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This paper is devoted to the investigation of the nonnegative solutions and the stability and
asymptotic properties of the solutions of fractional differential dynamic systems involving delayed
dynamics with point delays. The obtained results are independent of the sizes of the delays.

1. Introduction

The theory of fractional calculus is basically concerned with the calculus of integrals and
derivatives of any arbitrary real or complex orders. In this sense, it may be considered as a
generalization of classical calculus which is included in the theory as a particular case. The
former ideas have been stated about three hundred years ago, but the main mathematical
developments and applications of fractional calculus have been of increasing interest from
the seventies. There is a good compendium of the state of the art of the subject and the
main related existing mathematical results with examples and case studies in [1]. There
are a lot of results concerning the exact and approximate solutions of fractional differential
equations of Riemann-Liouville and Caputo types, [1–4], fractional derivatives involving
products of polynomials, [5, 6], fractional derivatives and fractional powers of operators, [7–
9], boundary value problems concerning fractional calculus (see, e.g., [1, 10]), and so forth.
There is also an increasing interest in the recentmathematical literature in the characterization
of dynamic fractional differential systems oriented towards several fields of science like
physics, chemistry or control theory because it is a powerful tool for later applications
in all fields requiring support via ordinary, partial derivatives, and functional differential
equations. Perhaps the reason of interest of fractional calculus is that the numerical value of
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the fraction parameter allows a closer characterization of eventual uncertainties present in the
dynamic model compared to the alternative use of structured uncertainties. We can find, in
particular, a lot of literature concerned with the development of Lagrangian and Hamiltonian
formulations where the motion integrals are calculated though fractional calculus and also in
related investigations concerning dynamic and damped and diffusive systems [11–17] as well
as the characterization of impulsive responses or its use in applied optics related, for instance,
to the formalism of fractional derivative Fourier plane filters (see, e.g., [16–18]) and Finance
[19]. Fractional calculus is also of interest in control theory concerning, for instance, heat
transfer, lossless transmission lines, the use of discretizing devices supported by fractional
calculus, and so forth (see, e.g., [20–22]). In particular, there are several recent applications
of fractional calculus in the fields of filter design, circuit theory and robotics, [21, 22], and
signal processing, [17]. Fortunately, there is an increasing mathematical literature, currently
available on fractional differ-integral calculus, which can formally support successfully the
investigations in other related disciplines.

This paper is concerned with the investigation of the solutions of time-invariant
fractional differential dynamic systems, [23, 24], involving point delays which leads to
a formalism of a class of functional differential equations, [25–31]. Functional equations
involving point delays are a crucial mathematical tool to investigate real process where
delays appear in a natural way like, for instance, transportation problems, war and peace
problems, or biological and medical processes. The main interest of this paper is concerned
with the positivity and stability of solutions independent of the sizes of the internal delays
and also with obtaining results being independent of the eventual mutual coincidence of
some values of delays, [31–33]. It has to be pointed out that the positivity of the solutions is a
crucial property in investigating some dynamic systems like biological systems or epidemic
models, [32, 33], where positivity is an essential requirement since negative solutions have
nonsense at any time instant. It is also a relevant property concerning the existence and
characterization of oscillatory solutions of differential equations, [34]. Most of the results are
centred in characterizations via Caputo fractional differentiation although some extensions
are presented concerned with the classical Riemann-Liouville differ integration. It is proved
that the existence of nonnegative solutions independent of the sizes of the delays and the
stability properties of linear time-invariant fractional dynamic differential systems subject to
point delays may be characterized with sets of precise mathematical results.

1.1. Notation

Z, R, and C are the sets of integer, real, and complex numbers, Z+ and R+ are the positive
integer and real numbers, and

Z0+ := Z+ ∪ {0}, R0+ := R+ ∪ {0}, C+ := {z ∈ C : Re z > 0},
C0+ := {z ∈ C : Re z ≥ 0}, n := {1, 2, . . . , n}.

(1.1)

The following notation is used to characterize different levels of positivity of matrices:
Rn×m

0+ := {M = (Mij) ∈ Rn×m : Mij ≥ 0; ∀(i, j) ∈ n ×m} is the set of all n ×m real matrices of
nonnegative entries. If M ∈ Rn×m thenM ≥ 0 is used as a simpler notation forM ∈ Rn×m

0+ .
Rn×m

+ := {0/=M = (Mij) ∈ Rn×m : Mij ≥ 0; ∀(i, j) ∈ n×m} is the set of all nonzero n×m
real matrices of nonnegative entries (i.e., at least one of their entries is positive). IfM ∈ Rn×m

thenM > 0 is used as a simpler notation forM ∈ Rn×m
+ .
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Rn×m
++ := {M = (Mij) ∈ Rn×m : Mij > 0; ∀(i, j) ∈ n×m} is the set of all n×m real matrices

of positive entries. If M ∈ Rn×m then M � 0 is used as a simpler notation for M ∈ Rn×m
++ . The

superscript T denotes the transpose, MT
i and Mj are, respectively, the ith row and the jth

column of the matrix M.
A close notation to characterize the positivity of vectors is the following: Rn

0+ := {v =
(v1, v2, . . . , vn)

T ∈ Rn : vi ≥ 0; ∀i ∈ n} is the set of all n real vectors of nonnegative
components. If v ∈ Rn then v ≥ 0 is used as a simpler notation for v ∈ Rn

0+. R
n
+ := {0/=v =

(v1, v2, . . . , vn)
T ∈ Rn : vi ≥ 0; ∀i ∈ n} is the set of all n real nonzero vectors of nonnegative

components (i.e., at least one component is positive). If v ∈ Rn then v > 0 is used as a simpler
notation for v ∈ Rn

+.
Rn

++ := {v = (v1, v2, . . . , vn)
T ∈ Rn : vi > 0; ∀i ∈ n} is the set of all n real vectors of

positive components. If v ∈ Rn then v � 0 is used as a simpler notation for v ∈ Rn
++.

M = (Mij) ∈ Rn×n is a Metzler matrix if Mij ≥ 0; for all (i, j /= i) ∈ n × n. MRn×n is the
set of Metzler matrices of order n.

The maximum real eigenvalue, if any, of a real matrix M, is denoted by λmax(M).
Multiple subscripts of vector, matrices, and vector and matrix functions are separated by
commas only in the case that, otherwise, some confusion could arise as, for instance, when
some of the subscripts is an expression involving several indices.

2. Some Background on Fractional Differential Systems

Assume that f : [a, b] → Cn for some real interval [a, b] ⊂ R satisfiesf ∈ Ck−2((a, b),Rn) and,
furthermore, dk−1f(τ)/dτk−1 exists everywhere in [a, b] for k = [Reα] + 1 for some α ∈ C0+.
Then, the Riemann-Liouville left-sided fractional derivative RLDα

a+f of order α ∈ C0+ of the
vector function f in [a, b] is pointwise defined in terms of the Riemann-Liouville integral as

(
RLDα

a+f
)
(t) :=

1
Γ(k − α)

(
dk

dtk

∫ t

a

f(τ)

(t − τ)α+1−k
dτ

)
, t ∈ [a, b], (2.1)

where the integer k is given by k = [Reα]+1 and Γ : C\Z0− → C, whereZ0− := {n ∈ Z : n ≤ 0},
is the Γ-function defined by Γ(z) :=

∫∞
0 τz−1e−τdτ ; z ∈ C \ Z0−. If f ∈ Ck−1((a, b),Rn) and,

furthermore, f (k)(τ) ≡ dkf(τ)/dτk exists everywhere in [a, b], then the Caputo left-sided
fractional derivative CDα

a+f of order α ∈ C0+ of the vector function f in [a, b] is pointwise
defined in terms of the Riemann-Liouville integral as

(
CDα

a+f
)
(t) :=

1
Γ(k − α)

∫ t

a

f (k)(τ)

(t − τ)α+1−k
dτ, t ∈ [a, b], (2.2)

where k = [Reα] + 1 if α /∈ Z0+ and k = α if α ∈ Z0+. The following relationship between both
fractional derivatives holds provided that they exist (i.e., if f : [a, b] → Cn possesses Caputo
left-sided fractional derivative in [a, b]), [1]

(
CDα

a+f
)
(t) = RLDα

a+

⎡
⎣f(τ) −

k−1∑
j=0

f (j)(a)(τ − a)j

j!

⎤
⎦(t), t ∈ [a, b]. (2.3)
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Since Reα ≤ k, the above formula relating both fractional derivatives proves the existence
of the Caputo left-sided fractional derivative in [a, b] if the Riemann-Liouville one exists in
[a, b].

3. Solution of a Fractional Differential Dynamic System of
Any Order α with Internal Point Delays

Consider the linear and time-invariant differential functional Caputo fractional differential
system of order α:

(
CDα

0+x
)
(t) =

1
Γ(k − α)

∫ t

a

f (k)(τ)

(t − τ)α+1−k
dτ =

p∑
i=0

Aix(t − hi) + Bu(t) (3.1)

with k − 1 < α(∈ R+) ≤ k; k − 1, k ∈ Z0+, 0 = h0 < h1 < h2 < · · · < hp = h < ∞
being distinct constant delays, A0, Ai ∈ Rn×n (i ∈ p := {1, 2, . . . , p}), are the matrices of
dynamics for each delay hi, i ∈ p ∪ {0}, B ∈ Rn×m is the control matrix. The initial condition
is given by k n-real vector functions ϕj : [−h, 0] → Rn, with j ∈ k − 1 ∪ {0}, which are
absolutely continuous except eventually in a set of zero measure of [−h, 0] ⊂ R of bounded
discontinuities with ϕj(0) = xj(0) = x(j)(0) = xj0. The function vector u : R0+ → Rm is
any given bounded piecewise continuous control function. The following result is concerned
with the unique solution on R0+ of the above differential fractional system (3.1). The proof
follows directly from a parallel existing result from the background literature on fractional
differential systems by grouping all the additive forcing terms of (3.1) in a unique one (see,
e.g., [1, (1.8.17), (3.1.34)–(3.1.49)], with f(t) ≡∑p

i=1 Aix(t − hi) + Bu(t)).

