌𝜀) is a solution containing two shocks 𝑆
1
and 𝑆
2
of (5)-

(6)with initial data (8), constructed in Section 3.Then, (V𝜀, 𝜌𝜀)
converges in the sense of distributions as 𝜀 → 𝜀

1
, and the limit

functions 𝜌𝑐2/(𝑐2−V2) and 𝜌V𝑐2/(𝑐2−V2) are the sums of a step
function and a 𝛿-measure with weights

(𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌] − [(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
]) 𝑡,

(𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
] − [(𝜀1𝑝 + 𝜌𝑐

2) V2
𝑐2 − V2

+ 𝜀
1
𝑝]) 𝑡,

(65)

respectively, which form a delta shock solution of (5)-(6) when𝜀 = 𝜀
1
.

Proof. Let 𝜉 = 𝑥/𝑡. Then for each fixed 𝜀 > 0, the Riemann
solution is determined by

(V𝜀, 𝜌𝜀) (𝜉) = {{{{{
(V
−
, 𝜌
−
) , as 𝜉 < 𝜎𝜀

1
,

(V𝜀
∗
, 𝜌𝜀
∗
) , as 𝜎𝜀

1
< 𝜉 < 𝜎𝜀

2
,

(V
+
, 𝜌
+
) , as 𝜉 > 𝜎𝜀

2
,

(66)
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which satisfies the following weak formulations:

∫∞
−∞

𝜌𝜀𝑐2
𝑐2 − (V𝜀)2𝜓 (𝜉) 𝑑𝜉 + ∫

∞

−∞

𝜌𝜀𝑐4 + 𝜀𝑝 (𝜌𝜀) (V𝜀)2
𝑐2 (𝑐2 − (V𝜀)2) 𝜉𝜓󸀠 (𝜉) 𝑑𝜉

− ∫∞
−∞

(𝜌𝜀𝑐2 + 𝜀𝑝 (𝜌𝜀)) V𝜀
𝑐2 − (V𝜀)2 𝜓󸀠 (𝜉) 𝑑𝜉

+ ∫∞
−∞

𝜀𝑝 (𝜌𝜀) (V𝜀)2
𝑐2 (𝑐2 − (V𝜀)2)𝜓 (𝜉) 𝑑𝜉 = 0,

(67)

∫∞
−∞

𝜌𝜀𝑐2V𝜀
𝑐2 − (V𝜀)2𝜓 (𝜉) 𝑑𝜉 + ∫

∞

−∞

(𝜌𝜀𝑐2 + 𝜀𝑝 (𝜌𝜀)) V𝜀
𝑐2 − (V𝜀)2 𝜉𝜓󸀠 (𝜉) 𝑑𝜉

− ∫∞
−∞

(𝜌𝜀(V𝜀)2 + 𝜀𝑝 (𝜌𝜀)) 𝑐2
𝑐2 − (V𝜀)2 𝜓󸀠 (𝜉) 𝑑𝜉

+ ∫∞
−∞

𝜀𝑝 (𝜌𝜀) V𝜀
𝑐2 − (V𝜀)2𝜓 (𝜉) 𝑑𝜉 = 0

(68)

for any test function 𝜓 ∈ 𝐶∞
0
(−∞,∞). The second integral

on the left side of (67) can be decomposed into

{∫𝜎
𝜀

1

−∞

+∫𝜎
𝜀

2

𝜎
𝜀

1

+∫∞
𝜎
𝜀

2

} 𝜌𝜀𝑐4 + 𝜀𝑝 (𝜌𝜀) (V𝜀)2
𝑐2 (𝑐2 − (V𝜀)2) 𝜉𝜓󸀠 (𝜉) 𝑑𝜉, (69)

which equals

𝜌
−
𝑐4 + 𝜀𝑝

−
V2
−𝑐2 (𝑐2 − V2
−
) 𝜎𝜀1𝜓 (𝜎𝜀1) −

𝜌
+
𝑐4 + 𝜀𝑝

+
V2
+𝑐2 (𝑐2 − V2
+
) 𝜎𝜀2𝜓 (𝜎𝜀2)

− 𝜌
−
𝑐4 + 𝜀𝑝

−
V2
−𝑐2 (𝑐2 − V2
−
) ∫𝜎

𝜀

1

−∞

𝜓 (𝜉) 𝑑𝜉

− 𝜌
+
𝑐4 + 𝜀𝑝

+
V2
+𝑐2 (𝑐2 − V2
+
) ∫∞
𝜎
𝜀

2

𝜓 (𝜉) 𝑑𝜉

− 𝜌𝜀
∗
𝑐4 + 𝜀𝑝𝜀

∗
V𝜀
∗

𝑐2 (𝑐2 − (V𝜀
∗
)2) ∫
𝜎
𝜀

2

𝜎
𝜀

1

𝜓 (𝜉) 𝑑𝜉

+ 𝜌𝜀
∗
𝑐4 + 𝜀𝑝𝜀

∗
V𝜀
∗

𝑐2 (𝑐2 − (V𝜀
∗
)2) (𝜎

𝜀

2
𝜓 (𝜎𝜀
2
) − 𝜎𝜀
1
𝜓 (𝜎𝜀
1
)) .

