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We study the existence andmonotone iteration of solutions for a third-order four-point boundary value problemwith 𝑝-Laplacian.
An existence result of positive, concave, and pseudosymmetric solutions and its monotone iterative scheme are established by using
the monotone iterative technique. Meanwhile, as an application of our result, an example is given.

1. Introduction

The third-order equations arise in many areas of applied
mathematics and physics [1] and thus have been discussed
by many authors and many excellent results were obtained;
see [1–31] and the references therein. Recently, wide attention
has been paid to the third-order boundary value problems
with the𝑝-Laplace operator. In fact, the third-order equations
involving the 𝑝-Laplace operator can be seen as a generalized
model for various physical, natural or physiological phenom-
ena such as the flow of a thin film of viscous fluid over a solid
surface, the solitary wave solution of the Korteweg-de Vries
equation or a thyroid-pituitary interaction [17].

In 2005, Cabada et al. [7] studied the one-dimensional
nonlinear third-order 𝜙-Laplacian equation

−(𝜙 (𝑢
󸀠󸀠

(𝑡)))
󸀠

= 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏] (1)

with the boundary conditions

𝑢 (𝑎) = 𝐴, 𝑢
󸀠󸀠

(𝑎) = 𝐵, 𝑢
󸀠󸀠

(𝑏) = 𝐶, (2)

where 𝜙 : R → R is an increasing homeomorphism with
𝜙(0) = 0. By applying the monotone iterative technique
based on suitable antimaximum principles, they obtained the
existence of extremal solutions for the problem.

In 2006, using the monotone iterative technique, Zhou
and Ma [30] obtained the existence of positive solutions

and established a corresponding iterative scheme for the
following third-order 𝑝-Laplacian problem of the form:

(𝜙
𝑝
(𝑢
󸀠󸀠

(𝑡)))
󸀠

= 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) =

𝑚

∑

𝑖=1

𝛼
𝑖
𝑢 (𝜉
𝑖
) , 𝑢

󸀠
(𝜂) = 0,

𝑢
󸀠󸀠

(1) =

𝑛

∑

𝑖=1

𝛽
𝑖
𝑢
󸀠󸀠
(𝜃
𝑖
) .

(3)

In 2007,Wang andGe [26] considered third-order differential
equation

(𝜙 (𝑢
󸀠󸀠

(𝑡)))
󸀠

+ 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡)) = 0, 𝑡 ∈ (0, 1)

(4)

subject to the following integral boundary conditions:

𝑢 (0) = 0,

𝑢
󸀠

(0) − 𝑘
1
𝑢
󸀠󸀠

(0) = ∫

1

0

ℎ
1
(𝑢 (𝑠)) d𝑠,

𝑢
󸀠

(1) + 𝑘
2
𝑢
󸀠󸀠

(1) = ∫

1

0

ℎ
2
(𝑢 (𝑠)) d𝑠.

(5)

The existence result to the problem is obtained by applying
themethod of upper and lower solutions and Leray-Schauder
degree theory.
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In 2009, Sun et al. [24] studied the existence of positive
solutions for the following third-order 𝑝-Laplacian problem:

(𝜙
𝑝
(𝑢
󸀠󸀠

(𝑡)))
󸀠

= 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) =

𝑚

∑

𝑖=1

𝛼
𝑖
𝑢 (𝜉
𝑖
) , 𝑢

󸀠
(𝜂) = 0, 𝑢

󸀠󸀠

(1) =

𝑛

∑

𝑖=1

𝛽
𝑖
𝑢
󸀠󸀠
(𝜃
𝑖
) .

(6)

By applying a monotone iterative method, the authors
obtained the existence of positive solutions for the problem
and established iterative schemes for approximating the
solutions.

In 2010, Jin and Lu [17] considered the following third-
order 𝑝-Laplacian resonant problem of the form:

(𝜙
𝑝
(𝑥
󸀠󸀠

(𝑡)))
󸀠

= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠

(𝑥) , 𝑥
󸀠󸀠

(𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥
󸀠

(1) =

𝑚−2

∑

𝑖=1

𝑎
𝑖
𝑥
󸀠
(𝜉
𝑖
) , 𝑥

󸀠󸀠

(0) = 0.

(7)

The authors obtained the existence of solutions for the
problem by using Mawhin’s continuation theorem.

In 2010, by using the fixed point index method, Yang and
Yan [31] established the existence of at least one or at least two
positive solutions for the following third-order 𝑝-Laplacian
problem:

(𝜙
𝑝
(𝑢
󸀠󸀠

(𝑡)))
󸀠

+ 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝛼𝑢 (0) − 𝛽𝑢
󸀠

(0) = 0, 𝛾𝑢 (1) + 𝛿𝑢
󸀠

(1) = 0,

𝑢
󸀠󸀠

(0) = 0.

(8)

Motivated by the above works and [32, 33], in this paper, we
consider the existence and monotone iteration of positive,
pseudosymmetric solutions of the following third-order four-
point 𝑝-Laplacian boundary value problem:

(𝜙
𝑝
(𝑢
󸀠󸀠

(𝑡)))
󸀠

+ 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) = 0, 𝑡 ∈ (0, 1) (9)

subject to boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 𝑢 (𝜂) , 𝑢
󸀠󸀠
(
1 + 𝜂

2
) = 0, (10)

where 𝜙
𝑝
(𝑠) = |𝑠|

𝑝−2
𝑠, 𝑝 > 1, and 𝜂 ∈ (0, 1) be constant.

Here 𝑢∗(𝑡) is said to be a positive solution of BVP (9), (10) if
and only if 𝑢∗(𝑡) is the solution of BVP (9), (10) and satisfies
𝑢
∗
(𝑡) > 0 for 𝑡 ∈ (0, 1]. BVP (9), (10) can model the static

deflection of an elastic beam with linear supports at both
endpoints.

To the best of our knowledge, the existence results of
the pseudosymmetric solutions for the third-order boundary
value problem has not been considered.

This work is organized as follows. In Section 2, some
notations and preliminaries are introduced. The main results
are discussed in Section 3. As applications of our results, an
example is given in the last section.

2. Preliminary

In this section, we give some definitions and lemmas which
help to simplify the presentation of our main result.

