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1. Introduction

During the last two decades, many artificial neural networks have been extensively
investigated and successfully applied to various areas such as signal processing, pattern
recognition, associative memory, and optimization problems [1]. In such applications, it is
of prime importance to ensure that the designed neural networks are stable [2].

In hardware implementation, time delays are likely to be present due to the finite
switching speed of amplifiers and communication time. It has also been shown that the
processing of moving images requires the introduction of delay in the signal transmitted
through the networks [3]. The time delays are usually variable with time, which will affect the
stability of designed neural networks and may lead to some complex dynamic behavior such
as oscillation, bifurcation, or chaos [4]. Therefore, the study of stability with consideration
of time delays becomes extremely important to manufacture high quality neural networks
[5]. Many important results on stability of delayed neural networks have been reported, see
[1–10] and the references therein for some recent publications.
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It is also well known that parameter uncertainties, which are inherent features of
many physical systems, are great sources of instability and poor performance [11]. These
uncertainties may arise due to the variations in system parameters, modelling errors, or some
ignored factors [12]. It is not possible to perfectly characterize the evolution of an uncertain
dynamical system as a deterministic set of state equations [13]. Recently, the problem on
robust stability analysis of uncertain neural networks with delays has been extensively
investigated, see [11–14] and the references therein for some recent publications.

Just as pointed out in [15], in real nervous systems, synaptic transmission is a noisy
process brought on by random fluctuations from the release of neurotransmitters and other
probabilistic causes. In the implementation of artificial neural networks, noise is unavoidable
and should be taken into consideration in modelling. Therefore, it is of significant importance
to consider stochastic effects to the dynamical behavior of neural networks [16]. Some recent
interest results on stability of stochastic neural networks can be found, see [15–26] and the
references therein for some recent publications.

On the other hand, the passivity theory is another effective tool to the stability
analysis of nonlinear system [27]. The main idea of passivity theory is that the passive
properties of system can keep the system internal stability [27]. Thus, the passivity
theory has received a lot of attention from the control community since 1970s [28–31].
Recently, the passivity theory for delayed neural networks was investigated, some criteria
checking the passivity were provided for certain or uncertain neural networks, see [32–
38] and references therein. In [32], the passivity-based approach is used to derive stability
conditions for dynamic neural networks with different time scales. In [33–36], authors
investigated the passivity of neural networks with time-varying delay. In [37, 38], stochastic
neural networks with time-varying delays were considered, several sufficient conditions
checking the passivity were obtained. It is worth pointing out that, the given criteria in
[33–37] have been based on the following assumptions: (1) the time-varying delays are
continuously differentiable; (2) the derivative of time-varying delay is bounded and is
smaller than one; (3) the activation functions are bounded and monotonically nondecreasing.
However, time delays can occur in an irregular fashion, and sometimes the time-varying
delays are not differentiable. In such a case, the methods developed in [33–38] may be
difficult to be applied, and it is therefore necessary to further investigate the passivity
problem of neural networks with time-varying delays under milder assumptions. To the
best of our knowledge, few authors have considered the passivity problem for stochastic
uncertain neural networks with time-varying delays as well as generalized activation
functions.

Motivated by the above discussions, the objective of this paper is to study the passivity
of stochastic uncertain neural networks with time-varying delays as well as generalized
activation functions by employing a combination of Lyapunov functional, the free-weighting
matrix method and stochastic analysis technique. The obtained sufficient conditions require
neither the differentiability of time-varying delays nor the monotony of the activation
functions, and are expressed in terms of linear matrix inequalities (LMIs), which can be
checked numerically using the effective LMI toolbox in MATLAB. An example is given to
show the effectiveness and less conservatism of the proposed criterion.