(70)

The third term on the left side of (67) can be calculated by

− {∫𝜎
𝜀

1

−∞

+∫𝜎
𝜀

2

𝜎
𝜀

1

+∫∞
𝜎
𝜀

2

} (𝜌𝜀𝑐2 + 𝜀𝑝 (𝜌𝜀)) V𝜀
𝑐2 − (V𝜀)2 𝜓󸀠 (𝜉) 𝑑𝜉

= −(𝜌−𝑐
2 + 𝜀𝑝

−
) V
−

𝑐2 − V2
−

𝜓 (𝜎𝜀
1
)

+ (𝜌
+
𝑐2 + 𝜀𝑝

+
) V
+

𝑐2 − V2
+

𝜓 (𝜎𝜀
2
)

− (𝜌𝜀
∗
𝑐2 + 𝜀𝑝𝜀

∗
) V𝜀
∗

𝑐2 − (V𝜀
∗
)2 (𝜓 (𝜎𝜀

2
) − 𝜓 (𝜎𝜀

1
)) ,

(71)

and the last term in (67) yields

∫∞
−∞

𝜀𝑝 (𝜌𝜀) (V𝜀)2
𝑐2 (𝑐2 − (V𝜀)2)𝜓 (𝜉) 𝑑𝜉

= {∫𝜎
𝜀

1

−∞

+∫𝜎
𝜀

2

𝜎
𝜀

1

+∫∞
𝜎
𝜀

2

} 𝜀𝑝 (𝜌𝜀) (V𝜀)2
𝑐2 (𝑐2 − (V𝜀)2)𝜓 (𝜉) 𝑑𝜉

= 𝜀𝑝
−
V2
−𝑐2 (𝑐2 − V2
−
) ∫
𝜎
𝜀

1

−∞

𝜓 (𝜉) 𝑑𝜉

+ 𝜀𝑝
+
V2
+𝑐2 (𝑐2 − V2
+
) ∫
∞

𝜎
𝜀

2

𝜓 (𝜉) 𝑑𝜉

+ 𝜀𝑝𝜀
∗
(V𝜀
∗
)2

𝑐2 (𝑐2 − (V𝜀
∗
)2) ∫
𝜎
𝜀

2

𝜎
𝜀

1

𝜓 (𝜉) 𝑑𝜉.

(72)

Combining expressions (67), (70)–(72), we obtain

∫∞
−∞

𝜌𝜀𝑐2
𝑐2 − (V𝜀)2𝜓 (𝜉) 𝑑𝜉

= −𝜌−𝑐4 + 𝜀𝑝−V2−𝑐2 (𝑐2 − V2
−
) 𝜎𝜀1𝜓 (𝜎𝜀1) +

𝜌
+
𝑐4 + 𝜀𝑝

+
V2
+𝑐2 (𝑐2 − V2
+
) 𝜎𝜀2𝜓 (𝜎𝜀2)

+ 𝜌
−
𝑐2

𝑐2 − V2
−

∫𝜎
𝜀

1

−∞

𝜓 (𝜉) 𝑑𝜉 + 𝜌
+
𝑐2

𝑐2 − V2
+

∫∞
𝜎
𝜀

2

𝜓 (𝜉) 𝑑𝜉

+ 𝜌𝜀
∗
𝑐2

𝑐2 − (V𝜀
∗
)2 ∫
𝜎
𝜀

2

𝜎
𝜀

1

𝜓 (𝜉) 𝑑𝜉

− 𝜌𝜀
∗
𝑐4 + 𝜀𝑝𝜀

∗
V𝜀
∗𝑐2 (𝑐2 − V𝜀
∗
) (𝜎𝜀
2
𝜓 (𝜎𝜀
2
) − 𝜎𝜀
1
𝜓 (𝜎𝜀
1
))

+ (𝜌
−
𝑐2 + 𝜀𝑝

−
) V
−

𝑐2 − V2
−

𝜓 (𝜎𝜀
1
) − (𝜌

+
𝑐2 + 𝜀𝑝

+
) V
+

𝑐2 − V2
+

𝜓 (𝜎𝜀
2
)

+ (𝜌𝜀
∗
𝑐2 + 𝜀𝑝𝜀

∗
) V𝜀
∗

𝑐2 − (V𝜀
∗
)2 (𝜓 (𝜎𝜀

2
) − 𝜓 (𝜎𝜀

1
)) .