Theorem 3.1. The linear and time-invariant differential functional fractional differential system (3.1)
of any order α ∈ C0+ has a unique solution onR0+ for each given set of initial functions ϕj : [−h, 0] →
Rn, j ∈ k − 1∪{0} being absolutely continuous except eventually in a set of zero measures of [−h, 0] ⊂
R of bounded discontinuities with ϕj(0) = xj(0) = x(j)(0) = xj0; j ∈ k − 1 ∪ {0} and each given
control u : R0+ → Rm being a bounded piecewise continuous control function. Such a solution is
given by

xα(t) =
k−1∑
j=0

(
Φαj0(t)xj0 +

p∑
i=1

∫hi

0
Φα(t − τ)Aiϕj(τ − hi)dτ

)

+
p∑
i=1

∫ t

hi

Φα(t − τ)Aixα(τ − hi)dτ +
∫ t

0
Φα(t − τ)Bu(τ)dτ, t ∈ R0+

(3.2)

with k = [Reα] + 1 if α /∈ Z+ and k = α if α ∈ Z+,

Φαj0(t) := tjEα,j+1(A0t
α), Φα(t) := tα−1Eα,α(A0t

α), (3.3)

Eα,j(A0t
α) :=

∞∑
�=0

(A0t
α)�

Γ
(
α� + j

) , j ∈ k − 1 ∪ {0, α} (3.4)

for t ≥ 0 and Φα0(t) = Φα(t) = 0 for t < 0, where Eα,j(A0t
α) are the Mittag-Leffler functions.
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Now consider that the right-hand side of (3.1) is the evaluation of a Riemann-Liouville
fractional differential system of the same order α as follows:

(
RLDα

0+x
)
(t) =

p∑
i=0

Aix(t − hi) + Bu(t) (3.5)

under the same functions of initial conditions as those of (3.1). Through the formula (2.3)
relating Caputo and Riemann-Liouville left-sided fractional derivatives of the same order α,
one gets

(
CDα

0+x
)
(t) =

p∑
i=0

Aix(t − hi) + Bu(t) − RLDα
0+

⎛
⎝

k−1∑
j=0

xj0τ
j

j!

⎞
⎠(t). (3.6)

Since the Caputo left-sided fractional derivative and the Riemann-Liouville fractional integral
of order α ∈ Ĉ+ := {Z+ ∪ {z ∈ C+ : Re z /∈ Z+}} are inverse operators (what is not the case if
α /∈ Ĉ+), (see [1, Lemma 2.21(a)]), one gets from (3.6), (2.3), and (3.2) if α ∈ Ĉ the subsequent
result for the fractional differential system (3.5) on R0+.

Corollary 3.2. If (3.5) of any order α ∈ Ĉ+ is replaced with (3.1) under the same initial conditions
then its unique solution on R0+ is given by

xα(t) =
k−1∑
j=0

((
Φαj0(t) − tj

j!
In

)
xj0 +

p∑
i=1

∫hi

0
Φα(t − τ)Aiϕj(τ − hi)dτ

)

+
p∑
i=1

∫ t

hi

Φα(t − τ)Aixα(τ − hi)dτ +
∫ t

0
Φα(t − τ)Bu(τ)dτ, α /∈ Z0+; t ∈ R0+

=
k−1∑
j=0

((
Eα,j+1(t) − 1

j!
In

)
tjxj0 +

p∑
i=1

∫hi

0
Φα(t − τ)Aiϕj(τ − hi)dτ

)

+
p∑
i=1

∫ t

hi

Φα(t − τ)Aixα(τ − hi)dτ +
∫ t

0
Φα(t − τ)Bu(τ)dτ, α /∈ Z0+, t ∈ R0+

(3.7)

with k = [Reα] + 1 if α /∈ Z+ and k = α if α ∈ Z+.

Another mild evolution operator can be considered to construct the unique solution
of (3.1) by considering the control effort as the unique forcing term of (3.1) and the functions
of initial conditions as forcing terms. See the corresponding expressions obtainable from [1,
(1.8.17), (3.1.34)–(3.1.49)], with the identity (f(t) ≡ Bu(t)) and the evolution operator defined
in [2, 3] for the standard (nonfractional differential system), that is, α = 1 in (3.1). Thus,
another equivalent expression for the unique solution of the Caputo fractional differential
system of order α is given in the subsequent result.
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Theorem 3.3. The solution of (3.1) given in Theorem 3.1 is equivalently rewritten as follows:

xα(t) =
k−1∑
j=0

(
Ψαj0(t)xj0 +

p∑
i=1

∫hi

0
Ψαj0(t − τ)ϕj(τ − hi)dτ

)
+
∫ t

0
Ψα(t − τ)Bu(τ)dτ (3.8)

for t ∈ R0+, any α ∈ C+ with k = [Reα] + 1 if α /∈ Z+ and k = α if α ∈ Z+;

Ψαj0(t) := tjEα,j+1(A0t
α) +

p∑
i=1

∫ t

0
τα−1Eαα(A0τ

α)AiΨαj0(t − τ − hi)dτ,

Ψα(t) := tα−1Eαα(A0t
α) +

p∑
i=1

∫ t

0
τα−1Eαα(A0τ

α)AiΨα(t − τ − hi)dτ

(3.9)

for t ≥ 0 and Ψαj0(t) = Ψα(t) = 0, j ∈ k − 1 ∪ {0} for t ∈ [−h, 0).

Also, the solution to the Riemann-Liouville fractional differential system (3.5) under
the same initial conditions as those of (3.4) is given in the next result for k = [Reα] + 1 if
α /∈ Z+ based on (3.6).

Corollary 3.4. If (3.5) being of order α ∈ Ĉ+ is replaced with (3.1) under the same initial conditions
then its unique solution on R0+ is given by

xα(t) =
k−1∑
j=0

((
Ψαj0(t) − tj

j!
In

)
xj0 +

p∑
i=1

∫hi

0
Ψαj0(t − τ)ϕj(τ − hi)dτ

)
+
∫ t

0
Ψα(t − τ)Bu(τ)dτ

(3.10)

with k = [Reα] + 1 if α /∈ Z+ and k = α if α ∈ Z+ which is identical to that given in Corollary 3.2.

Particular cases of interest of the solution of (3.1) given in Theorem 3.3 are

(1) α = k which yields the solution:

xk(t) =
k−1∑
j=0

(
Ψkj0(t)xj0 +

p∑
i=1

∫hi

0
Ψkj0(t − τ)ϕj(τ − hi)dτ

)
+
∫ t

0
Ψk(t − τ)Bu(τ)dτ, (3.11)

(2) a further particular case α = k = 1 which yields the solution:

x1(t) = Ψ1(t)xj0 +
p∑
i=1

∫hi

0
Ψ1(t − τ)ϕ0(τ − hi)dτ +

∫ t

0
Ψ1(t − τ)Bu(τ)dτ (3.12)

since Ψ100(t) = Ψ1(t), t ∈ R0+ which is the unique solution of (Dx)(t) =
∑p

i=0 Ai(t − hi) + Bu(t)
under any almost everywhere absolutely continuous function (except eventually in some
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subset of zero measure of [−h, 0] of bounded discontinuities) of initial conditions ϕ ≡ ϕ0 :
[−h, 0] → Rn. Use for this case, the less involved notations (Ψx)(t) = (Ψ100x)(t) = (Ψ1x)(t)
for the smooth evolution operator from R0+ × Rn to Rn, and Φ(t) = Φ100(t) = Φ1(t) = eA0t, t ∈
R+ for the exponential matrix function eA0t from R0+ to Rn×n, which defines a C0-semigroup
(eA0t, t ∈ R0+) of infinitesimal generator A0 from R0+ to L(Rn). Then, the unique solution
x(t) ≡ x1(t), t ∈ R+ for the given function of initial conditions is

x(t) = Φ(t)x0 +
p∑
i=1

∫hi

0
Φ(t − τ)Aiϕ(τ − hi)

+
p∑
i=1

∫ t

hi

Φ(t − τ)Aix(τ − hi)dτ +
∫ t

0
Φ(t − τ)Bu(τ)dτ

= Ψ(t)x0 +
p∑
i=1

∫hi

0
Ψ(t − τ)ϕ(τ − hi)dτ +

∫ t

0
Ψ(t − τ)Bu(τ)dτ, t ∈ R0+

(3.13)

and x(t) = ϕ(t) for t ∈ [−h, 0], where Φ(t) = eA0t satisfies Φ̇(t) = A0Φ(t) t ∈ R, and Ψ̇(t) =∑p

i=0 AiΨ(t − hi)with Ψ(0) = Φ(0) = In (the n-identity matrix) and Ψ(t) = 0, t ∈ [−h, 0)which
has a unique solution Ψ(t) = eA0t(In +

∑p

i=1

∫ t
hi
e−A0τAiΨ(τ − hi)dτ) for t ∈ R0+, [2, 3, 25, 26].