Definition 1 (see [32]). Let 𝑢 ∈ 𝐶[0, 1], 𝜂 ∈ (0, 1). One says
that 𝑢 is pseudosymmetric about 𝜂 on [0, 1], if 𝑢 is symmetric
on [𝜂,1], that is,

𝑢 (𝑡) = 𝑢 (1 + 𝜂 − 𝑡) , ∀𝑡 ∈ [𝜂, 1] . (11)

Definition 2. Let 𝑢 ∈ 𝐶[0, 1], 𝜂 ∈ (0, 1). One says that 𝑢 is
pseudo-antisymmetric about 𝜂 on [0, 1], if 𝑢 is antisymmetric
on [𝜂,1], that is,

𝑢 (𝑡) + 𝑢 (1 + 𝜂 − 𝑡) = 0, ∀𝑡 ∈ [𝜂, 1] . (12)

Let the Banach space 𝐸 = 𝐶
1
[0, 1] be endowed with the norm

‖𝑢‖ = max
0≤𝑡≤1

(𝑢
2

(𝑡) + 𝑢
󸀠2

(𝑡))
1/2

, (13)

and define the cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 is nonnegative, concave and

pseudosymmetric about 𝜂 on [0, 1]} ,

(14)

and let

𝑃
𝑎
= {𝑢 ∈ 𝑃 : ‖𝑢‖ ≤ 𝑎} . (15)

For convenience, we consider the following.

(H
0
) 𝑞(𝑡) is a nonnegative continuous function defined on
(0, 1), 𝑞(𝑡) ̸≡ 0 on any subinterval of (0, 1). In addi-
tion, ∫1

0
𝑞(𝑡)d𝑡 < +∞ and 𝑞(𝑡) is pseudosymmetric

about 𝜂 on [0, 1].

(H
1
) 𝑓(𝑡, 𝑢, V) : [0, 1] × [0, +∞) × R → R is continuous
and

𝑓 (𝑡, 𝑢, V) ≥ 0, ∀ (𝑡, 𝑢, V) ∈ [0,
1 + 𝜂

2
] × [0, +∞) ×R.

(16)

(H
2
) 𝑓(𝑡, 𝑢, V) + 𝑓(1 + 𝜂 − 𝑡, 𝑢, −V) = 0 for all (𝑡, 𝑢, V) ∈

[𝜂, 1] × [0, +∞) ×R.

(H
3
) 𝑓(𝑡, 0, 0) ̸≡ 0 on [0, 1].
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Now, we define an operator 𝑇 : 𝐶
1
[0, 1] → 𝐶

1
[0, 1] as

follows: for 𝑢 ∈ 𝐶1[0, 1],

(𝑇𝑢) (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓 (𝑟, 𝑢 (𝑟) ,𝑢
󸀠

(𝑟)) d𝑟)d𝑠 d𝜏,

0 ≤ 𝑡 ≤
1 + 𝜂

2
,

∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

× 𝑓 (𝑟, 𝑢 (𝑟) ,𝑢
󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

− ∫
1

𝑡
∫
𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫
𝑠

(1+𝜂)/2
𝑞 (𝑟)

×𝑓(𝑟, 𝑢 (𝑟) ,𝑢
󸀠
(𝑟))d𝑟)d𝑠 d𝜏,
1 + 𝜂

2
≤ 𝑡 ≤ 1.

(17)

Obviously under assumptions (H
0
) and (H

1
), the opera-

tor 𝑇 is well defined and it is easy to verify that BVP (9), (10)
has a solution if and only if 𝑇 : 𝐶

1
[0, 1] → 𝐶

1
[0, 1] has a

fixed point.
The next lemmas are some properties of the operator 𝑇.

Lemma 3. Assume that (H
0
), (H
1
), and (H

2
) hold.Then𝑇𝑃 ⊂

𝑃.

Proof. From the definition of 𝑇, it is easy to check that 𝑇𝑢
is nonnegative on [0, 1] and satisfies (10) for all 𝑢 ∈ 𝑃.
Furthermore, since

(𝑇𝑢)
󸀠󸀠

(𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

−𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑡

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) d𝑟)

≤ 0, 0 ≤ 𝑡 ≤
1 + 𝜂

2
,

𝜙
−1

𝑝
(∫

𝑡

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)

≤ 0,
1 + 𝜂

2
≤ 𝑡 ≤ 1,

(18)

it follows that 𝑇𝑢 is concave on [0, 1].
Next we prove that 𝑇𝑢 is pseudosymmetric about 𝜂 on

[0, 1]. In fact, if 𝑡 ∈ [𝜂, (1+𝜂)/2], then 1+𝜂−𝑡 ∈ [(1+𝜂)/2, 1],
and it follows that

(𝑇𝑢) (1 + 𝜂 − 𝑡)

= ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

×(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

− ∫

1

1+𝜂−𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

= ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

×(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

+ ∫

𝜂

1

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

+ ∫

𝑡

𝜂

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

× (∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

+ ∫

1+𝜂−𝑡

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏.

(19)

Also since 𝑢 is pseudosymmetric about 𝜂 on [0, 1], that is,
𝑢(𝑡) = 𝑢(1 + 𝜂 − 𝑡) for 𝑡 ∈ [𝜂, 1], then

𝑢
󸀠

(𝑡) = −𝑢
󸀠
(1 + 𝜂 − 𝑡) , 𝑡 ∈ [𝜂, 1] . (20)

Thus, for all 𝑡 ∈ [𝜂, 1], from (H
2
), we have

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟))

= −𝑞 (1 + 𝜂 − 𝑟) 𝑓 (1 + 𝜂 − 𝑟, 𝑢 (𝑟) , −𝑢
󸀠

(𝑟))

= −𝑞 (1 + 𝜂 − 𝑟)

× 𝑓 (1 + 𝜂 − 𝑟, 𝑢 (1 + 𝜂 − 𝑟) , 𝑢
󸀠
(1 + 𝜂 − 𝑟)) .

(21)

Hence 𝑞(𝑟)𝑓(𝑟, 𝑢(𝑟), 𝑢
󸀠
(𝑟)) is pseudo-antisymmetric

about 𝜂 on [0, 1], and thus ∫
𝑠

(1+𝜂)/2
𝑞(𝑟)𝑓(𝑟, 𝑢(𝑟), 𝑢

󸀠
(𝑟))d𝑟

is pseudosymmetric about 𝜂 on [0, 1]. Further-
more 𝜙

−1

𝑝
(∫
𝑠

(1+𝜂)/2
𝑞(𝑟)𝑓(𝑟, 𝑢(𝑟), 𝑢

󸀠
(𝑟))d𝑟) is pseudo-

symmetric about 𝜂 on [0, 1]. Thus the function ∫
𝜏

(1+𝜂)/2
𝜙
−1

𝑝

(∫
𝑠

(1+𝜂)/2
𝑞(𝑟)𝑓(𝑟, 𝑢(𝑟), 𝑢

󸀠
(𝑟))d𝑟)d𝑠 is pseudo-antisymmetric

about 𝜂 on [0, 1], and hence

∫

𝜂

1

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

= 0.