(73)
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Taking the limit 𝜀 → 𝜀
1
in (73), observing that 𝜓 ∈𝐶∞

0
(−∞,∞) and 𝑝(𝜌𝜀

∗
) is bounded, together with the fact

lim
𝜀→ 𝜀1

V𝜀
∗
= lim
𝜀→𝜀1

𝜎𝜀
1
= lim
𝜀→ 𝜀1

𝜎𝜀
2
= 𝜎, we have

lim
𝜀→𝜀1

∫∞
−∞

( 𝜌𝜀𝑐2
𝑐2 − (V𝜀)2 (𝜉) −

𝜌
0
𝑐2

𝑐2 − V2
0

(𝜉 − 𝜎))𝜓 (𝜉) 𝑑𝜉

= (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌]

−[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
])𝜓 (𝜎) ,

(74)

where 𝑎
0
(𝜉) = 𝑎

−
+ [𝑎]𝐻(𝜉 − 𝜎) and 𝐻 is the Heaviside

function. With the same reason as above, the limit of the
second and the last integral on the left side of equality (68)
as 𝜀 → 𝜀

1
is

− ∫𝜎
−∞

𝜌
−
V
−
𝑐2

𝑐2 − V2
−

𝜓 (𝜉) 𝑑𝜉 − ∫∞
𝜎

𝜌
+
V
+
𝑐2

𝑐2 − V2
+

𝜓 (𝜉) 𝑑𝜉

− 𝜎𝜓 (𝜎) [(𝜌𝑐
2 + 𝜀
1
𝑝) V

𝑐2 − V2
] .

(75)

As done to (71), due to the fact that 𝑝(𝜌𝜀
∗
) is bounded and

lim
𝜀→ 𝜀1

𝜎𝜀
1
= lim
𝜀→𝜀1

𝜎𝜀
2
= 𝜎, the third integral on the left side

of equality (68) converges to

𝜓 (𝜎) [(𝜌V
2 + 𝜀
1
𝑝) 𝑐2

𝑐2 − V2
] (76)

as 𝜀 → 𝜖
1
. Then it follows from (68), (75), and (76) that

lim
𝜀→ 𝜀1

∫∞
−∞

( 𝜌𝜀V𝜀𝑐2
𝑐2 − (V𝜀)2 (𝜉) −

𝜌
0
V
0
𝑐2

𝑐2 − V2
0

(𝜉 − 𝜎))𝜓 (𝜉) 𝑑𝜉

= (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
]

−[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 − V2
+ 𝜀
1
𝑝])𝜓 (𝜎) .

(77)

Finally, we study the limits of 𝜌𝜀𝑐2/(𝑐2 − (V𝜀)2) and
𝜌𝜀V𝜀𝑐2/(𝑐2 −(V𝜀)2) as 𝜀 → 𝜀

1
by tracing the time-dependence

of weights of the 𝛿-measure. Let 𝜙(𝑥, 𝑡) ∈ 𝐶∞
0
((−∞,∞) ×

[0,∞)) and set 𝜙(𝜉, 𝑡) := 𝜙(𝜉𝑡, 𝑡). Then we have

lim
𝜀→𝜀1

∫∞
0

∫∞
−∞

𝜌𝜀𝑐2
𝑐2 − (V𝜀)2 (

𝑥
𝑡 ) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= lim
𝜀→ 𝜀1

∫∞
0

𝑡 (∫∞
−∞

𝜌𝜀𝑐2
𝑐2 − (V𝜀)2 (𝜉) 𝜙 (𝜉, 𝑡) 𝑑𝜉) 𝑑𝑡.

(78)

On the other hand,

lim
𝜀→ 𝜀1

∫∞
−∞

𝜌𝜀𝑐2
𝑐2 − (V𝜀)2 (𝜉) 𝜙 (𝜉, 𝑡) 𝑑𝜉

= ∫∞
−∞

𝜌
0
𝑐2

𝑐2 − V2
0

(𝜉 − 𝜎) 𝜙 (𝜉, 𝑡) 𝑑𝜉

+ (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌]

−[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
])𝜙 (𝜉, 𝑡)

= 𝑡−1 ∫∞
−∞

𝜌
0
𝑐2

𝑐2 − V2
0

(𝑥 − 𝜎𝑡) 𝜙 (𝑥, 𝑡) 𝑑𝑥

+ (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌]

−[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
])𝜙 (𝜎𝑡, 𝑡) .