2. Problem Formulation and Preliminaries

In this paper, we consider the following stochastic uncertain neural networks with time-
varying delay:
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dx(t) =
[
−(C + ΔC(t))x(t) + (A + ΔA(t))f(x(t)) + (B + ΔB(t))f(x(t − τ(t))) + u(t)

]
dt

+ σ(t, x(t), x(t − τ(t)))dω(t)
(2.1)

for t ≥ 0, where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn is the state vector of the network

at time t, n corresponds to the number of neurons; C = diag(c1, c2, . . . , cn) is a positive
diagonal matrix, A = (aij)n×n, and B = (bij)n×n are known constant matrices; ΔC(t),
ΔA(t) and ΔB(t) are time-varying parametric uncertainties; σ(t, x(t), x(t − τ(t))) ∈ Rn×n

is the diffusion coefficient matrix and ω(t) = (ω1(t), ω2(t), . . . , ωn(t))
T is an n-dimensional

Brownian motion defined on a complete probability space (Ω, F, {Ft}t≥0,P) with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all P -null
sets); f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))

T denotes the neuron activation at time t;
u(t) = (u1(t), u2(t), . . . , un(t))

T ∈ Rn is a varying external input vector; τ(t) > 0 is the time-
varying delay, and is assumed to satisfy 0 ≤ τ(t) ≤ τ , where τ is constant.

The initial condition associated with model (2.1) is given by

x(s) = φ(s), s ∈ [−τ, 0]. (2.2)

Let x(t, φ) denote the state trajectory of model (2.1) from the above initial condition
and x(t, 0) the corresponding trajectory with zero initial condition.

Throughout this paper, we make the following assumptions.

(H1) [33] The time-varying uncertainties ΔC(t), ΔA(t) and ΔB(t) are of the form

ΔC(t) = H1G1(t)E1, ΔA(t) = H2G2(t)E2, ΔB(t) = H3G3(t)E3, (2.3)

where H1, H2, H3, E1, E2, and E3 are known constant matrices of appropriate dimensions,
G1(t), G2(t), and G3(t) are known time-varying matrices with Lebesgue measurable elements
bounded by

GT
1 (t)G1(t) ≤ I, GT

2 (t)G2(t) ≤ I, GT
3 (t)G3(t) ≤ I. (2.4)

(H2) [10] For any j ∈ {1, 2, . . . , n}, fj(0) = 0 and there exist constants F−j and F+
j such that

F−j ≤
fj(α1) − fj(α2)

α1 − α2
≤ F+

j
(2.5)

for all α1 /=α2.

(H3) [15] There exist two scalars ρ1 > 0, ρ2 > 0 such that the following inequality:

trace
[
σT (t, u, v)σ(t, u, v)

]
≤ ρ1u

Tu + ρ2v
Tv (2.6)

holds for all (t, u, v) ∈ R × Rn × Rn.
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Definition 2.1 (see [33]). System (2.1) is called globally passive in the sense of expectation if
there exists a scalar γ > 0 such that

2E

{∫ tp

0
fT (x(s))u(s)ds

}

≥ −E
{

γ

∫ tp

0
uT (s)u(s)ds

}

(2.7)

for all tp ≥ 0 and for all x(t, 0), where E{·} stands for the mathematical expectation operator
with respect to the given probability measure P.

To prove our results, the following lemmas that can be found in [39] are necessary.

Lemma 2.2 (see [39]). For given matrices H, E, and F with FTF ≤ I and a scalar ε > 0, the
following holds:

HFE + (HFE)T ≤ εHHT + ε−1ETE. (2.8)

Lemma 2.3 (see [39]). For any constant matrix W ∈ Rm×m, W > 0, scalar 0 < h(t) < h, vector
function ω : [0, h] → Rm such that the integrations concerned are well defined, then

(∫h(t)

0
ω(s)ds

)T

W

(∫h(t)

0
ω(s)ds

)

≤ h(t)
∫h(t)

0
ωT (s)Wω(s)ds. (2.9)

Lemma 2.4 (see [39]). Given constant matrices P , Q, and R, where PT = P , QT = Q, then

[
P R

RT −Q

]

< 0 (2.10)

is equivalent to the following conditions:

Q > 0, P + RQ−1RT < 0. (2.11)