(22)
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Using the similar technique, we can get

∫

1+𝜂−𝑡

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓(𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

= 0.

(23)

From (19), (22), and (23), it follows that

(𝑇𝑢) (1 + 𝜂 − 𝑡)

= ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

×(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

+ ∫

𝑡

𝜂

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

= ∫

𝑡

0

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢

󸀠

(𝑟)) d𝑟)d𝑠 d𝜏

= (𝑇𝑢) (𝑡) , 𝑡 ∈ [𝜂,
1 + 𝜂

2
] .

(24)

If 𝑡 ∈ [(1 + 𝜂)/2, 1], then 1 + 𝜂 − 𝑡 ∈ [𝜂, (1 + 𝜂)/2]. From (24),
it follows that

(𝑇𝑢) (1 + 𝜂 − 𝑡) = (𝑇𝑢) (1 + 𝜂 − (1 + 𝜂 − 𝑡))

= (𝑇𝑢) (𝑡) , 𝑡 ∈ [
1 + 𝜂

2
, 1] .

(25)

This together with (24) implies that

(𝑇𝑢) (𝑡) = (𝑇𝑢) (1 + 𝜂 − 𝑡) , 𝑡 ∈ [𝜂, 1] . (26)

In summary, 𝑇𝑢 ∈ 𝑃, and then 𝑇𝑃 ⊂ 𝑃.

The following lemma can be easily verified by a standard
argument.

Lemma 4. Assume that (H
0
), (H
1
), and (H

2
) hold. Then 𝑇 :

𝑃 → 𝑃 is completely continuous.

Lemma 5. Assume that (H
0
), (H
1
), and (H

2
) hold. Suppose

also that there exists 𝑎 > 0 such that for 0 ≤ 𝑡 ≤ (1 + 𝜂)/2,
0 ≤ 𝑢
1
≤ 𝑢
2
≤ 𝑎, 0 ≤ |V

1
| ≤ |V
2
| ≤ 𝑎,

𝑓 (𝑡, 𝑢
1
, V
1
) ≤ 𝑓 (𝑡, 𝑢

2
, V
2
) . (27)

Then for 𝑢
1
, 𝑢
2
∈ 𝑃
𝑎
with

𝑢
1
(𝑡) ≤ 𝑢

2
(𝑡) ,

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] , (28)

we have

(𝑇𝑢
1
) (𝑡) ≤ (𝑇𝑢

2
) (𝑡) ,

󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
1
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
2
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
,

𝑡 ∈ [0, 1] .

(29)

Proof. First we prove that, for all 𝑡 ∈ [0, (1 + 𝜂)/2],

(𝑇𝑢
1
) (𝑡) ≤ (𝑇𝑢

2
) (𝑡) ,

󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
1
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
2
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (30)

From assumptions, we have

𝑓 (𝑟, 𝑢
1
(𝑟) , 𝑢
󸀠

1
(𝑟)) ≤ 𝑓 (𝑟, 𝑢

2
(𝑟) , 𝑢
󸀠

2
(𝑟)) , 𝑟 ∈ [0,

1 + 𝜂

2
] ,

(31)

and hence

∫

(1+𝜂)/2

𝑠

𝑓 (𝑟, 𝑢
1
(𝑟) , 𝑢
󸀠

1
(𝑟)) d𝑟

≤ ∫

(1+𝜂)/2

𝑠

𝑓 (𝑟, 𝑢
2
(𝑟) , 𝑢
󸀠

2
(𝑟)) d𝑟, 𝑠 ∈ [0,

1 + 𝜂

2
] .

(32)

Since 𝜙−1
𝑝

is strictly increasing on R, then for all 𝑠 ∈ [0, (1 +

𝜂)/2], we have

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑓 (𝑟, 𝑢
1
(𝑟) , 𝑢
󸀠

1
(𝑟)) d𝑟)

≤ 𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑓 (𝑟, 𝑢
2
(𝑟) , 𝑢
󸀠

2
(𝑟)) d𝑟) .

(33)

Thus for 𝑡 ∈ [0, (1 + 𝜂)/2],

(𝑇𝑢
1
) (𝑡) − (𝑇𝑢

2
) (𝑡)

=∫

𝑡

0

∫

(1+𝜂)/2

𝜏

[𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)𝑓 (𝑟, 𝑢
1
(𝑟) , 𝑢
󸀠

1
(𝑟))d𝑟)

−𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞(𝑟) 𝑓(𝑟, 𝑢
2
(𝑟) , 𝑢
󸀠

2
(𝑟))d𝑟)]d𝑠 d𝜏

≤ 0,

󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
1
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
2
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

= ∫

(1+𝜂)/2

𝑡

[𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓 (𝑟, 𝑢
1
(𝑟) , 𝑢
󸀠

1
(𝑟)) d𝑟)

−𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)𝑓 (𝑟, 𝑢
2
(𝑟) , 𝑢
󸀠

2
(𝑟)) d𝑟)] d𝑠

≤ 0.

(34)

Therefore, (30) holds for 𝑡 ∈ [0, (1 + 𝜂)/2].
Next we prove that (30) holds for 𝑡 ∈ [(1+𝜂)/2, 1]. In fact,

if 𝑡 ∈ [(1 + 𝜂)/2, 1], then 1 + 𝜂 − 𝑡 ∈ [0, (1 + 𝜂)/2], and hence
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from the fact that 𝑇𝑢
1
and 𝑇𝑢

2
are pseudosymmetric about 𝜂

on [0, 1], it follows that, for 𝑡 ∈ [(1 + 𝜂)/2, 1],

(𝑇𝑢
1
) (𝑡) − (𝑇𝑢

2
) (𝑡) = (𝑇𝑢

1
) (1 + 𝜂 − 𝑡)

− (𝑇𝑢
2
) (1 + 𝜂 − 𝑡)

≤ 0,

󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
1
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
2
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
1
)
󸀠

(1 + 𝜂 − 𝑡)
󵄨󵄨󵄨󵄨󵄨

−
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
2
)
󸀠

(1 + 𝜂 − 𝑡)
󵄨󵄨󵄨󵄨󵄨

≤ 0.