A problem of interest when considering a set of p delays in [0, h] is the case of
potentially repeated delays, then subject to 0 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hp ≤ h < ∞, with q
of them {hjp, j ∈ q ∪ {0}} being distinct, each being repeated 1 ≤ νj ≤ p (j ∈ q ∪ {0}) times so
that

0 = h0 = h0p < h1p < · · · < hqp ≤ h < ∞,
p∑
j=0

νjp = p + 1,

hjp = hk+i, k =
j−1∑
�=0

ν�, ∀i ∈ νj , j ∈ q ∪ {0}.
(3.14)

Thus, the following result holds from Theorem 3.3 by grouping the terms of the
delayed dynamics corresponding to the same potentially repeated delays.

Theorem 3.5. The Caputo solutions to the subsequent Caputo and Riemann-Liouville fractional
differential systems of order α with p ≥ 0 (potentially repeated) delays and 0 ≤ q ≤ p distinct delays:

(
CDα

0+x
)
(t) =

p∑
i=0

Ai(t − hi) + Bu(t),
(

RLDα
0+x
)
(t) =

p∑
i=0

Ai(t − hi) + Bu(t) (3.15)

on R0+ for the given set of initial conditions on [−h, 0) are given by

xα(t) =
k−1∑
j=0

(
Ψαj0(t)xj0 +

q∑
i=1

∫hip

0
Ψαj0(t − τ)ϕj

(
τ − hip

)
dτ

)
+
∫ t

0
Ψα(t − τ)Bu(τ)dτ (3.16)
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for any α ∈ C+ with k = [Reα] + 1 if α /∈ Z0+ and k = α if α ∈ Z0+, and, respectively by

xα(t) =
k−1∑
j=0

((
Ψαj0(t) − tj

j!

)
xj0 +

q∑
i=1

∫hip

0
Ψαj0(t − τ)ϕj

(
τ − hip

)
dτ

)
+
∫ t

0
Ψα(t − τ)Bu(τ)dτ

(3.17)

for any α ∈ Ĉ+ with k = [Reα] + 1 if α /∈ Z+ and k = α if α ∈ Z+, where

Ψαj0(t) := Eα,j+1

((
ν0−1∑
i=0

Ai

)
tα
)

+
q∑
i=1

∫ t

0
τα−1Eα,α

((
ν0−1∑
i=0

Ai

)
τα
)(

νi∑
�=1

A(
∑i−1

j=0 νj+�)

)
Ψαj0(t − τ − hi)dτ,

(3.18)

t ≥ 0 and Ψαj0(t) = Ψα(t) = 0, j ∈ k − 1 ∪ {0} for t ∈ [−h, 0).

4. Nonnegativity of the Solutions

The positivity of the solutions of (3.1) independent of the values of the delays is now
investigated under initial conditions ϕj : [−h, 0] → Rn

0+, j ∈ k − 1 ∪ {0}.

Theorem 4.1. The Caputo fractional differential system (3.1) under the delay constraint 0 = h0 <
h1 < h2 < · · · < hp = h < ∞ for any given absolutely continuous functions of initial conditions
ϕj : [−h, 0] → Rn

0+, j ∈ k − 1 ∪ {0} and any piecewise continuous vector function u : R0+ → Rn
0+ if

k = [α] + 1 if α /∈ Z+ and k = α ∈ Z+, for all t ∈ R0+; for all α ∈ R+ has following properties:

(i) Φαj0(t) is nonsingular; for all j ∈ k − 1 ∪ {0} and Φα(t) ≥ 0; for all t ∈ R0+ (if B ∈ Rn×m
+

then Φα(t) > 0; for all t ∈ R0+),

(ii)

(1) A0 ∈ MRn×n ⇔ Φ(t) ≡ Φ100(t) > 0; for all t ∈ R0+,

(2) A0 ∈ MRn×n ⇒ Φαj0(t) > 0; for all j ∈ k − 1 ∪ {0}; for all t ∈ [0, tj) for some
sufficiently small tj ∈ R+ with Φα00(t) > 0, for all t ∈ R0+ (i.e., t0 = ∞). This
property holds for all t ∈ R0+ (i.e., tj = ∞; for all j ∈ k − 1 ∪ {0}) if, in addition,
either A0 ≥ 0 or if A0 is nilpotent or if 0 < α ≤ k = 1. Furthermore, there are at least
n entries (one per row) of Φαj0(t) being positive; for all t ∈ R0+;

(iii) Any solution (3.2) to any Caputo fractional differential system (3.1) is nonnegative
independent of the delays; that is, xα(t) ∈ Rn

0+; for all t ∈ [−h, t) ∩ R0+ for some t ∈ R0+,
for any set of delays satisfying 0 = h0 < h1 < h2 < · · · < hp ≤ h < ∞ and any absolutely
continuous functions of initial conditions ϕj : [−h, 0] → Rn

0+, for all j ∈ k − 1 ∪ {0} and
any piecewise continuous control u : R0+ → Rm

0+, if and only if A0 ∈ MRn×n for t ∈ R0+

being sufficiently small. Furthermore, xα(t) ∈ Rn
0+; for all t ∈ [−h, 0) ∪ R0+ if, in addition,

either A0 ≥ 0 or if A0 is nilpotent or if 0 < α ≤ k = 1, Ai ∈ Rn×n
0+ (∀i ∈ p) and B ∈ Rn×m

0+ .
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Proof. It is now proven that Φαj0(t) ≥ 0; for all t ∈ R0+ ⇒ A0 ∈ MRn×n; for all α ∈ R+ for
any j ∈ k − 1 ∪ {0}. First, note the following. If α = k = 1 then Φα00(t) = E1,1(A0t) = Φ(t) =∑∞

�=0 A
�
0t

�/�! = eA0t ≥ 0 if A0 ∈ MRn×n from the above part of the proof and also A0 ∈
MRn×n ⇒ Φ(t) ≥ 0; for all t ∈ R0+. This follows by contradiction. Assume that Φim(t) < 0 for
some t ∈ R+. Consider the positive differential system ẋ(t) = A0x(t), x(0) = ej ,A0 ∈ MRn×n so
that xi(t) = −|Φim(t)| < 0 which contradicts the system being positive. Thus, A0 ∈ MRn×n ⇔
Φ(t) ≥ 0; for all t ∈ R0+. Furthermore, since Φ(t) is a fundamental matrix of solutions of the
differential system, it is non-singular for all finite time and the above result is weakened as
follows.

A0 ∈ MRn×n ⇔ (Φ(t) = Φα00(t) = eA0t > 0 ∧Φ(t) is non-singular; for all t ∈ R0+). Since
Φ(t) is nonsingular; for all t ∈ R0+ at least n of its entries (one per-row) is positive. Property
(i) has been proven. Now, one gets from (3.3)-(3.4):

Φαj0(t) = Eα,j+1(A0t
α) =

∞∑
�=0

A�
0t

α�

Γ
(
α� + j + 1

) =
∞∑
�=0

A�
0t

�

�!
t(α−1)��!(

α� + j
)
Γ
(
α� + j

) , j ∈ k − 1 ∪ {0}.

(4.1)

Let ei the ith unit Euclidean vector of Rn whose ith component is 1. Then, one obtains for all
j ∈ k − 1 ∪ {0}, irrespective of the value of α ∈ R+ and k ∈ Z+ being k = [α] + 1 if α /∈ Z+ and
k = α ∈ Z+, provided that A0 ∈ MRn×n:

(
Φαj0im(t)

)
= eTi Φαj0(t)em = eTi

( ∞∑
�=0

A�
0t

�

�!
t(α−1)��!

Γ
(
α� + j + 1

)
)
em

= eTi

( ∞∑
�=0

A�
0t

�

�!
t(α−1)��!(

α� + j
)
Γ
(
α� + j

)
)
em

≥ eTi

(
eA0t
)
em min

0≤�≤∞

(
t(α−1)��!
Γ(α� + k)

)

= eTi

( ∞∑
�=0

A�
0t

�

�!
t(α−1)��!(

α� + j
)
Γ
(
α� + j

)
)
em

(4.2)

= eTi

(
N∑
�=0

A�
0t

�

�!

)
em min

0≤�≤N

(
t(α−1)��!(

α� + j
)
Γ(α� + k)

)

= eTi

(
eA0t
)
em min

0≤�≤N

(
t(α−1)�Γ(� + 1)(
α� + j

)
Γ(α� + k)

)

≥ eTi

(
eA0t
)
em min

0≤�≤N

(
t(α−1)�Γ(� + 1)(
α� + j

)
Γ(α� + k)

)

(4.3)

for all (i,m) ∈ n × n, for all t ∈ R0+ since A0 ∈ MRn×n ⇔ Φ(t) ≥ 0; for all t ∈ R0+, for some
N(≤ ∞) ∈ Z0+ and N is finite if and only if A0 is nilpotent (of degree N). Equation (4.3)
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implies that eTi (e
A0t)em ≥ 0 and then (Φαj0im(t)) ≥ 0, for all (i,m) ∈ n × n in the following

cases:
(a) N ≤ ∞, t ∈ [0, t), since ∩R0+ and some sufficiently small t ∈ R+, since A0 ∈

MRn×n ⇒ I +A0t > 0; for all t ∈ R0+ andΦαj0(t) =
∑N

�=0(A
�
0t

�/�!)(t(α−1)��!/(α�+ j)Γ(α�+ j)) =
I +A0t + o(t) > 0 for some sufficiently small t ∈ R0+ for any α ∈ R+.

(b) N ≤ ∞ and A0 ≥ 0 since t(α−1)��!/(α� + j)Γ(α� + j) ≥ 0; for all � ∈ Z0+, for all
j ∈ k − 1 ∪ {0} for any α ∈ R+. It follows from inspection of (4.2) since eTi (e

A0t)em ≥ 0 for all
(i,m) ∈ n × n, since A0 ∈ MRn×n. This implies (Φαj0im(t)) ≥ 0; for all t ∈ R0+.