3. Main Results

For presentation convenience, in the following, we denote

F1 = diag
(
F−1F

+
1 , F

−
2F

+
2 , . . . , F

−
nF

+
n

)
, F2 = diag

(
F−1 + F+

1

2
,
F−2 + F+

2

2
, . . . ,

F−n + F+
n

2

)

. (3.1)

Theorem 3.1. Under assumptions (H1)–(H3), model (2.1) is passive in the sense of expectation if
there exist two scalars γ > 0, λ > 0, three symmetric positive definite matrices Pi (i = 1, 2, 3), two
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positive diagonal matrices L and S, and matrices Qi (i = 1, 2, 3, 4) such that the following two LMIs
hold:

P1 < λI, (3.2)

Ω =

[
Ω1 Ω2

∗ Ω3

]

< 0, (3.3)

where

Ω1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 Ω13 Q2B Q3 0 Q2

∗ Ω22 Q1A Q1B 0 0 Q1

∗ ∗ Ω33 0 0 0 −I

∗ ∗ ∗ Ω44 F2S 0 0

∗ ∗ ∗ ∗ Ω55 Q4 0

∗ ∗ ∗ ∗ ∗ −P2 0

∗ ∗ ∗ ∗ ∗ ∗ −γI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Q2H1 Q2H2 Q2H3 Q3 Q3 Q4 0 0 0 0

0 0 0 0 0 0 Q1H1 Q1H2 Q1H3 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Q4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω3 = diag{−ε4I,−ε5I,−ε6I,−τP3,−P1,−P1,−ε1I,−ε2I,−ε3I,−τP3},

(3.4)

in whichΩ11 = P2−Q2C−CQT
2 +(ε1+ε4)ET1E1−Q3−QT

3 −F1L+(1+τ)λρ1I,Ω12 = P1−CQT
1 −Q2,

Ω13 = Q2A + F2L, Ω22 = −Q1 − QT
1 + τP3, Ω33 = (ε2 + ε5)ET2E2 − L, Ω44 = (ε3 + ε6)ET3E3 − S,

Ω55 = −Q4 −QT
4 − F1S + (1 + τ)λρ2I.

Proof. Let y(t) = −(C + ΔC(t))x(t) + (A + ΔA(t))f(x(t)) + (B + ΔB(t))f(x(t − τ(t))) + u(t),
α(t) = σ(t, x(t), x(t − τ(t))), then model (2.1) is rewritten as

dx(t) = y(t)dt + α(t)dω(t). (3.5)
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Consider the following Lyapunov-Krasovskii functional as

V (t, x(t)) = xT (t)P1x(t) +
∫ t

t−τ
xT (s)P2x(s)ds +

∫0

−τ

∫ t

t+θ
yT (s)P3y(s)ds

+
∫0

−τ

∫ t

t+θ
trace

[
αT (s)P1α(s)

]
dsdθ.

(3.6)

By Itô differential rule, the stochastic derivative of V (t) along the trajectory of model (3.5)
can be obtained as

dV (t, x(t)) =

{

2xT (t)P1y(t) + trace
[
αT (t)P1α(t)

]
+ xT (t)P2x(t) − xT (t − τ)P2x(t − τ)

+ τyT (t)P3y(t) −
∫ t

t−τ
yT (s)P3y(s)ds

+ τ trace
[
αT (t)P1α(t)

]
−
∫ t

t−τ
trace

[
αT (s)P1α(s)

]
ds

}

dt

+
[
xT (t)P1α(t) + αT (t)P1x(t)

]
dω(t).

(3.7)

From the definition of y(t), we have

0 = 2
(
yT (t)Q1 + xT (t)Q2

)[
−y(t) − (C + ΔC(t))x(t) + (A + ΔA(t))f(x(t))

+ (B + ΔB(t))f(x(t − τ(t))) + u(t)
]
.