(35)

In summary,

(𝑇𝑢
1
) (𝑡) ≤ (𝑇𝑢

2
) (𝑡) ,

󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
1
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢
2
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
,

𝑡 ∈ [0, 1] .

(36)

Now, we introduce some notations as follows:

𝐴
1
= ∫

(1+𝜂)/2

0

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) d𝑟) d𝑠,

𝐴
2
= 𝜙
−1

𝑝
(∫

(1+𝜂)/2

0

𝑞 (𝑟) d𝑟) ,

𝐴 = max {√2𝐴
1
, √2𝐴

2
} = √2𝐴

2
.

(37)

Lemma 6. Assume that (H
0
), (H
1
), and (H

2
) hold. Suppose

also that there exists 𝑎 > 0 such that for 0 ≤ 𝑡 ≤ (1 + 𝜂)/2,
0 ≤ 𝑢
1
≤ 𝑢
2
≤ 𝑎, 0 ≤ |V

1
| ≤ |V
2
| ≤ 𝑎,

𝑓 (𝑡, 𝑢
1
, V
1
) ≤ 𝑓 (𝑡, 𝑢

2
, V
2
) ,

max
0≤𝑡≤(1+𝜂)/2

𝑓 (𝑡, 𝑎, 𝑎) ≤ 𝜙
𝑝
(
𝑎

𝐴
) .

(38)

Then 𝑇 : 𝑃
𝑎
→ 𝑃
𝑎
.

Proof. Define two functionals on 𝐸 as follows:

𝛼 (𝑢) := max
0≤𝑡≤1

|𝑢 (𝑡)| , 𝛽 (𝑢) := max
0≤𝑡≤1

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (39)

Then

‖𝑢‖ ≤ √2max {𝛼 (𝑢) , 𝛽 (𝑢)} . (40)

If 𝑢 ∈ 𝑃
𝑎
, then

0 ≤ 𝑢 (𝑡) ≤ max
0≤𝑡≤1

|𝑢 (𝑡)| ≤ ‖𝑢‖ ≤ 𝑎, 𝑡 ∈ [0, 1] ,

0 ≤
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ max
0≤𝑡≤1

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ ‖𝑢‖ ≤ 𝑎, 𝑡 ∈ [0, 1] .

(41)

From the assumptions, for all 𝑡 ∈ [0, (1 + 𝜂)/2],

0 ≤ 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) ≤ 𝑓 (𝑡, 𝑎, 𝑎)

≤ max
0≤𝑡≤(1+𝜂)/2

𝑓 (𝑡, 𝑎, 𝑎) ≤ 𝜙
𝑝
(
𝑎

𝐴
) .

(42)

Then,

𝛼 (𝑇𝑢)

= max
0≤𝑡≤1

|(𝑇𝑢) (𝑡)| = (𝑇𝑢) (
1 + 𝜂

2
)

= ∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) d𝑟) d𝑠 d𝜏

≤ ∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝜙
𝑝
(
𝑎

𝐴
) d𝑟) d𝑠 d𝜏

≤ 𝐴
1
⋅
𝑎

𝐴
≤
√2

2
𝑎,

𝛽 (𝑇𝑢)

= max
0≤𝑡≤1

󵄨󵄨󵄨󵄨󵄨
(𝑇𝑢)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
= (𝑇𝑢)

󸀠

(0)

= ∫

(1+𝜂)/2

0

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) d𝑟) d𝑠

≤ ∫

(1+𝜂)/2

0

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝜙
𝑝
(
𝑎

𝐴
) d𝑟) d𝑠

≤ 𝐴
2
⋅
𝑎

𝐴
≤
√2

2
𝑎.

(43)

So we have

‖𝑇𝑢‖ ≤ √2max {𝛼 (𝑇𝑢) , 𝛽 (𝑇𝑢)} ≤ √2 ⋅
√2

2
𝑎 = 𝑎. (44)

Thus 𝑇 : 𝑃
𝑎
→ 𝑃
𝑎
.

3. Main Result

Now we establish existence result of positive, concave,
and pseudosymmetric solutions and its monotone iterative
scheme for BVP (9), (10).

Theorem 7. Assume that (H
0
), (H
1
), (H
2
), and (H

3
) hold.

Suppose also that there exists 𝑎 > 0 such that for 0 ≤ 𝑡 ≤

(1 + 𝜂)/2, 0 ≤ 𝑢
1
≤ 𝑢
2
≤ 𝑎, 0 ≤ |V

1
| ≤ |V
2
| ≤ 𝑎,

𝑓 (𝑡, 𝑢
1
, V
1
) ≤ 𝑓 (𝑡, 𝑢

2
, V
2
) ,

max
0≤𝑡≤(1+𝜂)/2

𝑓 (𝑡, 𝑎, 𝑎) ≤ 𝜙
𝑝
(
𝑎

𝐴
) .

(45)
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Then BVP (9), (10) has two positive, concave, and pseudosym-
metric solutions 𝑤∗ and V∗ with

0 < 𝑤
∗

(𝑡) ≤
√2

2
𝑎, 𝑡 ∈ (0, 1] ,

lim
𝑛→∞

𝑤
𝑛
= lim
𝑛→∞

𝑇
𝑛
𝑤
0
= 𝑤
∗
(𝑖𝑛 𝐶
1 norm) ,

0 < V
∗

(𝑡) ≤ 𝑎, 𝑡 ∈ (0, 1] ,

lim
𝑛→∞

V
𝑛
= lim
𝑛→∞

𝑇
𝑛
V
0
= V
∗
(𝑖𝑛 𝐶
1 norm) ,

(46)

where

𝑤
0
(𝑡) =

{{{

{{{

{

√2

2
𝑎𝑡, 0 ≤ 𝑡 ≤

1 + 𝜂

2
,

√2

2
𝑎 (1 + 𝜂 − 𝑡) ,

1 + 𝜂

2
≤ 𝑡 ≤ 1;

V
0
(𝑡) ≡ 0, 0 ≤ 𝑡 ≤ 1,

(𝑇𝑢) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

× 𝑓(𝑟, 𝑢 (𝑟) ,𝑢
󸀠

(𝑟)) dr)ds d𝜏,

0 ≤ 𝑡 ≤
1 + 𝜂

2
,

∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠

(𝑟)) dr)ds d𝜏

−∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟)

× 𝑓(𝑟,𝑢 (𝑟) ,𝑢
󸀠

(𝑟)) dr)ds d𝜏,
1 + 𝜂

2
≤ 𝑡 ≤ 1.