(c) N < ∞ ⇒ min0≤�≤N(t(α−1)�/Γ(α� + k)) > 0; for all j ∈ k − 1 ∪ {0} for any α ∈ R+ so
that eTi (e

A0t)em ≥ 0, for all (i,m) ∈ n × n, since A0 ∈ MRn×n, irrespectively of A0 ≥ 0 or not,
what follows from (4.3). This implies (Φαj0im(t)) ≥ 0; for all t ∈ R0+.

(d)N ≤ ∞, 0 < α ≤ k = 1. Then, j = 0 so that

t(α−1)��!
Γ
(
α� + j + 1

) =
t(α−1)��!
Γ(α� + 1)

=
t(α−1)��!
α�Γ(α�)

=
t(α−1)�(� − 1)!

αΓ(α�)
=

Γ(�)
αt(1−α)�Γ(α�)

≥ 1
αt(1−α)�

,

∀� ∈ Z0+, ∀t ∈ R0+

(4.4)

since 0 < α ≤ 1 implies

Γ(α�) =
∫∞

0
τα�−1e−τdτ ≤ Γ(�) =

∫∞

0
τ�−1e−τdτ, ∀� ∈ Z0+. (4.5)

As a result, Φα00(t) from (4.2); for all t ∈ R0+. Also, direct calculations with (3.3)-(3.4) lead to

Φα(t) := tα−1Eαα(A0t
α) =

∞∑
�=0

tα−1A�
0t

α�

Γ((� + 1)α)
=

∞∑
�=0

A�
0t

�

�!
t(α−1)(�+1)�!
Γ((� + 1)α)

(4.6)

and similar developments to the above ones yield (Φα(t))im ≥ 0; for all (i,m) ∈ n × n, for all
t ∈ R0+ under the same conditions as above in the cases (a) to (d) for Φα00(t). On the other
hand, one gets from (3.2)–(3.4) for the unforced system with point initial conditions at t = 0:

xα(t) =
k−1∑
j=0

Φαj0(t)xj0 = [Φα00(t), . . . ,Φα,k−1,0(t)]
[
xT
00, . . . , x

T
k−1,0
]T

(4.7)

which leads to xα(t) = Φαi0(t)xi0 by taking point initial conditions xi0 /= 0, xj0 = 0, (i /= j),
j ∈ k − 1 ∪ {0} so that Φαi0(t) is nonsingular for all t ∈ R0+ since otherwise the solution is not
unique for each given set of initial conditions since any trajectory solution subject to some set
of initial conditions xi0 /= 0, xj0 = 0, would have infinitely many initial conditions, subject to
identical constraint, so that such a trajectory is not unique which is a contradiction. Since this
reasoning may be made for any j ∈ k − 1 ∪ {0}, Φαj0(t) is nonsingular for all j ∈ k − 1 ∪ {0},
all and, in addition, Φαj0(t) > 0; for all j ∈ k − 1 ∪ {0}, for all t ∈ R0+ if either A0 ≥ 0 or if A0 is
nilpotent or if 0 < α ≤ k = 1 or without these restricting condition within some first interval
[0, t). The following properties have been proven:

(a) A0 ∈ MRn×n ⇔ Φα00(t) > 0; for all t ∈ R0+,
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(b) A0 ∈ MRn×n ⇒ (Φαj0(t) > 0 ∧ detΦαj0(t)/= 0 ∧ Φα(t) ≥ 0; for all j ∈ k − 1 ∪ {0},
k = [α] + 1 if α /∈ Z+ and k = α ∈ Z+, for all t ∈ R0+).

It remains to prove Φαj0(t) > 0; for all t ∈ R0+ ⇒ A0 ∈ MRn×n; for all j ∈ k − 1, some
t ∈ R0+. This is equivalent to its contrapositive logic proposition. Proceed by contradiction by
assuming there exist j ∈ k − 1 such that A0 /∈ MRn×n ⇒ Φαj0(t) < 0, some t ∈ R0+. Note that
A0 /∈ MRn×n =⇒ eTi e

A0t(t)em = eTi Φα00(t)em < 0, some t ∈ R0+, some (i,m/= i) ∈ n. Then, one
gets

(
Φαj0im(t)

)
= eTi Φαj0(t)em ≤ eTi

(
eA0t
)
em max

0≤�≤∞

(
t(α−1)��!
Γ(α� + k)

)
< 0 (4.8)

which contradicts (−Φαj0(t)) > 0; for all t ∈ R0+ ⇐ A0 /∈ MRn×n; for all j ∈ k − 1, some t ∈ R0+.
Thus, the proof of Properties (i)-(ii) becomes complete since the above proven property (a)
extends to any j ∈ k − 1 ∪ {0} as follows.

(c) A0 ∈ MRn×n ⇔ Φαj0(t) > 0; for all j ∈ k − 1 ∪ {0}, k = [α] + 1 if α /∈ Z+ and k = α ∈
Z+, for all t ∈ R0+; for all α ∈ R+ so that the unforced solution for any set of nonnegative point
initial conditions is nonnegative for all time and, furthermore, ϕi(t) ≥ 0 (∀i ∈ k − 1 ∪ {0}); for
all t ∈ [−h, 0], u(t) ∈ Rn

0+; for all t ∈ R0+, Ai ≥ 0 (∀i ∈ p) and B ≥ 0; for all t ∈ R0+ implies
that (3.2) is everywhere nonnegative within its definition domain. The converse is also true
as it follows by contradiction arguments. If there is one entry of B or Ai (some i ∈ p) which
is negative, or if A0 /∈ MRn×n, it can always be found a control u(t) ∈ Rn

0+ of sufficiently large
norm along a given time interval such that some component of the solution is negative for
some time. It can be also found that some nonnegative initial condition of sufficiently large
norm at t = 0 such that some component of the solution is negative at t = 0+. Thus, Property
(iii) is proven.

The following result is obvious from the proof of Theorem 4.1.

Corollary 4.2. Theorem 4.1(iii) is satisfied also independent of the delays for any given set of delays
satisfying the constraint 0 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hp = h < ∞.

Proof. It follows directly since Theorem 4.1 is an independent of the delay size type result
and, under the delay constraint 0 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hp = h < ∞, it has also to be fulfilled
for any combination of delays satisfying the stronger constraint 0 = h0 < h1 < h2 < · · · < hp =
h < ∞.

Corollary 4.3. Any solution (3.8), subject to (3.9), to the Caputo fractional differential system (3.1)
under the delay constraint 0 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hp = h < ∞ is nonnegatively independent
of the delays within a first interval, that is, it satisfies xα(t) ∈ Rn

0+; for all t ∈ [−h, t) ∩ R0+ for
some sufficiently small t ∈ R0+ for any given absolutely continuous functions of initial conditions
ϕj : [−h, 0] → Rn

0+, j ∈ k − 1 ∪ {0} and any given piecewise continuous vector function u : R0+ →
Rn

0+ with k = [α] + 1 if α /∈ Z+ and k = α ∈ Z+, for all t ∈ R0+; for all α ∈ R+ if and only if
A0 ∈ MRn×n, Ai ∈ Rn×n

0+ (∀i ∈ p), and B ∈ Rn×m
0+ . In addition, xα : [−h, 0) ∪ R0+ → Rn

0+ if,
in addition, either A0 ≥ 0 or if A0 is nilpotent or if 0 < α ≤ k = 1. Furthermore, Ψαj0(t) > 0
(with at least n entries being positive), det Ψαj0(t) > 0 (∀j ∈ k − 1 ∪ {0}) and Ψα(t) ≥ 0; for
all t ∈ R0+ (if B ∈ Rn×m

+ then Ψα(t) > 0; ∀t ∈ R0+).
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Proof. The solution (3.8) is identical to the unique solution (3.2) for (3.1) thus it is everywhere
nonnegative under the same conditions that those of Theorem 4.1 which have been extended
in Corollary 4.2.

Note that the conditions of nonnegativity of the solution of the above theorem also
imply the excitability of all the components of the state-trajectory solution; that is its strict
positivity for some t ∈ R+ provided that B � 0 and the control u : R0+ → Rn

0+ is admissible
(i.e., piecewise continuous) and nonidentically zero since Ψα(t) > 0 and nonsingular for all
t ∈ R+. It is now seen that the positivity conditions for the Riemann-Liouville fractional
differential system (3.5) are not guaranteed in general by the above results for any given
absolutely continuous functions of initial conditions ϕj : [−h, 0] → Rn

0+, j ∈ k − 1 ∪ {0} and
any given piecewise continuous vector function u : R0+ → Rn

0+ with k = [α] + 1 if α /∈ Z+ and
k = α ∈ Z+, for all t ∈ R0+; for all α ∈ R+. The following two results hold by using Corollary 3.2
and Corollary 3.4.

Theorem 4.4. Any solution (3.7), subject to (3.3)-(3.4), to the Riemann-Liouville fractional
differential system (3.5) under the delay constraint 0 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hp = h < ∞ is
everywhere nonnegative independent of the delays, that is, it satisfies xα : [−h, 0) ∪ R0+ → Rn

0+, for
any given absolutely continuous functions of initial conditions ϕj : [−h, 0] → Rn

0+, j ∈ k − 1 ∪ {0}
and any given piecewise continuous vector function u : R0+ → Rn

0+ with k = [α] + 1 if α /∈ Z+

and k = α ∈ Z+, for all t ∈ R0+; for all α ∈ R+ if A0 ∈ MRn×n, Ai ∈ Rn×n
0+ (∀i ∈ p),

(Eα,j+1(t) − (1/j!)In) ≥ 0; for all j ∈ k − 1 ∪ {0}, for all t ∈ R0+ and B ∈ Rn×m
0+ . The conditions

A0 ∈ MRn×n, Ai ∈ Rn×n
0+ (∀i ∈ p) and B ∈ Rn×m

0+ are also necessary for xα : [−h, 0) ∪ R0+ →
Rn

0+ for any nonnegative function of initial conditions and nonnegative controls. The condition

(Eα,j+1(t) − (1/j!)In) ≥ 0; for all j ∈ k − 1 ∪ {0}, for all t ∈ R0+ is removed for initial conditions
ϕj : [−h, 0] → Rn

0+ subject to ϕj(0) = xj0 = 0.