(3.8)

By assumption (H1) and Lemma 2.2, we get

−2yT (t)Q1ΔC(t)x(t) ≤ ε−1
1 yT (t)Q1H1H

T
1 Q

T
1y(t) + ε1x

T (t)ET1E1x(t),

2yT (t)Q1ΔA(t)f(x(t)) ≤ ε−1
2 yT (t)Q1H2H

T
2 Q

T
1y(t) + ε2f

T (x(t))ET2E2f(x(t)),

2yT (t)Q1ΔB(t)f(x(t−τ(t)))≤ε−1
3 yT (t)Q1H3H

T
3 Q

T
1y(t)+ε3f

T (x(t−τ(t)))ET3E3f(x(t−τ(t))),

−2xT (t)Q2ΔC(t)x(t) ≤ ε−1
4 xT (t)Q2H1H

T
1 Q

T
2x(t) + ε4x

T (t)ET1E1x(t),

2xT (t)Q2ΔA(t)f(x(t)) ≤ ε−1
5 xT (t)Q2H2H

T
2 Q

T
2x(t) + ε5f

T (x(t))ET2E2f(x(t)),

2xT (t)Q2ΔB(t)f(x(t−τ(t)))≤ε−1
6 xT (t)Q2H3H

T
3 Q

T
2x(t)+ε6f

T (x(t−τ(t)))ET3E3f(x(t−τ(t))).
(3.9)
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It follows from (3.8) and (3.9) that

0 ≤ xT (t)
[
−2Q2C + (ε1 + ε4)ET1E1 + ε−1

4 Q2H1H
T
1 Q

T
2 + ε−1

5 Q2H2H
T
2 Q

T
2 + ε−1

6 Q2H3H
T
3 Q

T
2

]
x(t)

+ 2xT (t)
[
−CQT

1 −Q2

]
y(t) + 2xT (t)Q2Af(x(t)) + 2xT (t)Q2Bf(x(t − τ(t))) + 2xT (t)Q2u(t)

+ yT (t)
[
−2Q1 + ε−1

1 Q1H1H
T
1 Q

T
1 + ε−1

2 Q1H2H
T
2 Q

T
1 + ε−1

3 Q1H3H
T
3 Q

T
1

]
y(t)

+ 2yT (t)Q1Af(x(t)) + 2yT (t)Q1Bf(x(t − τ(t))) + 2yT (t)Q1u(t)

+ (ε2 + ε5)fT (x(t))ET2E2f(x(t)) + (ε3 + ε6)fT (x(t − τ(t)))ET3E3f(x(t − τ(t))).
(3.10)

Integrating both sides of (3.5) from t − τ(t) to t, we have

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
y(s)ds −

∫ t

t−τ(t)
α(s)dω(s) = 0. (3.11)

Hence,

−2xT (t)Q3

[

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
y(s)ds −

∫ t

t−τ(t)
α(s)dω(s)

]

= 0. (3.12)

By Lemmas 2.2 and 2.3, and noting τ(t) ≤ τ , we get

0 = −2xT (t)Q3x(t) + 2xT (t)Q3x(t − τ(t)) + 2xT (t)Q3

∫ t

t−τ(t)
y(s)ds + 2xT (t)Q3

∫ t

t−τ(t)
α(s)dω(s)

≤ −2xT (t)Q3x(t) + 2xT (t)Q3x(t − τ(t)) + τxT (t)Q3P
−1
3 QT

3x(t) +
∫ t

t−τ(t)
yT (s)P3y(s)ds

+ xT (t)Q3P
−1
1 QT

3x(t) +

(∫ t

t−τ(t)
α(s)dω(s)

)T

P1

(∫ t

t−τ(t)
α(s)dω(s)

)

.

