
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2009, Article ID 649831, 18 pages
doi:10.1155/2009/649831

Research Article
Strong Convergence of Generalized Projection
Algorithms for Nonlinear Operators

Chakkrid Klin-eam,1 Suthep Suantai,1 and Wataru Takahashi2

1 Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Tokyo 152-8552, Japan

Correspondence should be addressed to Wataru Takahashi, wataru@is.titech.ac.jp

Received 22 June 2009; Accepted 15 October 2009

Recommended by Simeon Reich

We establish strong convergence theorems for finding a common element of the zero point set of a
maximal monotone operator and the fixed point set of two relatively nonexpansive mappings in a
Banach space by using a new hybrid method. Moreover we apply our main results to obtain strong
convergence for a maximal monotone operator and two nonexpansive mappings in a Hilbert
space.

Copyright q 2009 Chakkrid Klin-eam et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space with ‖ · ‖ and let C be a nonempty closed convex subset of E. A
mapping T of C into itself is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. We use
F(T) to denote the set of fixed points of T ; that is, F(T) = {x ∈ C : x = Tx}. A mapping T of C
into itself is called quasinonexpansive if F(T) is nonempty and ‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C
and y ∈ F(T). For two mappings S and T of C into itself, Das and Debata [1] considered the
following iteration scheme: x0 ∈ C and

xn+1 = αnS
(
βnTxn +

(
1 − βn

)
xn

)
+ (1 − αn)xn, n ≥ 0, (1.1)

where {αn} and {βn} are sequences in [0, 1]. In this case of S = T , such an iteration process
was considered by Ishikawa [2]; see also Mann [3]. Das and Debata [1] proved the strong
convergence of the iterates {xn} defined by (1.1) in the case when E is strictly convex and
S, T are quasinonexpansive mappings. Fixed point iteration processes for nonexpansive
mappings in a Hilbert space and a Banach space including Das and Debata’s iteration and
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Ishikawa’s iteration have been studied by many researchers to approximating a common
fixed point of two mappings; see, for instance, Takahashi and Tamura [4].

LetA be a maximal monotone operator from E to E∗, where E∗ is the dual space of E. It
is well known that many problems in nonlinear analysis and optimization can be formulated
as follows. Find a point u ∈ E satisfying

0 ∈ Au. (1.2)

We denote by A−10 the set of all points u ∈ C such that 0 ∈ Au. Such a problem contains
numerous problems in economics, optimization, and physics. A well-knownmethod to solve
this problem is called the proximal point algorithm: x0 ∈ E and

xn+1 = Jrnxn, n = 0, 1, 2, 3, . . . , (1.3)

where {rn} ⊂ (0,∞) and Jrn are the resovents of A. Many researchers have studied this
algorithm in a Hilbert space; see, for instance, [5–8] and in a Banach space; see, for instance,
[9–11].

Next, we recall that for all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉.
Then, the normalized duality mapping J on E is defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E. (1.4)

We know that if E is smooth, then the duality mapping J is single valued. Next, we assume
that E is a smooth Banach space and define the function φ : E × E → R by

φ
(
y, x
)
=
∥∥y
∥∥2 − 2〈y, Jx〉 + ‖x‖2, ∀y, x ∈ E. (1.5)

A point u ∈ C is said to be an asymptotic fixed point of T [12] if C contains a
sequence {xn} which converges weakly to u and limn→∞‖xn − Txn‖ = 0. We denote the set
of all asymptotic fixed points of T by F̂(T). A mapping T : C → C is said to be relatively
nonexpansive [13–15] if F̂(T) = F(T)/= ∅ and φ(u, Tx) ≤ φ(u, x) for all u ∈ F(T) and x ∈ C. The
asymptotic behavior of a relatively nonexpansive mapping was studied in [13–15].

In 2004,Matsushita and Takahashi [15] proposed the followingmodification ofMann’s
iteration for a relatively nonexpansive mapping by using the hybrid method in a Banach
space. Four years later, Qin and Su [16] have adapted Matsushita and Takahashi’s idea [15]
to modify Halpern’s iteration and Ishikawa’s iteration for a relatively nonexpansive mapping
in a Banach space. In particular, in a Hilbert space Mann’s iteration, Halpern’s iteration, and
Ishikawa’s iteration were considered by many researchers.

Very recently, Inoue et al. [17] proved the following strong convergence theorem for
finding a common element of the zero point set of a maximal monotone operator and the
fixed point set of a relatively nonexpansive mapping by using the hybrid method.