Proof. The proof follows in a similar way as the sufficiency part of the proof of
Theorem 4.1(iii) by inspecting the nonnegative of the solution Corollary 3.2, (3.7) for a
nonnegative function of initial conditions and any nonnegative control.

Theorem 4.5. Any solution (3.10), subject to (3.3)-(3.4), to the Riemann-Liouville fractional
differential system (3.5) under the delay constraint 0 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hp = h < ∞ is
everywhere nonnegatively independent of the delays, that is, it satisfies xα : [−h, 0)∪R0+ → Rn

0+, for

any given absolutely continuous functions of initial conditions ϕj : [−h, 0] → Rn
0+, j ∈ k − 1 ∪ {0}

and any given piecewise continuous vector function u : R0+ → Rn
0+ with k = [α] + 1 if α /∈ Z+

and k = α ∈ Z+, for all t ∈ R0+; for all α ∈ R+ if and only if A0 ∈ MRn×n, Ai ∈ Rn×n
0+ (∀i ∈ p),

(Ψαj0(t) − (tj/j!)In) ≥ 0; for all j ∈ k − 1 ∪ {0}, for all t ∈ R0+ and B ∈ Rn×m
0+ . The condition

(Ψαj0(t) − (tj/j!)In) ≥ 0; for all j ∈ k − 1 ∪ {0}, for all t ∈ R0+ is removed for initial conditions
ϕj : [−h, 0] → Rn

0+ subject to ϕj(0) = xj0 = 0.

Proof. The proof of sufficiency follows in a similar way as the sufficiency part of the proof
of Theorem 4.1(iii) (see also the proof of Theorem 4.5) by inspecting the nonnegativity of
the solution Corollary 3.2, (3.7) for a nonnegative function of initial conditions and any
nonnegative control. The proof necessity follows by contradiction by inspecting the solution
(3.10) as follows.
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(a) Assume that A0 /∈ MRn×n and the solution is nonnegative for all time for any
nonnegative function of initial conditions and controls. Take initial conditions ϕj(t) = 0; for
all t ∈ [−h, 0], for all j ∈ k − 1; ϕ0(t) = 0; for all t ∈ [−h, 0), ϕ0(0) = x00(0)/= 0 and u ≡ 0 on R0+.
Then (3.10) becomes

xα(t) = (Ψα00(t) − In)x00 = (Eα00(t) − In)x00 for t ∈ [0, h1] (4.9)

since Ψα00(t) = Φα00(t) for t ∈ [0, h1]. Since A0 /∈ MRn×n, there exist t ∈ [0, h1] and (i =
i(t), m(t)/= i) ∈ n such that (Φα00(t))im < 0. Otherwise, if A0 /∈ MRn×n and Φα00(t) > 0; for all
t ∈ [0, h1], it would follow from (4.3) that Φα00(t) > 0; for all t ∈ R0+ since

eA0t = eχA0h1+A0δ = eχA0h1eA0δ =
(
eA0h1

)χ
eA0δ > 0 (4.10)

from the semigroup property of (eA0t, t ∈ R0+) with χ = χ(t, h1) = [t/h1] and (0, h1) � δ =
δ(t, h1) = t − χh1 what implies Φα00(t) > 0; for all t ∈ R0+ from (4.3). Thus, A0 ∈ MRn×n

which contradicts A0 /∈ MRn×n. It has been proven that A0 /∈ MRn×n ⇒ eTi Φα00(t)em < 0;
for all t ∈ (0, h1] for some (i = i(t), m(t)/= i) ∈ n. Now, take x00j = δjm (∀j ∈ n) where δjm
denotes the Kronecker delta. Then,

xαi(t) = eTi

(
Ψα00(t) − tj

j!
In

)
x00 = eTi

(
Φα00(t) − tj

j!
In

)
em = eTi Φα00(t)em < 0. (4.11)

As a result, A0 ∈ MRn×n is a necessary condition for the solution to be nonnegative for all
time irrespective of the delay sizes.

(b) Assume that the solution is nonnegative for all time for any nonnegative function
of initial conditions and controls. Assume that eTi A�ej < 0 and h� /=hi; for all i(/= �) ∈ p for
some i, j ∈ n, � ∈ p. Take initial conditions xj0 = ϕj(0) = 0; for all t ∈ [−h, 0]; for all j ∈
k − 1 ∪ {0}, ϕj ≡ 0; for all j ∈ k − 1 and u ≡ 0. One gets from (3.2)

xαi(t) =
∫h′

0
eTi Φα(t − τ)

⎛
⎝ ∑

j(/= �)∈p
Aj

⎞
⎠ϕ0

(
τ − h′)dτ

+
∫h�

0
eTi Φα(t − τ)A�ϕ0(τ − h�)dτ ; ∀t ∈ [0, hi]

(4.12)

for the case h′ = hi; for all i(/= � ∈ p). Now, if h = h� > h′, take a further specification of
initial conditions as follows: ϕ0(t) = 0; for all t ∈ [0, h′], and ϕ0(τ) = (k1, . . . , kn)

T � 0;
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for all t ∈ (h′, h�] then

xαi(t) =
∫h�

h′
eTi Φα(t − τ)A�ϕ0(τ − h�)dτ

=
n∑
r=1

n∑
m=1

(∫h�

h′
Φαir(t − τ)A�rmdτ

)
km

=
n∑
j=1

kj

(∫h�

h′
ΦT

αi(t − τ)dτ

)
A�j

=
∑

(m/= j)∈n
km

(
m∑
r=1

∫h�

h′
Φαir(t − τ)dτ

)
A�rm

+ kj

(
m∑
r=1

∫h�

h′
Φαir(t − τ)dτ

)
A�rj , ∀t ∈ [0, hi].

(4.13)

As a result, Ai ≥ 0 (∀i ∈ p) is a necessary condition for the solution to be nonnegative for all
time irrespective of the delay sizes.

(c) Assume that the solution is nonnegative for all time for any nonnegative function
of initial conditions and controls, and B ≥ 0 is not fulfilled so that it exists at least an entry
B�j < 0 of B. Then, one has under identically zero initial conditions the following unique
solution:

xαi(t) =
∫ t

0
eTi Ψα(t − τ)Bu(τ)dτ

=
m∑
i=1

∫ t

0
ΨT

αi(t − τ)Biui(τ)dτ

=
m∑
i=1

n∑
�=1

∫ t

0
Ψαi�(t − τ)B�iui(τ)dτ

=
∑

(i /= j)∈m

n∑
�=1

∫ t

0
Ψαi�(t − τ)B�iui(τ)dτ

−
(

n∑
�=1

∫ t

0
Ψαj�(t − τ)

∣∣B�j

∣∣dτ
)
kuj < 0, t ∈ R0+

(4.14)

provided that kuj >
∑

(i /= j)∈m
∑n

�=1

∫ t
0 Ψαi�(t − τ)B�iui(τ)dτ/(

∑n
�=1

∫ t
0 Ψαj�(t − τ)|B�j |dτ) by

assuming that B ≥ 0 fails because B�j < 0 for some (�, j) ∈ n × m and a constant control
component uj ≡ kuj > 0 is injected on the time interval [0, t] for some arbitrary t ∈ R+ for the
remaining control components being chosen t be nonnegative for all time. This contradicts
that the solution is nonnegative for all time if the condition B ≥ 0 fails.

Remark 4.6. Note that Theorem 4.1 can be extended as a necessary condition for t ∈ [0, h1]
since Ψαj0(t) = Φαj0(t) for t ∈ [0, h1]; for all j ∈ k − 1 ∪ {0}, for all t ∈ R0+.
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Remark 4.7. Note by simple calculation that (A0 ∈ MRn×n ∧ Ai ≥ 0 (i ∈ p)) ⇒ (
∑p

i=0 Ai) ∈
MRn×n. This is a necessary and sufficient condition for the nonnegativity of the solutions
of the Caputo fractional differential system (3.1) of arbitrary order α ∈ R+ under arbitrary
nonnegative controls and initial conditions in the absence of delays; that is, for hi = 0;
for all i ∈ ω ∪ {0} and any ω ∈ Z+.

Remark 4.8. The given conditions to guarantee that the solution is everywhere nonnegative
under any given arbitrary nonnegative initial conditions and nonnegative controls are
independent of the sizes of the delays type; that is, for any given set of p delays. However, the
conditions are weakened for particular situations involving repeated delays as follows. Note
from Theorem 4.5 that the various given conditionsAi ≥ 0 of necessary type to guarantee the
nonnegativity of the solution under any admissible nonnegative controls and nonnegative
initial conditions are weakened to (

∑νi
�=1 A(

∑i−1
j=0 νj+�)

) if there is some repeated delay hi of
multiplicity νi ≥ 2 (i.e., the number of distinct delays is 0 ≤ q < p). Also, if h0 = 0 is
repeated with multiplicity ν0 ≥ 2 then the condition A0 ∈ MRn×n for ν0 = 1 is replaced
by (
∑ν0−1

�=0 A�) ∈ MRn×n.