(3.13)

Integrating both sides of (3.5) from t − τ to t − τ(t), we have

x(t − τ(t)) − x(t − τ) −
∫ t−τ(t)

t−τ
y(s)ds −

∫ t−τ(t)

t−τ
α(s)dω(s) = 0. (3.14)
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Similarly, by using of the same way, and noting τ − τ(t) ≤ τ , we get

0 = −2xT (t − τ(t))Q4

(

x(t − τ(t)) − x(t − τ) −
∫ t−τ(t)

t−τ
y(s)ds −

∫ t−τ(t)

t−τ
α(s)dω(s)

)

≤ −2xT (t − τ(t))Q4x(t − τ(t)) + 2xT (t − τ(t))Q4x(t − τ)

+ τxT (t − τ(t))Q4P
−1
3 QT

4x(t − τ(t)) +
∫ t−τ(t)

t−τ
yT (s)P3y(s)ds

+ xT (t)Q4P
−1
1 QT

4x(t) +

(∫ t−τ(t)

t−τ
α(s)dω(s)

)T

P1

(∫ t−τ(t)

t−τ
α(s)dω(s)

)

.

(3.15)

From assumption (H2), we have

(
fi(xi(t)) − F−i xi(t)

)(
fi(xi(t)) − F+

i xi(t)
)
≤ 0, i = 1, 2, . . . , n, (3.16)

which are equivalent to

[
xi(t)

fi(xi(t))

]T
⎡

⎢⎢
⎣

F−i F
+
i eie

T
i −

F−i + F+
i

2
eie

T
i

−
F−i + F+

i

2
eie

T
i eie

T
i

⎤

⎥⎥
⎦

[
xi(t)

fi(xi(t))

]

≤ 0, i = 1, 2, . . . , n, (3.17)

where er denotes the unit column vector having 1 element on its rth row and zeros elsewhere.
Let

L = diag{l1, l2, . . . , ln}, S = diag{s1, s2, . . . , sn}, (3.18)

then

n∑

i=1

li

[
xi(t)

fi(xi(t))

]T
⎡

⎢⎢
⎣

F−i F
+
i eie

T
i −

F−i + F+
i

2
eie

T
i

−
F−i + F+

i

2
eie

T
i eie

T
i

⎤

⎥⎥
⎦

[
xi(t)

fi(xi(t))

]

≤ 0, (3.19)

that is

[
x(t)

f(x(t))

]T[
F1L −F2L

−F2L L

][
x(t)

f(x(t))

]

≤ 0. (3.20)

Similarly, one has

[
x(t − τ(t))

f(x(t − τ(t)))

]T[
F1S −F2S

−F2S S

][
x(t − τ(t))

f(x(t − τ(t)))

]

≤ 0. (3.21)
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It follows from (3.7), (3.10), (3.13), (3.15), (3.20) and (3.21) that

dV (t, x(t))

≤

⎧
⎨

⎩
xT (t)

[
P2 − 2Q2C + (ε1 + ε4)ET1E1 + ε−1

4 Q2H1H
T
1 Q

T
2 + ε−1

5 Q2H2H
T
2 Q

T
2

+ ε−1
6 Q2H3H

T
3 Q

T
2 − 2Q3 + τQ3P

−1
3 QT

3 + Q3P
−1
1 QT

3 +Q4P
−1
1 QT

4 − F1L
]
x(t)

+ 2xT (t)
[
P1 − CQT

1 −Q2

]
y(t) + 2xT (t)[Q2A + F2L]f(x(t))

+ 2xT (t)Q2Bf(x(t − τ(t))) + 2xT (t)Q2u(t) + 2xT (t)Q3x(t − τ(t))

+ yT (t)
[
−2Q1 + ε−1

1 Q1H1H
T
1 Q

T
1 + ε−1

2 Q1H2H
T
2 Q

T
1 + ε−1

3 Q1H3H
T
3 Q

T
1 + τP3

]
yT (t)

+ 2yT (t)Q1Af(x(t)) + 2yT (t)Q1Bf(x(t − τ(t))) + 2yT (t)Q1u(t)

+ fT (x(t))
[
(ε2 + ε5)ET2E2 − L

]
f(x(t))

+ fT (x(t − τ(t)))
[
(ε3 + ε6)ET3E3 − S

]
f(x(t − τ(t)))