(47)
Proof. Let

𝑤
0
(𝑡) =

{{{

{{{

{

√2

2
𝑎𝑡, 0 ≤ 𝑡 ≤

1 + 𝜂

2
,

√2

2
𝑎 (1 + 𝜂 − 𝑡) ,

1 + 𝜂

2
≤ 𝑡 ≤ 1,

𝑤
1
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓(𝑟, 𝑤
0
(𝑟) ,𝑤
󸀠

0
(𝑟))d𝑟)d𝑠 d𝜏,

0 ≤ 𝑡 ≤
1 + 𝜂

2
,

∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓 (𝑟, 𝑤
0
(𝑟) ,𝑤
󸀠

0
(𝑟)) d𝑟)d𝑠 d𝜏,

−∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟)

×𝑓 (𝑟, 𝑤
0
(𝑟) ,𝑤
󸀠

0
(𝑟)) d𝑟)d𝑠 d𝜏,
1 + 𝜂

2
≤𝑡≤1.

(48)

Then 𝑤
1
(𝑡) ∈ 𝐶

1
[0, (1 + 𝜂)/2] ∩ 𝐶

1
[(1 + 𝜂)/2, 1].

Next we prove that

lim
𝑡→ ((1+𝜂)/2)

−

𝑤
1
(𝑡) = lim
𝑡→ ((1+𝜂)/2)

+

𝑤
1
(𝑡) , (49)

lim
𝑡→ ((1+𝜂)/2)

−

𝑤
󸀠

1
(𝑡) = lim
𝑡→ ((1+𝜂)/2)

+

𝑤
󸀠

1
(𝑡) . (50)

In fact, from (H
2
) it follows that

lim
𝑡→ ((1+𝜂)/2)

+

𝑤
1
(𝑡)

= ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠 d𝜏

− ∫

1

(1+𝜂)/2
∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

× (∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝑓(𝑟,

√2

2
𝑎 (1+𝜂−𝑟) , −

√2

2
𝑎)d𝑟)d𝑠 d𝜏

= (∫

(1+𝜂)/2

0

+∫

𝜂

(1+𝜂)/2
)

× ∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠 d𝜏

− ∫

1

(1+𝜂)/2
∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟)

× 𝑓 (𝑟,
√2

2
𝑎 (1+𝜂−𝑟) ,−

√2

2
𝑎) d𝑟)d𝑠 d𝜏

= ∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠 d𝜏

+ ∫

𝜂

(1+𝜂)/2
∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

×(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠 d𝜏

− ∫

1

(1+𝜂)/2
∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

×(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟)

× 𝑓 (𝑟,
√2

2
𝑎 (1+𝜂−𝑟) ,−

√2

2
𝑎)d𝑟) d𝑠 d𝜏
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= ∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

×(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠 d𝜏

= lim
𝑡→ ((1+𝜂)/2)

−

𝑤
1
(𝑡) .

(51)

Then (49) holds. Equation (50) can be obtained in a similar
way. Thus from (49) and (50), it follows that

𝑤
1
(𝑡) ∈ 𝐶

1

[0, 1] . (52)

We note that for 𝑡 ∈ [0, (1 + 𝜂)/2],

0 ≤ 𝑤
1
(𝑡)

= ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠 d𝜏

≤ ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝜙
𝑝
(
𝑎

𝐴
) d𝑟) d𝑠 d𝜏

≤
𝑎

𝐴
∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

0

𝑞 (𝑟) d𝑟) d𝑠 d𝜏

≤
𝑎

𝐴
𝐴
2
𝑡 = 𝑤
0
(𝑡) ,

(53)

and for 𝑡 ∈ [(1 + 𝜂)/2, 1],

𝑤
1
(𝑡)

= ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟)d𝑠 d𝜏

− ∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝

× (∫

𝑠

(1+𝜂)/2
𝑞 (𝑟)

×𝑓 (𝑟,
√2

2
𝑎 (1 +𝜂−𝑟) ,−

√2

2
𝑎) d𝑟)d𝑠 d𝜏

≤ ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝜙
𝑝
(
𝑎

𝐴
) d𝑟) d𝑠 d𝜏

+ ∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟) 𝜙

𝑝
(
𝑎

𝐴
) d𝑟) d𝑠 d𝜏

≤
𝑎

𝐴
∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝
(∫

(1+𝜂)/2

0

𝑞 (𝑟) d𝑟) d𝑠 d𝜏

+
𝑎

𝐴
∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

1

(1+𝜂)/2
𝑞 (𝑟) d𝑟) d𝑠 d𝜏

≤
𝑎

𝐴
∫

𝜂

0

∫

(1+𝜂)/2

𝜏

𝐴
2
d𝑠 d𝜏

+
𝑎

𝐴
∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝜙
−1

𝑝
(∫

(1+𝜂)/2

0

𝑞 (𝑟) d𝑟) d𝑠 d𝜏

≤
𝑎

𝐴
∫

𝜂

0

𝐴
2
d𝜏 + 𝑎

𝐴
∫

1

𝑡

∫

𝜏

(1+𝜂)/2
𝐴
2
d𝑠 d𝜏

≤
𝑎

𝐴
𝐴
2
𝜂 +

𝑎

𝐴
𝐴
2
(1 − 𝑡) = 𝑤

0
(𝑡) .

(54)

So,

𝑤
1
(𝑡) ≤ 𝑤

0
(𝑡) ≤

√2

2
𝑎, 𝑡 ∈ [0, 1] . (55)

Thus,

𝛼 (𝑤
1
) := max
0≤𝑡≤1

󵄨󵄨󵄨󵄨𝑤1 (𝑡)
󵄨󵄨󵄨󵄨 ≤

√2

2
𝑎. (56)

From assumptions, for 𝑡 ∈ [0, (1 + 𝜂)/2],

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
= ∫

(1+𝜂)/2

𝑡

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠

≤ ∫

(1+𝜂)/2

𝑡

𝜙
−1

𝑝
(∫

(1+𝜂)/2

𝑠

𝑞 (𝑟) 𝜙
𝑝
(
𝑎

𝐴
) d𝑟) d𝑠

≤
𝑎

𝐴
∫

(1+𝜂)/2

𝑡

𝜙
−1

𝑝
(∫

(1+𝜂)/2

0

𝑞 (𝑟) d𝑟) d𝑠

≤
𝑎

𝐴
𝐴
2
≤
√2

2
𝑎 =

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

0
(𝑡)
󵄨󵄨󵄨󵄨󵄨
,

(57)
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and for 𝑡 ∈ [(1 + 𝜂)/2, 1],

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

(1+𝜂)/2
𝜙
−1

𝑝
(∫

𝑠

(1+𝜂)/2
𝑞 (𝑟)

×𝑓 (𝑟,
√2

2
𝑎 (1+𝜂−𝑟) , −

√2

2
𝑎) d𝑟) d𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

(1+𝜂)/2
𝜙
−1

𝑝
(∫

1

(1+𝜂)/2
𝑞 (𝑟) 𝜙

𝑝
(
𝑎

𝐴
) d𝑟) d𝑠

≤
𝑎

𝐴
∫

𝑡

(1+𝜂)/2
𝜙
−1

𝑝
(∫

(1+𝜂)/2

0

𝑞 (𝑟) d𝑟) d𝑠

≤
𝑎

𝐴
𝐴
2
≤
√2

2
𝑎 =

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

0
(𝑡)
󵄨󵄨󵄨󵄨󵄨
.