Remark 4.9. Note that there is a duality of all the given results of sufficiency type or necessary
and sufficiency type in the sense that the solutions are guaranteed to be nonpositive for all
time under similar conditions for the cases when all components of the controls and initial
conditions are nonpositive for all time.

5. Asymptotic Behavior of Unforced Solutions for α ∈ R+

The asymptotic behaviour and the stability properties of the Caputo fractional differential
system (3.1) can be investigated via the extension of the subsequent formulas for α ∈ R+, (see
(1.8.27)–(1.8.29), [1]).

(1) If 0 < α < 2 then for |z| → ∞ and some μ ∈ R satisfying μ < π min(1, α):

Eαβ(z) =
1
α
z(1−β)/αe(z

1/α) −
N∑
j=1

1
Γ
(
β − αj

) 1
zj

+O

(
1

zN+1

)
(5.1)

with | arg z| ≤ μ < π min(1, α), any N ∈ Z+, and

Eαβ(z) = −
N∑
j=1

1
Γ
(
β − αj

) 1
zj

+O

(
1

zN+1

)
(5.2)

with π ≥ | arg z| ≥ μ < π = π min(1, α), any N ∈ Z+.

(2) If α ≥ 2 then for |z| → ∞

Eαβ(z) =
1
α

∑
j∈Q

(
z1/αe2jπi/α

)1−β
e(e

2jπi/αz1/α) −
N∑
j=1

1
Γ
(
β − αj

) 1
zj

+O

(
1

zN+1

)
(5.3)
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for anyN ∈ Z+ with β ∈ k − 1∪{0}∪{α}, | arg z| ≤ απ/2,Q := {n ∈ Z : | arg z+2πn| ≤ απ/2}
and i =

√ −1 being the complex imaginary unit. The above formulas are extendable to the
Mittag-Leffler matrix functions Eα,j+1(A0t

α) :=
∑∞

�=0 (A0t
α)�/Γ(α� + j + 1); for all j ∈ k − 1 ∪

{0}, respectively, Eαα(A0t
α) by identifying z → A0t

α, z1/α → (A0)
1/αt (if (A0)

1/α exists)
and z−1 → A−1

0 t−α (if A0 is non-singular), β → j + 1, respectively, β → α. Irrespective of
the existence of (A0)

1/α and of A0 /= 0 being singular or nonsingular, it is possible to identify
z−1 → ‖A0‖−1t−α and z → ‖A0‖tα and to use

∥∥Eα,j+1(A0t
α)
∥∥ ≤ Eα,j+1(‖A0‖tα) =

∞∑
�=0

(‖A0‖tα)�
Γ
(
α� + j + 1

) , ∀j ∈ k − 1 ∪ {0},

‖Eαα(A0t
α)‖ ≤ Eαα(‖A0‖tα) =

∞∑
�=0

(‖A0‖tα)�
Γ(α� + α)

.

(5.4)

The method may be used to calculate an asymptotic estimate of the solution (3.2) ifA0

is non-singular (or an upperbounding function for any nonzero A0) of the Caputo fractional
differential system (3.1), via (3.3)-(3.4), or, equivalently (3.8), via (3.9) and (3.3)-(3.4). The
estimations may be extended with minor modification to the Riemann-Liouville fractional
differential system (3.5). Note that if all the complex eigenvalues of A0 appear by conjugate
pairs A0 then A0 = T−1J0A0 where J0 is its real canonical form. First, consider two separate
cases as follows.

(A) Assume that α ∈ R+, A0 is real non-singular and (A0)
1/α exists; that is, there exist

M such that Mα = A0 and Ai (i ∈ p) is real. Then, one gets from (5.1)–(5.3):

Eα,j+1(A0t
α) =

1
α

(
A

−j
0

)1/α
t−je(A

1/α
0 )t −

N∑
�=1

1
Γ((1 − α)� + 1)

(
A−�

0

)
t−�α

+O
(
A

−(N+1)
0 t−(N+1)α

)
, ∀j ∈ k − 1 ∪ {0},

Eαα(A0t
α) =

1
α
A

(1−α)/α
0 t1−αe(A

1/α
0 )t −

N∑
�=1

1
Γ((1 − �)α)

(
A−�

0

)
t−�α +O

(
A

−(N+1)
0 t−(N+1)α

)

(5.5)

as t → ∞ if 0 < α < 2, for any N ∈ Z+,

Eα,j+1(A0t
α) =

1
α

∑
�∈Q

(
A1/α

0 te2�πi/α
)−j

e(e
2�πi/α(A1/α

0 )t) −
N∑
�=1

1
Γ((1 − α)� + 1)

(
A−�

0

)
t−�α

+O
(
A

−(N+1)
0 t−(N+1)α

)
, ∀j ∈ k − 1 ∪ {0},

Eαα(A0t
α) =

1
α

∑
�∈Q

(
A1/α

0 te2�πi/α
)1−α

e(e
2�πi/α(A1/α

0 )t)

−
N∑
�=1

1
Γ((1 − �)α)

(
A−�

0

)
t−�α +O

(
A

−(N+1)
0 t−(N+1)α

)

(5.6)

as t → ∞ if α ≥ 2, for any N ∈ Z+, with Q := {n ∈ Z : |n| ≤ α/4}.
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(B) Assume that α ∈ R+ and Ai (i ∈ p ∪ {0}) is real, one obtains from (5.1)-(5.2):

∣∣Eαβ(z)
∣∣ ≤ Eαβ(z) =

1
α
|z|(1−β)/α|ez|1/α +

∣∣∣∣∣
N∑
�=1

1
Γ
(
β − α�

) 1
zj

+O

(
1

zN+1

)∣∣∣∣∣ (5.7)

for 0 < α < 2, β ∈ k − 1 ∪ {0},

∣∣Eαβ(z)
∣∣ ≤ Eαβ(z) =

1
α

∑
j∈Q

(
|z|(1−β)/α

)
|ez|1/α +

∣∣∣∣∣
N∑
�=1

1
Γ
(
β − α�

) 1
zj

+O

(
1

zN+1

)∣∣∣∣∣ (5.8)

for α ≥ 2, β ∈ k − 1 ∪ {0, α}. Thus, on gets from (5.7)

∥∥Eα,j+1(A0t
α)
∥∥ ≤ 1

α

(
‖A0‖−j

)1/α
t−j
∥∥∥eA0t

∥∥∥
1/α −

N∑
�=1

1
Γ((1 − α)� + 1)

(
‖A0‖−�

)
t−�α

+O
(
‖A0‖−(N+1)t−(N+1)α

)
, ∀j ∈ k − 1 ∪ {0},

‖Eαα(A0t
α)‖ ≤ 1

α
‖A0‖(1−α)/αt1−α

∥∥∥eA0t
∥∥∥
1/α −

N∑
�=1

1
Γ((1 − �)α)

(
‖A0‖−�

)
t−�α

+O
(
‖A0‖−(N+1)t−(N+1)α

)

(5.9)

as t → ∞, for any N ∈ Z+, if 0 < α < 2, and one gets from (5.8)

∥∥Eα,j+1(A0t
α)
∥∥ ≤ 1

α

∑
�∈Q

(
‖A0‖1/αt

)−j∥∥∥eA0t
∥∥∥
1/α −

N∑
�=1

1
Γ((1 − α)� + 1)

(
‖A0‖−�

)
t−�α

+O
(
‖A0‖−(N+1)t−(N+1)α

)
, ∀j ∈ k − 1 ∪ {0},

‖Eαα(A0t
α)‖ ≤ 1

α

∑
�∈Q

(
‖A0‖1/αt

)1−α∥∥∥eA0t
∥∥∥
1/α −

N∑
�=1

1
Γ((1 − �)α)

(
‖A0‖−�

)
t−�α

+O
(
‖A0‖−(N+1)t−(N+1)α

)

(5.10)

as t → ∞ if α ≥ 2, for any N ∈ Z+, with Q := {n ∈ Z : |n| ≤ α/4}. The formula
(3.8) for the solution is more useful than its equivalent expression (3.2) to investigate the
asymptotic properties of the Caputo fractional differential system. Therefore, we obtain now
either explicit or upperbounding asymptotic expressions for (3.9) by using (5.5) to (5.9) as
follows.
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(1) Assume that α ∈ R+, A0 is real non-singular, (A0)
1/α exists and Ai (i ∈ p) are also

real. Then, one gets from (5.5)–(5.6) into (3.9):

Ψαj0(t) =
1
α

(
A

−j
0

)1/α
e(A

1/α
0 )t −

N∑
�=1

1
Γ
(
j + 1 − α�

)
(
A−�

0

)
tj−�α +O

(
A

−(N+1)
0 tj−(N+1)α

)

+
p∑
i=1

∫ t

0

(
1
α
A

(1−α)/α
0 e(A

1/α
0 )τ −

N∑
�=1

1
Γ((1 − �)α)

(
A−�

0

)
τ (1−�)α−1 +O

(
A

−(N+1)
0 τ−Nα−1

))

×AiΨαj0(t − τ − hi)dτ,

(5.11)

Ψα(t) =
1
α
A

(1−α)/α
0 e(A

1/α
0 )t −

N∑
�=1

1
Γ((1 − �)α)

(
A−�

0

)
t(1−�)α +O

(
A

−(N+1)
0 t−Nα

)

+
p∑
i=1

∫ t

0

(
1
α
A

(1−α)/α
0 e(A

1/α
0 )τ −

N∑
�=1

1
Γ((1 − �)α)

(
A−�

0

)
τ (1−�)α−1 +O

(
A

−(N+1)
0 τ−Nα−1

))