+ 2fT (x(t − τ(t)))F2Sx(t − τ(t))

+ xT (t − τ(t))
(
−2Q4 + τQ4P

−1
3 QT

4 − F1S
)
x(t − τ(t))

+ 2xT (t − τ(t))Q4x(t − τ) − xT (t − τ)P2x(t − τ) + (1 + τ)trace
[
αT (t)P1α(t)

]

−
∫ t

t−τ
trace

[
αT (s)P1α(s)

]
ds +

(∫ t−τ(t)

t−τ
α(s)dω(s)

)T

P1

(∫ t−τ(t)

t−τ
α(s)dω(s)

)

+

(∫ t

t−τ(t)
α(s)dω(s)

)T

P1

(∫ t

t−τ(t)
α(s)dω(s)

)⎫⎬

⎭
dt

+
[
xT (t)P1α(t) + αT (t)P1x(t)

]
dω(t).

(3.22)

By assumption (H3) and inequality (3.2), we get

trace
[
αT (t)P1α(t)

]
≤ λ

[
ρ1x

T (t)x(t) + ρ2x
T (t − τ(t))x(t − τ(t))

]
. (3.23)
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From the proof of [19], we have

E

⎧
⎨

⎩

(∫ t−τ(t)

t−τ
α(s)dω(s)

)T

P1

(∫ t−τ(t)

t−τ
α(s)dω(s)

)⎫⎬

⎭
= E

{∫ t−τ(t)

t−τ
trace

[
αT (s)P1α(s)

]
ds

}

,

E

⎧
⎨

⎩

(∫ t

t−τ(t)
α(s)dω(s)

)T

P1

(∫ t

t−τ(t)
α(s)dω(s)

)⎫⎬

⎭
= E

{∫ t

t−τ(t)
trace

[
αT (s)P1α(s)

]
ds

}

.

(3.24)

Taking the mathematical expectation on both sides of (3.22), and noting (3.24), we get

E
{
dV (t, x(t)) − 2fT (x(t))u(t)dt − γuT (t)u(t)dt

}
≤ E

{
ξT (t)Πξ(t)dt

}
, (3.25)

where ξ(t) = (xT (t), yT (t), fT (x(t)), fT(x(t − τ(t))), xT(t − τ(t)), xT (t − τ), uT (t))T , and

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π1 P1 − CQT
1 −Q2 Q2A + F2L Q2B Q3 0 Q2

∗ Π2 Q1A Q1B 0 0 Q1

∗ ∗ Π3 0 0 0 −I
∗ ∗ ∗ Π4 F2S 0 0

∗ ∗ ∗ ∗ Π5 Q4 0

∗ ∗ ∗ ∗ ∗ −P2 0

∗ ∗ ∗ ∗ ∗ ∗ −γI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(3.26)

with Π1 = P2−Q2C−CQT
2 +(ε1+ε4)ET1E1+ε−1

4 Q2H1H
T
1 Q

T
2 +ε

−1
5 Q2H2H

T
2 Q

T
2 +ε

−1
6 Q2H3H

T
3 Q

T
2 −

Q3−QT
3 +τQ3P

−1
3 QT

3 +Q3P
−1
1 QT

3 +Q4P
−1
1 QT

4 −F1L+(1+τ)λρ1I, Π2 = −Q1−QT
1 +ε

−1
1 Q1H1H

T
1 Q

T
1 +

ε−1
2 Q1H2H

T
2 Q

T
1 + ε−1

3 Q1H3H
T
3 Q

T
1 + τP3, Π3 = (ε2 + ε5)ET2E2 − L, Π4 = (ε3 + ε6)ET3E3 − S, Π5 =

−Q4 −QT
4 + τQ4P

−1
3 QT

4 − F1S + (1 + τ)λρ2I.
It is easy to verify the equivalence of Π < 0 and Ω < 0 by using Lemma 2.4. Thus, one

can derive from (3.3) and (3.25) that

E{dV (t, x(t))}
dt

− E
{

2fT (x(t))u(t) + γuT (t)u(t)
}
≤ 0. (3.27)