(58)

Hence from (57) and (58), we have

𝛽 (𝑤
1
) := max
0≤𝑡≤1

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
√2

2
𝑎. (59)

Consequently, from (56) and (59), it follows that

󵄩󵄩󵄩󵄩𝑤1
󵄩󵄩󵄩󵄩 ≤

√2max {𝛼 (𝑤
1
) , 𝛽 (𝑤

1
)} ≤ 𝑎. (60)

From the proof of Lemma 3, we see that 𝑤
1
is nonnegative,

concave, and pseudosymmetric about 𝜂 on [0, 1], and hence

𝑤
1
∈ 𝑃
𝑎
. (61)

Define {𝑤
𝑛
} as follows:

𝑤
𝑛+1

= 𝑇𝑤
𝑛
= 𝑇
𝑛
𝑤
1
= 𝑇
𝑛+1

𝑤
0
, 𝑛 = 0, 1, . . . . (62)

Then {𝑤
𝑛
} is well defined and for 𝑛 = 1, 2, . . .,

𝑤
𝑛+1

(𝑡) ≤ 𝑤
𝑛
(𝑡) ,

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑛+1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑛
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] . (63)

In fact, for 𝑡 ∈ [0, (1 + 𝜂)/2],

𝑤
2
(𝑡) = 𝑇𝑤

1
(𝑡)

= ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓 (𝑟, 𝑤
1
(𝑟) , 𝑤

󸀠

1
(𝑟)) d𝑟)d𝑠 d𝜏

≤ ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟)d𝑠 d𝜏

= 𝑤
1
(𝑡) ,

(64)

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑇𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

= ∫

(1+𝜂)/2

𝑡

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

×𝑓 (𝑟, 𝑤
1
(𝑟) , 𝑤

󸀠

1
(𝑟)) d𝑟) d𝑠

≤ ∫

(1+𝜂)/2

𝑡

𝜙
−1

𝑝

× (∫

(1+𝜂)/2

𝑠

𝑞 (𝑟)

× 𝑓(𝑟,
√2

2
𝑎𝑟,

√2

2
𝑎) d𝑟) d𝑠

= 𝑤
󸀠

1
(𝑡) .

(65)

For 𝑡 ∈ [(1 + 𝜂)/2, 1], since 𝑤
1
, 𝑤
2
∈ 𝑃
𝑎
, it follows from (64)

and (65) that

𝑤
2
(𝑡) = 𝑤

2
(1 + 𝜂 − 𝑡) ≤ 𝑤

1
(1 + 𝜂 − 𝑡) = 𝑤

1
(𝑡) , (66)

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

2
(1 + 𝜂 − 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(1 + 𝜂 − 𝑡)

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (67)

So from (64)–(67), we have

𝑤
2
(𝑡) ≤ 𝑤

1
(𝑡) ,

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] , (68)

that is, (63) holds when 𝑛 = 1. Assume that (63) holds when
𝑛 = 𝑘, that is,

𝑤
𝑘+1

(𝑡) ≤ 𝑤
𝑘
(𝑡) ,

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑘+1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑘
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] . (69)
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Then from Lemma 5, we obtain
𝑤
𝑘+2

(𝑡) = (𝑇𝑤
𝑘+1

) (𝑡) ≤ (𝑇𝑤
𝑘
) (𝑡)

= 𝑤
𝑘+1

(𝑡) , 𝑡 ∈ [0, 1] ,

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑘+2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑤
𝑘+1

)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
(𝑇𝑤
𝑘
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑘+1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] .

(70)

So by induction (63) holds.
Since 𝑇 : 𝑃

𝑎
→ 𝑃
𝑎
is completely continuous, it follows

that {𝑤
𝑛
}
∞

𝑛=1
is relative compact. Then {𝑤

𝑛
} has a convergent

subsequence {𝑤
𝑛
𝑘

} and 𝑤∗ ∈ 𝑃
𝑎
such that

𝑤
𝑛
𝑘

󳨀→ 𝑤
∗

(𝑘 󳨀→ ∞) , (71)

that is,
𝑤
𝑛
𝑘

(𝑡) 󴁂󴀱 𝑤
∗

(𝑡) (𝑘 󳨀→ ∞) ,

𝑤
󸀠

𝑛
𝑘

(𝑡) 󴁂󴀱 𝑤
∗󸀠

(𝑡) (𝑘 󳨀→ ∞) on [0, 1] .

(72)

While from (63) and the fact for each 𝑛 = 1, 2, . . ., 𝑤󸀠
𝑛
((1 +

𝜂)/2) = 0 and 𝑤󸀠󸀠
𝑛
(𝑡) ≤ 0 on [0, 1], it follows that

𝑤
1
(𝑡) ≥ 𝑤

2
(𝑡) ≥ ⋅ ⋅ ⋅ ≥ 𝑤

𝑛
(𝑡) ≥ 𝑤

𝑛+1
(𝑡) ≥ ⋅ ⋅ ⋅ ,

𝑛 = 1, 2, . . . , on [0, 1] ,

𝑤
󸀠

1
(𝑡) ≥ 𝑤

󸀠

2
(𝑡) ≥ ⋅ ⋅ ⋅ ≥ 𝑤

󸀠

𝑛
(𝑡) ≥ 𝑤

󸀠

𝑛+1
(𝑡) ≥ ⋅ ⋅ ⋅ ,

𝑛 = 1, 2, . . . , on [0,
1 + 𝜂

2
] ,

𝑤
󸀠

1
(𝑡) ≤ 𝑤

󸀠

2
(𝑡) ≤ ⋅ ⋅ ⋅ ≤ 𝑤

󸀠

𝑛
(𝑡) ≤ 𝑤

󸀠

𝑛+1
(𝑡) ≤ ⋅ ⋅ ⋅ ,

𝑛 = 1, 2, . . . , on [
1 + 𝜂

2
, 1] .