(79)

Combining (78) and (79) together, we obtain

lim
𝜀→𝜀1

∫∞
0

∫∞
−∞

𝜌𝜀𝑐2
𝑐2 − (V𝜀)2 (

𝑥
𝑡 ) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫∞
0

∫∞
−∞

𝜌
0
𝑐2

𝑐2 − V2
0

(𝑥 − 𝜎𝑡) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫∞
0

𝑡 (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 (𝑐2 − V2) + 𝜌]

−[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
])𝜙 (𝜎𝑡, 𝑡) 𝑑𝑡.

(80)

With the same reason as before, we deduce that

lim
𝜀→ 𝜀1

∫∞
0

∫∞
−∞

𝜌𝜀V𝜀𝑐2
𝑐2 − (V𝜀)2 (

𝑥
𝑡 ) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫∞
0

∫∞
−∞

𝜌
0
V
0
𝑐2

𝑐2 − V2
0

(𝑥 − 𝜎𝑡) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫∞
0

𝑡 (𝜎[(𝜀1𝑝 + 𝜌𝑐
2) V

𝑐2 − V2
]

−[(𝜀1𝑝 + 𝜌𝑐
2) V2

𝑐2 − V2
+ 𝜀
1
𝑝])𝜙 (𝜎𝑡, 𝑡) 𝑑𝑡.

(81)

Thus the results have been obtained.



Abstract and Applied Analysis 11

Comparing the above results with (28), we can see that the
quantities 𝜎

𝛿
, 𝜔𝜀(𝑡) and the limits of V𝜀

∗
, 𝜎𝜀
1
, and 𝜎𝜀

2
should be

consistent with (31) as proposed for the Riemann solutions
to (5)-(6) for 𝐸 ̸= 0 when we take 𝜀 = 𝜀

1
. If 𝐸 = 0, then

the assert is obviously true. Thus, as 𝜀 → 𝜀
1
it uniquely

determines that the limit of the Riemann solutions to system
(5)-(6) in the case (V

+
, 𝜌
+
) ∈ IV(V

−
, 𝜌
−
) is just the delta shock

solution of (5)-(6) in the case (V
+
, 𝜌
+
) ∈ 𝑆
𝛿
, where the curve 𝑆

𝛿

is actually the boundary between the regions IV(V
−
, 𝜌
−
) and

V(V
−
, 𝜌
−
).

4.2. Limit Behavior of Delta Shock Wave. In this subsection,
we continue to discuss the situation 0 < 𝜀 < 𝜀

1
, in which(V

+
, 𝜌
+
) ∈ V(V

−
, 𝜌
−
) with V

−
> V
+
and 𝜌

±
> √𝜀/𝑐. In this

case, the Riemann solution to system (5)-(6) contains a delta
shock wave besides two constant states (V

±
, 𝜌
±
). We want to

observe the behavior of strength and propagation speed of
the delta shock wave when 𝜀 decreases and finally tends to
zero.

If 0 < 𝜀 < 𝜀
1
, the Riemann solution to system (5)-(6)

contains a delta shock wave whose strength and propagation
speed can be expressed by (31) for 𝐸 ̸= 0. Rewrite 𝜎

𝛿
in (31) as

𝜎
𝛿
= ( 𝜌

+
V
+𝑐2 − V2
+

(𝑐2 − 𝜀
𝜌2
+

)

− 𝜌
−
V
−𝑐2 − V2
−

(𝑐2 − 𝜀
𝜌2
−

)

+√ 𝜌
+
𝜌
−
𝛼 (𝜀)

(𝑐2 − V2
+
) (𝑐2 − V2

−
))

× ( 𝜌
+𝑐2 − V2
+

(𝑐2 − 𝜀V2
+𝜌2
+
𝑐2)

− 𝜌
−𝑐2 − V2
−

(𝑐2 − 𝜀V2
−𝜌2
−
𝑐2))

−1

,

(82)

where

𝛼 (𝜀) = (V
−
− V
+
)2(𝑐2 − 𝜀

𝜌
+
𝜌
−

)2

− 𝜀( 1
𝜌
+

− 1
𝜌
−

)2(𝑐2 − V
+
V
−
)2.