From (3.27) and the definition of V (t, x(t)), we can get

2E

{∫ tp

0
fT (x(s))u(s)ds

}

≥ −γE
{∫ tp

0
uT (s)u(s)ds

}

. (3.28)

From Definition 2.1, we know that the stochastic neural networks (2.1) are globally passive
in the sense of expectation, and the proof of Theorem 3.1 is then completed.
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Remark 3.2. Assumption (H2) was first proposed in [10]. The constants F−j and F+
j (i = 1,

2, . . . , n) in assumption (H2) are allowed to be positive, negative or zero. Hence, Assumption
(H2) is weaker than the assumption in [27–37]. In addition, the conditions in [32–37] that the
time-varying delay is differentiable and the derivative is bounded or smaller than one have
been removed in this paper.

Remark 3.3. In [36], authors considered the passivity of uncertain neural networks with both
discrete and distributed time-varying delays. In [37], authors considered the passivity for
stochastic neural networks with time-varying delays and random abrupt changes. It is worth
pointing out that, the method in this paper can also analyze the passivity for models in [36,
37].

Remark 3.4. It is known that the obtained criteria for checking passivity of neural networks
depend on the constructed Lyapunov functionals or Lyapunov-Krasovskii functionals
in varying degrees. Constructing proper Lyapunov functionals or Lyapunov-Krasovskii
functionals can reduce conservatism. Recently, the delay fractioning approach has been
used to investigate global synchronization of delayed complex networks with stochastic
disturbances, which has shown the potential of reducing conservatism [22]. Using the delay
fractioning approach, we can also investigate the passivity of delayed neural networks. The
corresponding results will appear in the near future.

Remark 3.5. When we do not consider the stochastic effect, model (2.1) turns into the
following model:

dx(t)
dt

= −(C + ΔC(t))x(t) + (A + ΔA(t))f(x(t)) + (B + ΔB(t))f(x(t − τ(t))) + u(t). (3.29)

Furthermore, model (3.29) also comprises the following neural network model with neither
stochastic effect nor uncertainty

dx(t)
dt

= −Cx(t) +Af(x(t)) + Bf(x(t − τ(t))) + u(t) (3.30)

which have been considered in [33, 34]. For models (3.29) and (3.30), one can get the
following results.

Corollary 3.6. Under assumptions (H1)-(H2), model (3.29) is passive if there exist a scalar γ > 0,
three symmetric positive definite matrices Pi (i = 1, 2, 3), two positive diagonal matrices L and S, and
matrices Qi (i = 1, 2, 3, 4) such that the following LMI holds:

Ω =

[
Ω1 Ω2

∗ Ω3

]

< 0, (3.31)
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where

Ω1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 Ω13 Q2B Q3 0 Q2

∗ Ω22 Q1A Q1B 0 0 Q1

∗ ∗ Ω33 0 0 0 −I
∗ ∗ ∗ Ω44 F2S 0 0

∗ ∗ ∗ ∗ Ω55 Q4 0

∗ ∗ ∗ ∗ ∗ −P2 0

∗ ∗ ∗ ∗ ∗ ∗ −γI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Q2H1 Q2H2 Q2H3 Q3 Q3 Q4 0 0 0 0

0 0 0 0 0 0 Q1H1 Q1H2 Q1H3 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Q4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω3 = diag{−ε4I,−ε5I,−ε6I,−τP3,−P1,−P1,−ε1I,−ε2I,−ε3I,−τP3},

(3.32)

in which Ω11 = P2 − Q2C − CQT
2 + (ε1 + ε4)ET1E1 − Q3 − QT

3 − F1L, Ω12 = P1 − CQT
1 − Q2,

Ω13 = Q2A + F2L, Ω22 = −Q1 − QT
1 + τP3, Ω33 = (ε2 + ε5)ET2E2 − L, Ω44 = (ε3 + ε6)ET3E3 − S,

Ω55 = −Q4 −QT
4 − F1S.