(73)

Hence,
𝑤
𝑛
(𝑡) 󴁂󴀱 𝑤

∗

(𝑡) (𝑛 󳨀→ ∞) ,

𝑤
󸀠

𝑛
(𝑡) 󴁂󴀱 𝑤

∗󸀠

(𝑡) (𝑛 󳨀→ ∞) on [0, 1] ,

(74)

that is,

𝑤
𝑛
󳨀→ 𝑤

∗

(𝑛 󳨀→ ∞) . (75)

This together with the continuity of 𝑇 and 𝑤
𝑛+1

= 𝑇𝑤
𝑛
,

implies that

𝑇𝑤
∗
= 𝑤
∗
. (76)

Also, since
0 ≤ 𝑤

𝑛
(𝑡) ≤ 𝑤

0
(𝑡)

=

{{{{{

{{{{{

{

√2

2
𝑎𝑡, 0 ≤ 𝑡 ≤

1 + 𝜂

2
,

√2

2
𝑎 (1 + 𝜂 − 𝑡) ,

1 + 𝜂

2
≤ 𝑡 ≤ 1,

0 ≤
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

𝑛
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
√2

2
𝑎, 𝑡 ∈ [0, 1] ,

(77)

we have

0 ≤ 𝑤
∗

(𝑡) ≤
√2

2
𝑎, 0 ≤

󵄨󵄨󵄨󵄨󵄨
𝑤
∗󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
√2

2
𝑎, 𝑡 ∈ [0, 1] .

(78)

Furthermore, we have

𝑤
∗

(𝑡) > 0, 𝑡 ∈ (0, 1] . (79)

In fact, from (H
3
) and 𝑤∗(𝑡) ̸≡ 0 on [0, 1], we have 𝑤∗((1 +

𝜂)/2) > 0. Since 𝑤∗(𝑡) is concave on [0, 1], then

𝑤
∗

(𝑡) ≥
𝑤
∗
((1 + 𝜂) /2) − 0

((1 + 𝜂) /2) − 0
𝑡

=
2

1 + 𝜂
𝑤
∗
(
1 + 𝜂

2
) 𝑡 > 0, 𝑡 ∈ (0,

1 + 𝜂

2
] .

(80)

Consequently from the fact𝑤∗ is pseudosymmetric on [0, 1],
we have

𝑤
∗

(𝑡) > 0, 𝑡 ∈ (0, 1] . (81)

Let V
0
(𝑡) ≡ 0 on [0, 1], then V

0
∈ 𝑃
𝑎
. Set V

𝑛+1
= 𝑇V
𝑛
, 𝑛 = 0, 1,

2, . . .. Then from Lemma 6, it follows that

V
𝑛
∈ 𝑃
𝑎
, 𝑛 = 1, 2, . . . . (82)

From Lemma 4, we see that {V
𝑛
}
∞

𝑛=1
is relative compact, and

hence there exists a convergent subsequence {V
𝑛
𝑘

} ⊂ {V
𝑛
} and

V∗ ∈ 𝑃
𝑎
such that

V
𝑛
𝑘

󳨀→ V
∗

(𝑘 󳨀→ ∞) , (83)

that is,

V
𝑛
𝑘

(𝑡) 󴁂󴀱 V
∗

(𝑡) (𝑘 󳨀→ ∞) on [0, 1] , (84)

V
󸀠

𝑛
𝑘

(𝑡) 󴁂󴀱 V
∗󸀠

(𝑡) (𝑘 󳨀→ ∞) on [0, 1] . (85)

Since V
1
= 𝑇V
0
= 𝑇0 ∈ 𝑃

𝑎
, then

V
1
(𝑡) = 𝑇V

0
(𝑡) = (𝑇0) (𝑡) ≥ 0, 𝑡 ∈ [0, 1] ,

󵄨󵄨󵄨󵄨󵄨
V
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
(𝑇V
0
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
(𝑇0)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≥ 0, 𝑡 ∈ [0, 1] .

(86)

Thus from Lemma 5,

V
2
(𝑡) = 𝑇V

1
(𝑡) ≥ 𝑇V

0
(𝑡) = V

1
(𝑡) , 𝑡 ∈ [0, 1] ,

󵄨󵄨󵄨󵄨󵄨
V
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
(𝑇V
1
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≥
󵄨󵄨󵄨󵄨󵄨
(𝑇V
0
)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
V
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] .

(87)

By induction, it is easy to see that for 𝑛 = 1, 2, . . .,

V
𝑛+1

(𝑡) ≥ V
𝑛
(𝑡) , 𝑡 ∈ [0, 1] , (88)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑛+1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≥
󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑛
(𝑡)
󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [0, 1] . (89)
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From (84)–(89), we see that

V
𝑛
(𝑡) 󴁂󴀱 V

∗

(𝑡) (𝑛 󳨀→ ∞) ,

V
󸀠

𝑛
(𝑡) 󴁂󴀱 V

∗󸀠

(𝑡) (𝑛 󳨀→ ∞) on [0, 1] .
(90)

Therefore, V
𝑛
→ V∗(𝑛 → ∞), V∗ ∈ 𝑃

𝑎
. By the continuity of

𝑇 and V
𝑛+1

= 𝑇V
𝑛
, we have

𝑇V
∗
= V
∗
. (91)

Again from (H
3
), we have V∗(𝑡) > 0 on (0, 1].

Since every fixed point of 𝑇 in 𝑃 is the solution of BVP
(9), (10), then 𝑤

∗ and V∗ are two positive, concave and
pseudosymmetric solutions of BVP (9), (10). This completes
the proof of the theorem.

4. An Example

Consider the following third-order four-point boundary
value problem:

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 𝑢 (
1

2
) , 𝑢

󸀠󸀠
(
3

4
) = 0,

(92)

where

𝑓 (𝑡, 𝑢, V) =
√2

84
(
3

4
− 𝑡) (𝑢V

2
+ 16√2) ,

(𝑡, 𝑢, V) ∈ [0, 1] × [0, +∞) ×R.

(93)

It is easy to see that BVP (92) corresponds to BVP (9), (10)
when 𝑝 = 2, 𝑞(𝑡) ≡ 1, and 𝜂 = 1/2. Take 𝑎 = 6√2, and then
𝐴 = 3√2/4.