(83)

It can be derived from (31), (82), and (83) that

𝑑
𝑑𝜀 (

𝑤 (𝑡) 𝑐2
𝑐2 − 𝜎2

𝛿

) < 0, (84)

which means the strength of the delta shock wave increases
when 𝜀 decreases. Furthermore, taking the limit 𝜀 → 0 in
(82) leads to

lim
𝜀→0

𝜎
𝛿
= V
+
√𝜌
+
/ (𝑐2 − V2

+
) + V
−
√𝜌
−
/ (𝑐2 − V2

−
)

√𝜌
+
/ (𝑐2 − V2

+
) + √𝜌

−
/ (𝑐2 − V2

−
) . (85)

Thus one can easily deduce from (31) and (85) that

lim
𝜀→0

𝑤𝜀 (𝑡) = √ 𝜌
+𝑐2 − V2
+

𝜌
−𝑐2 − V2
−

(V
−
− V
+
) (𝑐2 − V2

𝛿
) 𝑡. (86)

Thus, the limit values of 𝜎
𝛿
and 𝑤𝜀(𝑡) are identical with (38).

For the special case 𝐸 = 0, the same result can be derived
from (32).

From the above discussion, we can see that the limit of the
strength and propagation speed of the delta shock wave in the
Riemann solution to system (5)-(6) is in accordance with that
of system (4) with the same initial data (8). That is to say, the
delta shock solution to system (5)-(6) converges to the delta
shock solution to system (4) as pressure vanishes.

Combining the results of the above two subsections, we
conclude that the two shock waves of the Riemann solution
to system (5)-(6) become steeper as 𝜀 decreases and then
coincide with a delta shock wave at a certain critical value𝜀
1
. As 𝜀 continues to drop, the strength of this delta shock

becomes stronger and stronger. In the end, as 𝜀 goes to zero,
the delta shock solution is nothing but the Riemann solution
to the zero-pressure relativistic Euler system (4).

5. Limit of Riemann Solutions to
(5)-(6) for V

−
< V
+

In this section, we will show the limit behavior of rarefaction
waves in the Riemann solutions to (5)-(6) and (8) when 𝜀
tends to zero in the case (V

+
, 𝜌
+
) ∈ I(V

−
, 𝜌
−
) with V

−
< V
+

and 𝜌
±
> √𝜀/𝑐. See Figure 4(a).

Lemma 7. If V
−

< V
+
, then there exists 𝜀

0
> 0 such that(V

+
, 𝜌
+
) ∈ I(V

−
, 𝜌
−
) for 0 < 𝜀 < 𝜀

0
.

Proof. It follows from (13) and (14) that all possible states(V, 𝜌)which can be connected on the right side to the left state(V
−
, 𝜌
−
) by a 1-rarefaction wave 𝑅

1
or a 2-rarefaction wave 𝑅

2

should satisfy

𝑅
1
: 𝜌V − √𝜀
𝜌𝑐2 − √𝜀V = 𝜌

−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

, 𝜌 < 𝜌
−
,

𝑅
2
: 𝜌V + √𝜀
𝜌𝑐2 + √𝜀V = 𝜌

−
V
−
+ √𝜀

𝜌
−
𝑐2 + √𝜀V

−

, 𝜌 > 𝜌
−
.

(87)

Particularly, if 𝜌
+
= 𝜌
−
, then (V

+
, 𝜌
+
) ∈ I(V

−
, 𝜌
−
) for any 𝜀 > 0.

Thus we can take arbitrary 𝜀
0
> 0 in this special situation.

Let 𝜌
+

̸= 𝜌
−
and (V

+
, 𝜌
+
) ∈ I(V

−
, 𝜌
−
). Observing that (𝜌V −√𝜀)/(𝜌𝑐2−√𝜀V) and (𝜌V+√𝜀)/(𝜌𝑐2+√𝜀V) are bothmonotone

increasing with V, we can see intuitively from Figure 4(a)
together with (87) that 𝜀 satisfies

𝜌
+
V
+
− √𝜀

𝜌
+
𝑐2 − √𝜀V

+

> 𝜌
−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

, if 𝜌
+
< 𝜌
−
,

𝜌
+
V
+
+ √𝜀

𝜌
+
𝑐2 + √𝜀V

+

> 𝜌
−
V
−
+ √𝜀

𝜌
−
𝑐2 + √𝜀V

−

, if 𝜌
+
> 𝜌
−
,

(88)
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) ∈ I(V

−
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−
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which imply that

(V
+
− V
−
) 𝜀 + 󵄨󵄨󵄨󵄨𝜌− − 𝜌+󵄨󵄨󵄨󵄨 (𝑐2 − V

+
V
−
)√𝜀

− 𝑐2𝜌
+
𝜌
−
(V
+
− V
−
) < 0. (89)

Thus we can take

√𝜀0 :=
󵄨󵄨󵄨󵄨𝜌− − 𝜌+󵄨󵄨󵄨󵄨 (V+V− − 𝑐2)

2 (V
+
− V
−
)

+ √(𝜌
−
− 𝜌
+
)2(𝑐2 − V

+
V
−
)2 + 4𝑐2𝜌

+
𝜌
−
(V
+
− V
−
)2

2 (V
+
− V
−
) .