Corollary 3.7. Under assumption (H2), model (3.30) is passive if there exist a scalar γ > 0, three
symmetric positive definite matrices Pi (i = 1, 2, 3), two positive diagonal matrices L and S, and
matrices Qi (i = 1, 2, 3, 4) such that the following LMI holds:

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π1 Π2 Π3 Q2B Q3 0 Q2 Q3 Q3 Q4 0

∗ Π4 Q1A Q1B 0 0 Q1 0 0 0 0

∗ ∗ −L 0 0 0 −I 0 0 0 0

∗ ∗ ∗ −S F2S 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π5 Q4 0 0 0 0 Q4

∗ ∗ ∗ ∗ ∗ −P2 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γI 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τP3 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τP3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.33)
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where Π1 = P2 − Q2C − CQT
2 − Q3 − QT

3 − F1L, Π2 = P1 − CQT
1 − Q2, Π3 = Q2A + F2L, Π4 =

−Q1 −QT
1 + τP3, Π5 = −Q4 −QT

4 − F1S.

4. An Example

Consider a two-neuron neural network (3.30), where

C =

[
1 0

0 0.9

]

, A =

[
2.3 −0.1

−6 2.8

]

, B =

[
−1.9 −0.1

−0.3 −9.7

]

,

f1(z) = tanh(z), f2(z) = tanh(z), τ(t) = 2|sin t|, u1(t) = −0.2t cos t, u2(t) = −0.5 sin t.
(4.1)

Figure 1 depicts the states of the considered network with initial conditions x1(t) = 0.5,
x2(t) = 0.45, t ∈ [−2, 0].

It can be verified that assumption (H2) is satisfied, and F1 = 0, F2 = diag{0.5, 0.5},
τ = 2. By the Matlab LMI Control Toolbox, we find a solution to the LMI in (3.33) as follows:

P1 = 10−10

[
0.6744 0.1008

0.1008 0.4522

]

, P2 = 10−10

[
0.2490 0.0755

0.0755 0.1154

]

,

P3 = 10−10

[
0.1735 0.0193

0.0193 0.1175

]

,

Q1 = 10−10

[
0.1724 0.0342

0.0246 0.0149

]

, Q2 = 10−10

[
0.2615 0.0622

0.1216 0.0513

]

,

Q3 = 10−10

[
0.4765 0.1639

0.0668 0.4203

]

, Q4 = 10−10

[
0.4126 0.0233

0.0216 0.3631

]

,

L = 10−9

[
0.1100 0

0 0.0811

]

, S = 10−9

[
0.2772 0

0 0.2750

]

,

γ = 6.7369 × 109.

(4.2)

Therefore, by Corollary 3.7, we know that model (3.30) is passive. It should be pointed
out that the conditions in [33–36] cannot be applied to this example since that require the
differentiability of the time-varying delay.

5. Conclusions

In this paper, the passivity has been investigated for a class of stochastic uncertain
neural networks with time-varying delay as well as generalized activation functions.
By employing a combination of Lyapunov-Krasovskii functionals, the free-weighting
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Figure 1: State responses of x1(t) and x2(t).

matrix method, Newton-Leibniz formulation, and stochastic analysis technique, a delay-
independent criterion for checking the passivity of the addressed neural networks has been
established in terms of linear matrix inequalities (LMIs), which can be checked numerically
using the effective LMI toolbox in MATLAB. The obtained results generalize and improve
the earlier publications and remove the traditional assumptions on the differentiability of the
time-varying delay and the boundedness of its derivative. An example has been provided to
demonstrate the effectiveness and less conservatism of the proposed criterion.

We would like to point out that it is possible to generalize our main results to more
complex neural networks, such as neural networks with discrete and distributed delays [10,
26], and neural networks of neutral-type [7, 20], neural networks with Markovian jumping
[24, 25]. The corresponding results will appear in the near future.
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