×AiΨα(t − τ − hi)dτ
(5.12)

for all j ∈ k − 1 ∪ {0} as t → ∞ if 0 < α < 2, for any N ∈ Z+, and

Ψαj0(t) =
1
α

∑
�∈Q

(
A1/α

0 e2�πi/α
)−j

e(e
2�πi/α(A1/α

0 )t) −
N∑
�=1

1
Γ
(
j + 1 − α�

)
(
A−�

0

)
tj−�α

+O
(
A

−(N+1)
0 tj−(N+1)α

)

+
p∑
i=1

∫ t

0

⎛
⎜⎜⎝

1
α

∑
�∈Q

(
A

(1−α)/α
0 e2�πi/α

)−j
e(e

2�πi/α(A1/α
0 )τ)

−
N∑
�=1

1
Γ((1 − �)α)

(
A−�

0

)
τ (1−�)α−1 +O

(
A

−(N+1)
0 τ−Nα−1

)
⎞
⎟⎟⎠

×AiΨαj0(t − τ − hi)dτ,

Ψα(t) =
1
α

∑
�∈Q

(
A

(1−α)/α
0 e2�π(1−α)i/α

)
e(e

2�πi/α(A1/α
0 )t)

−
N∑
�=1

1
Γ((1 − α)� + 1)

(
A−�

0

)
tj−�α +O

(
A

−(N+1)
0 tj−(N+1)α

)
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+
p∑
i=1

∫ t

0

⎛
⎜⎜⎝

1
α

∑
�∈Q

(
A

(1−α)/α
0 e2�π(1−α)i/α

)
e(e

2�πi/α(A1/α
0 )τ)

−
N∑
�=1

1
Γ((1 − α)�)

(
A−�

0

)
τ (1−�)α−1 +O

(
A

−(N+1)
0 τ−Nα−1

)
⎞
⎟⎟⎠

×AiΨαj0(t − τ − hi)dτ

(5.13)

for all j ∈ k − 1 ∪ {0} as t → ∞ if α ≥ 2, for any N ∈ Z+.
(2) Assume that α ∈ R+ and Ai (i ∈ p ∪ {0}) are real. Then,

∥∥Ψαj0(t)
∥∥ ≤ 1

α

(
‖A0‖−j

)1/α∥∥∥eA0t
∥∥∥
1/α

+
N∑
�=1

1∣∣Γ(j + 1 − α�
)∣∣‖A0‖−�tj−�α+O

(
‖A0‖−(N+1)tj−(N+1)α

)

+
p∑
i=1

∫ t

0

⎛
⎜⎝ 1

α
‖A0‖(1−α)/α

∥∥∥eA0τ
∥∥∥
1/α

+
N∑
�=1

1
|Γ((1 − �)α)|

(
‖A0‖−�

)
τ (1−�)α−1

+O
(
‖A0‖−(N+1)τ−Nα−1

)
⎞
⎟⎠‖Ai‖

∥∥Ψαj0(t − τ − hi)
∥∥dτ,

(5.14)

‖Ψα(t)‖ ≤ 1
α
‖A0‖(1−α)/α

∥∥∥eA0t
∥∥∥
1/α

tα +
N∑
�=1

1
|Γ((1 − �)α)|

(
‖A0‖−�

)
t(1−�)α +O

(
‖A0‖−(N+1)t−Nα

)

+
p∑
i=1

∫ t

0

(
1
α
‖A0‖(1−α)/ατα

∥∥∥eA0τ
∥∥∥
1/α

+
N∑
�=1

1
|Γ((1 − �)α)| ‖A0‖−�τ (1−�)α−1

+O
(
‖A0‖−(N+1)τ−Nα−1

))
‖Ai‖‖Ψα(t − τ − hi)‖dτ

(5.15)

for all j ∈ k − 1 ∪ {0} as t → ∞ if 0 < α < 2, for any N ∈ Z+, and

∥∥Ψαj0(t)
∥∥ ≤ 1

α

(
‖A0‖1/α

)−j∥∥∥eA0t
∥∥∥
1/α

+
N∑
�=1

1∣∣Γ(j + 1 − α�
)∣∣‖A0‖−�tj−�α +O

(
‖A0‖−(N+1)tj−(N+1)α

)

+
p∑
i=1

∫ t

0

(
1
α
‖A0‖(1−α)/α

∥∥∥eA0τ
∥∥∥
1/α

+
N∑
�=1

1
|Γ((1 − �)α)| ‖A0‖−�τ (1−�)α−1

+O
(
‖A0‖−(N+1)τ−Nα−1

))
‖Ai‖

∥∥Ψαj0(t − τ − hi)
∥∥dτ,
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‖Ψα(t)‖ ≤ 1
α
‖A0‖(1−α)/α

∥∥∥eA0t
∥∥∥
1/α

+
N∑
�=1

1
|Γ((1 − �)α)| ‖A0‖−�tj−�α +O

(
‖A0‖−(N+1)tj−(N+1)α

)

+
p∑
i=1

∫ t

0

(
1
α
‖A0‖(1−α)/α

∥∥∥eA0τ
∥∥∥
1/α

+
N∑
�=1

1
|Γ((1 − �)α)| ‖A0‖−�τ (1−�)α−1

+O
(
‖A0‖−(N+1)τ−Nα−1

))
‖Ai‖

∥∥Ψαj0(t − τ − hi)
∥∥dτ

(5.16)

for all j ∈ k − 1 ∪ {0} as t → ∞ if α ≥ 2, for any N ∈ Z+.
For further discussion, note that there exists a set of linearly independent continuously

differential real functions {αi : R0+ → R, i ∈ ν − 1∪{0}}, where ν is the degree of the minimal
polynomial of any square real matrix A0 such that:

eA0t =
ν−1∑
i=0

αi(t)Ai
0 =

ν∑
j=0

νi−1∑
i=0

kij t
ieλj t; ∀t ∈ R0+ (5.17)

(see, e.g., [4, 5]), where kij ∈ R; i ∈ ν − 1∪{0}, j ∈ ν∪{0}, σ(M) := {λi ∈ C : det(λiIn−A0) = 0}
is the spectrum ofA0 defined by the set of eigenvalues λi ofM of respective index νi (i.e., the
multiplicity of λi in the minimal polynomial of A0) and algebraic multiplicity μi (i.e., the
multiplicity of λi in the characteristic polynomial ofA0) so that n =

∑n
i=1 ni ≥ ν =

∑n
i=1 νi with

n being the order of A0 with ν being the degree of its minimal polynomial. The subsequent
fractional calculus-related stability result is based on the above formulas.

Theorem 5.1. The following properties hold.
(i) If k = α = 1 (the particular standard bon-fractional case) then (3.1) is globally Lyapunov

stable independent of the delays if

∥∥∥∥∥

(
1
β1

A1,
1
β2

A2, . . . ,
1
βp

Ap

)∥∥∥∥∥
2

≤ −μ2(A0) (5.18)

requiring for the �2-matrix measure of A0 to fulfil μ2(A0) := (1/2)λmax(A0 + AT
0 ) ≤ 0, for some

βi ∈ R+ (i ∈ p) subject to
∑p

i=1 β
2
i = 1, [6]. Also,

Ψ100(t) = eA0t −A−1
0 t−1 +O

(
A−1

0 t−1
)

+
p∑
i=1

∫ t

0

(
eA0τ −A−1

0 τ−1 +O
(
A−1

0 τ−1
))

AiΨ100(t − τ − hi)dτ as t −→ ∞
(5.19)
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is bounded provided that A0 is non-singular with eA0t being of the form (5.17) if (5.18) holds and
then the unforced solution:

xα(t) =
k−1∑
j=0

(
Ψαj0(t)xj0 +

p∑
i=1

∫hi

0
Ψαj0(t − τ)ϕj(τ − hi)dτ

)
. (5.20)

Is bounded for all time. Furthermore,

‖Ψ100(t)‖ ≤
∥∥∥eA0t

∥∥∥ + ‖A0‖−1t−1 +O
(
‖A0‖−2t−2

)

+
p∑
i=1

∫ t

0

(∥∥∥eA0τ
∥∥∥ + ‖A0‖−1τ−1 +O

(
‖A0‖−1τ−1

))

× ‖Ai‖‖Ψ100(t − τ − hi)‖dτ as t −→ ∞

(5.21)

if (5.18) holds irrespective ofA0 being singular or non-singular. If, in addition, μ2(A0) < 0 and (5.18)
holds with strict inequality then (3.1) is globally asymptotically Lyapunov stable independent of the
delays and

Ψ100(t) −→
p∑
i=1

∫ t

0

(
eA0τ −A−1

0 τ−1 +O
(
A−1

0 τ−1
))

AiΨ10(t − τ − hi)dτ −→ 0 as t −→ ∞.

(5.22)

(ii) If k = 1 and α ∈ (0, 1] the inequality (5.18) is strict then (3.1) is globally Lyapunov stable
independent of the delays if μ2(A

1/α
0 ) ≤ 0 and

∥∥∥∥∥

(
1
β1

A1,
1
β2

A2, . . . ,
1
βp

Ap

)∥∥∥∥∥
2

≤ −μ2

(
A1/α

0

)
(5.23)

provided thatA0 is non-singular andA
1/α
0 exists. Also, then (3.1) is globally asymptotically Lyapunov

stable independent of the delays if, in addition, μ2(A
1/α
0 ) < 0 and

∥∥∥∥∥

(
1
β1

A1,
1
β2

A2, . . . ,
1
βp

Ap

)∥∥∥∥∥
2

<
∣∣∣μ2

(
A1/α

0

)∣∣∣, (5.24)

Ψα00(t) =
1
α
e(A

1/α
0 )t − 1

Γ(1 − α)
A−1

0 t−α +O
(
A−2

0 t−2α
)

+
p∑
i=1

∫ t

0

(
1
α
A

(1−α)/α
0 e(A

1/α
0 )τ −A−1

0 τ−1 +O
(
A

−(N+1)
0 τ−α−1

))

×AiΨα00(t − τ − hi)dτ −→ 0 as t −→ ∞.