(90)

Obviously we have (V
+
, 𝜌
+
) ∈ I(V

−
, 𝜌
−
) if 𝜀 < 𝜀

0
.

Lemma 7 implies that the rarefaction wave curves 𝑅
1

and 𝑅
2
become steeper when 𝜀 goes to zero. As V

−
<

V
+
, by Lemma 7, for any given 𝜀 ∈ (0, 𝜀

0
), the Riemann

solution to system (5)-(6) with initial data (8) consists of two
constant states (V

±
, 𝜌
±
), an intermediate state (V𝜀

∗
, 𝜌𝜀
∗
), and

two rarefaction curves𝑅
1
, 𝑅
2
. See Figure 4(a).Then, it follows

from (13) and (14) that

𝑅
1
: 𝜆𝜀
1
= 𝑐2 (𝜌V − √𝜀)

𝜌𝑐2 − √𝜀V = 𝑐2 (𝜌
−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

= 𝜆𝜀
1−
,

𝜌𝜀
∗
≤ 𝜌 ≤ 𝜌

−
,

𝑅
2
: 𝜆𝜀
2
= 𝑐2 (𝜌V + √𝜀)

𝜌𝑐2 + √𝜀V = 𝑐2 (𝜌
+
V
+
+ √𝜀)

𝜌
+
𝑐2 + √𝜀V

+

= 𝜆𝜀
2+
,

𝜌𝜀
∗
≤ 𝜌 ≤ 𝜌

+
.

(91)

From (91), we can derive

(𝜆𝜀
2+
− 𝜆𝜀
1−
) 𝜀
(𝜌𝜀
∗
)2 + 2 (𝜆

𝜀

1−
𝜆𝜀
2+
− 𝑐2) √𝜀𝜌𝜀

∗

+ (𝜆𝜀
2+
− 𝜆𝜀
1−
) 𝑐2 = 0.

(92)

So 𝜌𝜀
∗
can be expressed as

𝜌𝜀
∗
= √𝜀 (𝜆𝜀

2+
− 𝜆𝜀
1−
)

𝑐2 − 𝜆𝜀
1−
𝜆𝜀
2+
+ √(𝑐2 − (𝜆𝜀

1−
)2) (𝑐2 − (𝜆𝜀

2+
)2) . (93)

It is observed that the propagation speed of 𝑅
1
increases

with the decrease of 𝜀, while the propagation speed of 𝑅
2

decreases with the decrease of 𝜀. Thus from lim
𝜀→0

𝜆𝜀
1−

=
V
−
, lim
𝜀→0

𝜆𝜀
2+
= V
+
, (93) yields

lim
𝜀→0

𝜌𝜀
∗
= 0, lim

𝜀→0

𝜆𝜀
1
= V
−
, lim

𝜀→0

𝜆𝜀
2
= V
+
. (94)

The above identities assert that as 𝜀 drops to zero, 𝜌𝜀
∗
vanishes

and two rarefaction waves 𝑅
1
and 𝑅

2
become two contact

discontinuities connecting the constant states (V
±
, 𝜌
±
) and the

vacuum (𝜌
∗
= 0), with the speeds V

−
and V
+
, respectively; see

Figure 4(b). From the above discussion, we can summarize
our results as follows.

Theorem 8. In the case of V
−
< V
+
, as 𝜀 drops to zero, the

Riemann solution of (5)-(6)with initial data (8) converges to a
vacuum solution, which is exactly the corresponding Riemann
solution to system (4) with the same initial data.

6. Limit of Riemann Solutions to
(5)-(6) for V

−
= V
+

In this section, we consider the limit of Riemann solutions to
system (5)-(6) with initial data (8) when V

−
= V
+
. In this case,

the Riemann solutions contain a 1-rarefaction wave 𝑅
1
and a

2-shock wave 𝑆
2
for 𝜌
+
< 𝜌
−
or a 1-shock wave 𝑆

1
and a 2-

rarefaction wave 𝑅
2
for 𝜌
+
> 𝜌
−
. Particularly, if 𝜌

+
= 𝜌
−
, the

solution is a constant state (V
−
, 𝜌
−
).