Next we verify that all conditions of Theorem 7 are
satisfied. In fact, obviously the conditions (H

0
), (H
1
), (H
2
),

and (H
3
) hold. In addition, for 0 ≤ 𝑡 ≤ 3/4, 0 ≤ 𝑢

1
≤ 𝑢
2
≤

6√2, 0 ≤ |V
1
| ≤ |V
2
| ≤ 6√2,

𝑓 (𝑡, 𝑢
1
, V
1
) ≤ 𝑓 (𝑡, 𝑢

2
, V
2
) ,

max
0≤𝑡≤3/4

𝑓 (𝑡, 𝑎, 𝑎) = 𝑓 (0, 6√2, 6√2) = 8 = 𝜙
2
(
𝑎

𝐴
) .

(94)

Hence, fromTheorem 7, BVP (92) has two positive, concave,
and pseudosymmetric solutions 𝑤∗ and V∗ such that

0 < 𝑤
∗

(𝑡) ≤ 6, 0 <
󵄨󵄨󵄨󵄨󵄨
𝑤
∗󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 6, 𝑡 ∈ [0, 1] ,

lim
𝑛→∞

𝑤
𝑛
= lim
𝑛→∞

𝑇
𝑛
𝑤
0
= 𝑤
∗
,

lim
𝑛→∞

𝑤
󸀠

𝑛
= lim
𝑛→∞

(𝑇
𝑛
𝑤
0
)
󸀠

= 𝑤
∗󸀠
,

(95)

where

𝑤
0
(𝑡) =

{{

{{

{

6𝑡, 0 ≤ 𝑡 ≤
3

4
,

9 − 6𝑡,
3

4
≤ 𝑡 ≤ 1,

(96)

for 𝑛 = 0, 1, 2, . . .,

𝑤
𝑛+1

(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

∫

3/4

𝜏

∫

3/4

𝑠

√2

84
(
3

4
− 𝑟)

× (𝑤
𝑛
(𝑟) 𝑤
󸀠2

𝑛
(𝑟) + 16√2) d𝑟 d𝑠 d𝜏,

0 ≤ 𝑡 ≤
3

4
,

∫

1/2

0

∫

3/4

𝜏

∫

3/4

𝑠

√2

84
(
3

4
− 𝑟)

× (𝑤
𝑛
(𝑟) 𝑤
󸀠2

𝑛
(𝑟) + 16√2) d𝑟 d𝑠 d𝜏

−∫

1

𝑡

∫

𝜏

3/4

∫

𝑠

3/4

√2

84
(
3

4
− 𝑟)

× (𝑤
𝑛
(𝑟) 𝑤
󸀠2

𝑛
(𝑟) + 16√2) d𝑟 d𝑠 d𝜏,

3

4
≤ 𝑡 ≤ 1,

0 < V
∗

(𝑡) ≤ 6√2, 0 <
󵄨󵄨󵄨󵄨󵄨
V
∗󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 6√2, 𝑡 ∈ [0, 1] ,

lim
𝑛→∞

V
𝑛
= lim
𝑛→∞

𝑇
𝑛
V
0
= V
∗
, lim

𝑛→∞

V
󸀠

𝑛
= lim
𝑛→∞

(𝑇
𝑛
V
0
)
󸀠

= V
∗󸀠
,

(97)

where V
0
(𝑡) ≡ 0 on [0, 1] and for 𝑛 = 0, 1, 2, . . .,

V
𝑛+1

(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

∫

3/4

𝜏

∫

3/4

𝑠

√2

84
(
3

4
− 𝑟)

× (V
𝑛
(𝑟) V
󸀠2

𝑛
(𝑟) + 16√2) d𝑟 d𝑠 d𝜏,

0 ≤ 𝑡 ≤
3

4
,

∫

1/2

0

∫

3/4

𝜏

∫

3/4

𝑠

√2

84
(
3

4
− 𝑟)

× (V
𝑛
(𝑟) V
󸀠2

𝑛
(𝑟) + 16√2) d𝑟 d𝑠 d𝜏

−∫

1

𝑡

∫

𝜏

3/4

∫

𝑠

3/4

√2

84
(
3

4
− 𝑟)

× (V
𝑛
(𝑟) V
󸀠2

𝑛
(𝑟) + 16√2) d𝑟 d𝑠 d𝜏,

3

4
≤ 𝑡 ≤ 1.

(98)

The first two terms of {𝑤
𝑛
(𝑡)} and three terms of {V

𝑛
(𝑡)},

respectively, are as follows:

𝑤
0
(𝑡) =

{{

{{

{

6𝑡, 0 ≤ 𝑡 ≤
3

4
,

9 − 6𝑡,
3

4
≤ 𝑡 ≤ 1;

(99)
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𝑤
1
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

−
3√2

70
𝑡
5
+ (

9√2

112
−

1

63
) 𝑡
4
+

1

21
𝑡
3

−(
81√2

896
+

3

56
) 𝑡
2

+(
243√2

3584
+

3

112
) 𝑡, 0 ≤ 𝑡 ≤

3

4
,

3√2

70
𝑡
5
− (

27√2

112
+

1

63
) 𝑡
4

+(
27√2

56
+

1

21
) 𝑡
3

−(
405√2

896
+

3

56
) 𝑡
2
+ (

729√2

3584
+

3

112
) 𝑡

−
729√2

35840
,

3

4
≤ 𝑡 ≤ 1;

V
0
(𝑡) ≡ 0, 𝑡 ∈ [0, 1] ,

V
1
(𝑡) = −

1

63
𝑡
4
+

1

21
𝑡
3
−

3

56
𝑡
2
+

3

112
𝑡, 𝑡 ∈ [0, 1] ,

V
2
(𝑡) =

√2

2867038902
𝑡
14
−

√2

273051324
𝑡
13

+
√2

56010528
𝑡
12
−

√2

18670176
𝑡
11

+
47√2

426746880
𝑡
10
−

65√2

398297088
𝑡
9

+
√2

5619712
𝑡
8
−

59√2

413048832
𝑡
7

+
13√2

157351936
𝑡
6
−

51√2

1573519360
𝑡
5

+ (
9√2

1258815488
−

1

63
) 𝑡
4
+

1

21
𝑡
3

− (
81√2

161128382464
+

3

56
) 𝑡
2

+ (
81√2

598476849152
+

3

112
) 𝑡, 𝑡 ∈ [0, 1] .

(100)
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