(5.25)

If either A0 is singular or A
1/α
0 does not exists then (5.25) is replaced by a corresponding less than or

equal to relation of norms with the replacements A0 → ‖A0‖, A−1
0 → ‖A0‖−1, and eA0t → ‖eA0t‖.
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(iii) Assume that JA0 = JA0d + J̃A0 is the canonical real form of A0 (in particular, its Jordan
form if all the eigenvalues are real) with JA0d being diagonal and J̃A0 being off diagonal such that the
above decomposition is unique with A0 = T−1JA0T where T is a unique non-singular transformation
matrix. Then, the Caputo fractional differential system (3.1) is globally Lyapunov stable independently
of A1/α

0 to exist or not by replacing μ2(A
1/α
0 ) → μ2(J

1/α
A0d

) in (5.23) by

∥∥∥∥∥

(
1
β0

T−1J̃A0T,
1
β1

T−1A1T,
1
β2

T−1A2T, . . . ,
1
βp

T−1ApT

)∥∥∥∥∥
2

≤ ∣∣μ2(JA0d)
∣∣1/α (5.26)

with μ2(J
1/α
A0d

) ≤ 0 for some set of numbers βi ∈ R+ (i ∈ p∪{0}) satisfying∑p

i=0 β
2
i = 1. The fractional

system is globally asymptotically Lyapunov stable for one such a set of real numbers if μ2(J
1/α
A0d

) < 0,
what implies that | arg λ| < απ/2, for all λ ∈ σ(A0), and

∥∥∥∥∥

(
1
β0

T−1J̃A0T,
1
β1

T−1A1T,
1
β2

T−1A2T, . . . ,
1
βp

T−1ApT

)∥∥∥∥∥
2

<
∣∣μ2(JA0d)

∣∣1/α. (5.27)

Proof. It turns out that xα(t) is bounded for all time so that (3.1) is globally Lyapunov stable if
‖Ψαj0(t)‖ is bounded; for all j ∈ k − 1 ∪ {0} for all t ∈ R0+ for any bounded functions of initial
conditions ϕj : [−h, 0] → Rn; for all j ∈ k − 1 ∪ {0} with ϕj(0) = xj(0) = xj0. If, in addition,
‖Ψαj0(t)‖ → 0 as t → ∞ then xα(t) → 0 as t → ∞ so that (3.1) is globally asymptotically
Lyapunov stable and the solution (5.20) is bounded for all time. Thus, if k = α = 1 (the
particular standard bon-fractional case) then (3.1) is globally Lyapunov stable if ‖Ψ100(t)‖ is
bounded for all t ∈ R0+. A sufficient condition independent of the delays is that (5.18) holds
requiring trivially for the �2-matrix measure of A0 to fulfil μ2(A0) := (1/2)λmax(A0 +AT

0 ) ≤ 0,
where the for some βi ∈ R+ (i ∈ p) subject to

∑p

i=1 β
2
i = 1, [27]. Equation (5.19) follows

from (5.11) after inspection for N = 1 and it is bounded as t → ∞ and since otherwise the
global stability property (5.18) would fail contradicting its sufficient condition for j + 1 =
k = α = 1. Equation (5.20) follows from (5.14) for j + 1 = k = α = N = 1 irrespective
of A0 being singular or non-singular and of the fact of A1/α

0 to exist or not. Equation (5.21)
follows from (5.19) since μ2(A0) < 0 implies that A0 is a stability matrix then Re(λ) < 0;
for all λ ∈ σ(A0) and, furthermore, Ψ100(t) → 0, and the unforced solution xα(t) → 0, as
t → ∞ from the strict inequality guaranteeing global asymptotic stability independent of
the delays, namely, ‖(1/β1)A1, (1/β2)A2, . . . , (1/βp)Ap‖2 < |μ2(A0)|. Property (i) has been
proven. Property (ii) has a similar proof for α ∈ (0, 1], k = 1 by replacingA0 → A1/α

0 . Property
(iii) follows by using the matrix similarity transformation A0 = T−1JA0T = T−1(JA0d + J̃A0)T
and using the homogeneous transformed Caputo fractional differential system from (3.1):

(
CDα

0+z
)
(t) =

(
CDα

0+Tx
)
(t) =

p∑
i=0

AiTx(t − hi) ⇐⇒

(
CDα

0+x
)
(t) =

p∑
i=0

T−1AiTx(t − hi) = T−1A0Tx(t) +
p∑
i=1

T−1AiTx(t − hi)

= T−1JA0dTx(t) +
p∑
i=0

T−1AiTx(t − hi),

(5.28)
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where z (t) = T x(t); for all t ∈ R0+, h0 = 0 plays the role of an additional delay. A0 = J̃A0

and Ai = Ai (i ∈ p) by noting also that since (JA0d + J∗A0d
) is diagonal with real eigenvalues by

construction, one has

∣∣∣μ2

(
J1/αA0d

)∣∣∣ =
∣∣∣∣
1
2
λmax

(
J1/αA0d

+ J1/αA0d

∗)∣∣∣∣ =
∣∣∣λmax

(
J1/αA0d

)∣∣∣ =
∣∣∣Reλmax

(
J1/αA0d

)∣∣∣

=
∣∣∣Reλ1/αmax(JA0d)

∣∣∣ =
∣∣∣Reλ1/αmax(A0d)

∣∣∣ = ∣∣μ2(JA0d)
∣∣1/α.

(5.29)

Then, the proof is similar to that of the related part of Property (ii). Note also that μ2(J
1/α
A0d

) < 0,
implies that

Reλ1/α < 0 ⇐⇒ arg
(
λ

α

)
∈
(
−π
2
,
π

2

)
; ∀λ ∈ σ(A0) ⇐⇒ ∣∣arg λ

∣∣ > απ

2
, ∀λ ∈ σ(A0).

(5.30)

Remark 5.2. Note that a similar expressions to (5.25) applies to guarantee global asymptotic
stability for α ∈ (0, 1] in Theorem 5.1(iii) by replacingA0 → T−1JA0dT andAi → T−1AiT with
Ai (i ∈ p ∪ {0}) defined in the proof of Theorem 5.1(iii). Theorem 5.1 establishes that for any
stability matrix A0, the asymptotic stability condition of sufficient type is as follows:

∥∥∥∥∥

(
1
β0

T−1J̃A0T,
1
β1

T−1A1T,
1
β2

T−1A2T, . . . ,
1
βp

T−1ApT

)∥∥∥∥∥
2

<
∣∣μ2(JA0d)

∣∣1/α (5.31)

provided that μ2(J
1/α0
A0d

) < 0 extends from α = α0 ≤ 1, (in particular, from the standard
nonfractional differential system α = α0 = 1) to any α ∈ (0, α0] provided that arg(λ/α) ∈
(−π/2, π/2) in the clockwise sense, or equivalently, if | arg λ| > απ/2, for all λ ∈ σ(A0), since

∥∥∥∥∥

(
1
β0

T−1J̃A0T,
1
β1

T−1A1T,
1
β2

T−1A2T, . . . ,
1
βp

T−1ApT

)∥∥∥∥∥
2

<
∣∣μ2(JA0d)

∣∣1/α0 ≤ ∣∣μ2(JA0d)
∣∣1/α,

∀α ∈ (0, α0].
(5.32)

Note that the global Lyapunov’s stability conditions (5.23) and (5.26) with nonpositive
measures μ2(J

1/α
A0d

) being eventually zero of the corresponding matrices of the unforced
fractional dynamic system does not imply the boundedness of the solutions of the system
for any admissible forcing bounded control. However, under strict inequalities (5.24) or (5.27)
and negative relatedmatrix measures μ2(J

1/α
A0d

), that is, if asymptotic stability holds, the forced
solutions for any bounded controls are guaranteed to be uniformly bounded.

It follows after inspecting the solution (3.8), subject to (3.9), and the expressions
(5.16) that the stability properties for arbitrary admissible initial conditions or admissible
bounded controls are lost in general if α ≥ 2 and may be improved for α ∈ (0, 1) compared
to the nonfractional calculus counterpart (i.e., for α = 1). However, it turns out that the
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boundedness of the solutions can be obtained by zeroing some of the functions of initial
conditions. Note, in particular, from (5.16) that ϕj is required to be identically zero on its
definition domain for k − 1 ∪ {0} � j < α − 1 (α ≥ 2) in order that the Γ-functions be
positive (note that Γ(x) is discontinuous at zero with an asymptote to −∞ as x → 0−). This
observation combined with Theorem 5.1 leads to the following direct result which is not a
global stability result.

Theorem 5.3. Assume that α ≥ 2 and the constraint (5.25) holds with negative matrix measure
μ2(J

1/α
A0d

). Assume also that ϕj : [−h, 0] → Rn are any admissible functions of initial conditions for

k − 1 ∪ {0} � j ≥ α − 1 while they are identically zero if k − 1 ∪ {0} � j < α − 1. Then, the unforced
solutions are uniformly bounded for all time independent of the delays. Also, the total solutions for
admissible bounded controls are also bounded for all time independent of the delays.

The stability of positive or nonnegative solutions is of a direct characterization by
combining the positivity conditions of the above section with the stability analysis of this
section. The extensions of the given results to discrete fractional systems under either periodic
or nonperiodic sampling might be of interest for a future research, [35].
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