For the case 𝜌
+

< 𝜌
−
, we have (V

+
, 𝜌
+
) ∈ II(V

−
, 𝜌
−
)

obviously, as shown in Figure 5(a), the Riemann solution of
(5)-(6) has the construction as

(V𝜀, 𝜌𝜀) (𝜉) =
{{{{{{{{{

(V
−
, 𝜌
−
) , −∞ < 𝜉 ≤ 𝜆𝜀

1−
,

𝑅
1
, 𝜆𝜀

1−
≤ 𝜉 ≤ 𝜆𝜀

1∗
,

(V𝜀
∗
, 𝜌𝜀
∗
) , 𝜆𝜀

1∗
≤ 𝜉 < 𝜎𝜀

2
,

(V
+
, 𝜌
+
) , 𝜎𝜀

2
< 𝜉 < ∞,

(95)

where 𝜎𝜀
2
is the propagation speed of 𝑆

2
and 𝑅

1
consists of the

states (V, 𝜌) satisfying (13).
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By (13) and (18), the intermediate state (V𝜀
∗
, 𝜌𝜀
∗
) between𝑅

1
and 𝑆
2
satisfies

𝜌𝜀
∗
V𝜀
∗
− √𝜀

𝜌𝜀
∗
𝑐2 − √𝜀V𝜀

∗

= 𝜌
−
V
−
− √𝜀

𝜌
−
𝑐2 − √𝜀V

−

, (96)

𝜌𝜀
∗
V𝜀
∗
+ √𝜀

𝜌𝜀
∗
𝑐2 + √𝜀V𝜀

∗

= 𝜌
+
V
+
+ √𝜀

𝜌
+
𝑐2 + √𝜀V

+

, (97)

with 𝜌
+

< 𝜌𝜀
∗

< 𝜌
−
. Letting 𝜀 → 0 in (96), one can

immediately get lim
𝜀→0

V𝜀
∗
= V
−
, noticing the fact that 𝜌𝜀

∗
is

bounded. Meanwhile, we have

lim
𝜀→0

𝜎𝜀
2
= lim
𝜀→0

𝑐2 (𝜌
+
V
+
+ √𝜀)

𝜌
+
𝑐2 + √𝜀V

+

= V
−
,

lim
𝜀→0

𝜆𝜀
1∗
= lim
𝜀→0

𝑐2 (𝜌𝜀
∗
V𝜀
∗
− √𝜀)

𝜌𝜀
∗
𝑐2 − √𝜀V𝜀

∗

= V
−
,

lim
𝜀→0

𝜆𝜀
1−
= lim
𝜀→0

𝑐2 (𝜌
−
V
−
− √𝜀)

𝜌
−
𝑐2 − √𝜀V

−

= V
−
.

(98)

From identities (98), as 𝜀 goes to zero, we conclude that
the rarefaction wave 𝑅

1
and shock wave 𝑆

2
converge to one

contact discontinuity with the propagation speed V
−
, which

connects the constant states (V
±
, 𝜌
±
); see Figure 5(b).

For the case 𝜌
+
> 𝜌
−
, (V
+
, 𝜌
+
) ∈ III(V

−
, 𝜌
−
), as shown

in Figure 6(a), the Riemann solution of (5)-(6) has the
construction as

(V𝜀, 𝜌𝜀) (𝜉) =
{{{{{{{{{

(V
−
, 𝜌
−
) , −∞ < 𝜉 < 𝜎𝜀

1
,

(V𝜀
∗
, 𝜌𝜀
∗
) , 𝜎𝜀

1
< 𝜉 ≤ 𝜆𝜀

2∗
,

𝑅
2
, 𝜆𝜀

2∗
≤ 𝜉 ≤ 𝜆𝜀

2+
,

(V
+
, 𝜌
+
) , 𝜆𝜀

2+
≤ 𝜉 < ∞,

(99)

where 𝜎𝜀
1
is the propagation speed of 𝑆

1
and 𝑅

2
consists of the

states (V, 𝜌) satisfying (14). By (14) and (17), the intermediate
state (V𝜀

∗
, 𝜌𝜀
∗
) between 𝑅

2
and 𝑆

1
satisfies (96) and (97) with𝜌

−
< 𝜌𝜀
∗
< 𝜌
+
. Similarly, we have

lim
𝜀→0

𝜆𝜀
2∗
= lim
𝜀→0

𝜆𝜀
2+
= lim
𝜀→0

𝜎𝜀
1
= V
−
. (100)

Thus as 𝜀 goes to zero, the rarefactionwave𝑅
2
and shockwave𝑆

1
converge to a contact discontinuity with the propagation

speed V
−
, which connects the constant states (V

±
, 𝜌
±
); see

Figure 6(b). From the above discussion, we can summarize
our results as follows.

Theorem 9. In the case of V
−
= V
+
, as 𝜀 drops to zero, the

Riemann solution of (5)-(6) with initial data (8) converges to
a contact discontinuity connecting the constant states (V

±
, 𝜌
±
),
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which is exactly the corresponding Riemann solution to system
(4) with the same initial data.
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tration processes,” Rossĭıskaya Akademiya Nauk. Moskovskoe
Matematicheskoe Obshchestvo, vol. 63, no. 3, pp. 73–146, 2008.

[21] A. Anile, Relativistic Fluids and Magnetouids, Cambridge Uni-
versity Press, London, UK, 1989.

[22] J. Ma. Mart́ı and E. Müller, “The analytical solution of the
Riemann problem in relativistic hydrodynamics,” Journal of
Fluid Mechanics, vol. 258, pp. 317–333, 1994.

[23] A. Taub, “Relativistic uid mechanics,” Annual Review of Fluid
Mechanics, vol. 10, pp. 301–332, 1978.

[24] J. Smoller and B. Temple, “Global solutions of the relativistic
Euler equations,” Communications inMathematical Physics, vol.
156, no. 1, pp. 67–99, 1993.

[25] J. Chen, “Conservation laws for the relativistic 𝑝-system,”
Communications in Partial Differential Equations, vol. 20, no.
9-10, pp. 1605–1646, 1995.

[26] C.-H. Hsu, S.-S. Lin, and T. Makino, “On the relativistic Euler
equation,”Methods and Applications of Analysis, vol. 8, no. 1, pp.
159–207, 2001.

[27] P. G. LeFloch and M. Yamazaki, “Entropy solutions of the
Euler equations for isothermal relativistic fluids,” International
Journal of Dynamical Systems and Differential Equations, vol. 1,
no. 1, pp. 20–37, 2007.

[28] G.-Q. Chen and Y. Li, “Stability of Riemann solutions with
large oscillation for the relativistic Euler equations,” Journal of
Differential Equations, vol. 202, no. 2, pp. 332–353, 2004.

[29] Y. Li, D. Feng, and Z. Wang, “Global entropy solutions to
the relativistic Euler equations for a class of large initial data,”
Zeitschrift für Angewandte Mathematik und Physik, vol. 56, no.
2, pp. 239–253, 2005.

[30] L. Min and S. Ukai, “Non-relativistic global limits of weak solu-
tions of the relativistic Euler equation,” Journal of Mathematics
of Kyoto University, vol. 38, no. 3, pp. 525–537, 1998.

[31] L. Ruan and C. Zhu, “Existence of global smooth solution
to the relativistic Euler equations,” Nonlinear Analysis. Theory,
Methods & Applications, vol. 60, no. 6, pp. 993–1001, 2005.

[32] M. Ding and Y. Li, “Local existence and non-relativistic limits
of shock solutions to a multidimensional piston problem for
the relativistic Euler equations,” Zeitschrift für Angewandte
Mathematik und Physik, vol. 64, no. 1, pp. 101–121, 2013.

[33] R. Pan and J. A. Smoller, “Blowup of smooth solutions for
relativistic Euler equations,” Communications in Mathematical
Physics, vol. 262, no. 3, pp. 729–755, 2006.

[34] H. Cheng and H. Yang, “Riemann problem for the relativistic
Chaplygin Euler equations,” Journal of Mathematical Analysis
and Applications, vol. 381, no. 1, pp. 17–26, 2011.

[35] S. Chaplygin, “On gas jets,” Scientific Memoirs, Moscow Univer-
sity Mathematic Physics, vol. 21, pp. 1–121, 1904.

[36] J. Li, “Note on the compressible Euler equations with zero
temperature,” Applied Mathematics Letters, vol. 14, no. 4, pp.
519–523, 2001.



Abstract and Applied Analysis 15

[37] G.-Q. Chen and H. Liu, “Formation of 𝛿-shocks and vacuum
states in the vanishing pressure limit of solutions to the Euler
equations for isentropic fluids,” SIAM Journal on Mathematical
Analysis, vol. 34, no. 4, pp. 925–938, 2003.

[38] G. Yin and W. Sheng, “Delta shocks and vacuum states in
vanishing pressure limits of solutions to the relativistic Euler
equations for polytropic gases,” Journal of Mathematical Anal-
ysis and Applications, vol. 355, no. 2, pp. 594–605, 2009.

[39] G. Yin and W. Sheng, “Delta shocks and vacuum states in
vanishing pressure limits of solutions to the relativistic Euler
equations,” Chinese Annals of Mathematics B, vol. 29, no. 6, pp.
611–622, 2008.
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