Theorem 1.1 (Inoue et al. [17]). Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E. Let A ⊂ E × E∗ be a maximal monotone operator
satisfying D(A) ⊂ C and let Jr = (J + rA)−1J for all r > 0. Let S : C → C be a relatively
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nonexpansive mapping such that F(S) ∩ A−10/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C
and

un = J−1
(
βnJxn +

(
1 − βn

)
JSJrnxn

)
,

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

(1.6)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {βn} ⊂ [0, 1], and {rn} ⊂ [a,∞) for some
a > 0. If lim infn→∞(1 − βn) > 0, then {xn} converges strongly to ΠF(S)∩A−10x0, where ΠF(S)∩A−10 is
the generalized projection of E onto F(S) ∩A−10.

The purpose of this paper is to employ the idea of Inoue et al. [17] and Das and
Debata [1] to introduce a new hybrid method for finding a common element of the zero point
set of a maximal monotone operator and the fixed point set of two relatively nonexpansive
mappings. We prove a strong convergence theorem of the new hybrid method. Moreover we
apply our main results to obtain strong convergence for a maximal monotone operator and
two nonexpansive mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, all linear spaces are real. Let N and R be the sets of all positive integers
and real numbers, respectively. Let E be a Banach space and let E∗ be the dual space of E. For
a sequence {xn} of E and a point x ∈ E, the weak convergence of {xn} to x and the strong
convergence of {xn} to x are denoted by xn ⇀ x and xn → x, respectively.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said to be
smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists uniformly
in x, y ∈ S(E). A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 whenever
x, y ∈ S(E) and x /=y. It is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0
such that ‖(x + y)/2‖ < 1 − δ whenever x, y ∈ S(E) and ‖x − y‖ ≥ ε. We know the following
[18]:

(i) if E is smooth, then J is single-valued;

(ii) if E is reflexive, then J is onto;

(iii) if E is strictly convex, then J is one to one;

(iv) if E is strictly convex, then J is strictly monotone;

(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.
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A Banach space E is said to have the Kadec-Klee property if for a sequence {xn} of E
satisfying that xn ⇀ x and ‖xn‖ → ‖x‖, xn → x. It is known that if E is uniformly convex,
then E has the Kadec-Klee property; see [18, 19] for more details. Let E be a smooth, strictly
convex, and reflexive Banach space and let C be a closed convex subset of E. Throughout this
paper, define the function φ : E × E → R by

φ
(
y, x
)
=
∥
∥y
∥
∥2 − 2

〈
y, Jx

〉
+ ‖x‖2, ∀y, x ∈ E. (2.2)

Observe that, in a Hilbert space H, (2.2) reduces to φ(x, y) = ‖x − y‖2, for all x, y ∈ H. It is
obvious from the definition of the function φ that, for all x, y ∈ E,

(1) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,
(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉,
(3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 ≤ ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖.
Following Alber [20], the generalized projection ΠC from E onto C is a map that

assigns to an arbitrary point x ∈ E the minimum point of the functional φ(y, x); that is,
ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x
)
. (2.3)

Existence and uniqueness of the operator ΠC follows from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J . In a Hilbert space, ΠC is the metric
projection of H onto C. We need the following lemmas for the proof of our main results.

Lemma 2.1 (Kamimura and Takahashi [6]). Let E be a uniformly convex and smooth Banach
space and let {xn} and {yn} be two sequences in E such that either {xn} or {yn} is bounded. If
limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.2 (Matsushita and Takahashi [15]). Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E and let T be a relatively nonexpansive mapping from C into
itself. Then F(T) is closed and convex.

Lemma 2.3 (Alber [20] and Kamimura and Takahashi [6]). Let C be a closed convex subset of a
smooth, strictly convex, and reflexive Banach space, x ∈ E and let z ∈ C. Then, z = ΠCx if and only
if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C.

Lemma 2.4 (Alber [20] and Kamimura and Takahashi [6]). Let C be a closed convex subset of a
smooth, strictly convex, and reflexive Banach space. Then

φ
(
x,ΠCy

)
+ φ
(
ΠCy, y

) ≤ φ
(
x, y
)
, ∀x ∈ C, y ∈ E. (2.4)

Let E be a smooth, strictly convex, and reflexive Banach space, and let A be a set-
valued mapping from E to E∗ with graph G(A) = {(x, x∗) : x∗ ∈ Ax}, domain D(A) = {z ∈
E : Az/= ∅}, and range R(A) = ∪{Az : z ∈ D(A)}. We denote a set-valued operator A from E
to E∗ by A ⊂ E × E∗. A is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0, for all (x, x∗), (y, y∗) ∈ A.
A monotone operator A ⊂ E × E∗ is said to be maximal monotone if its graph is not properly
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contained in the graph of any other monotone operator. We know that if A is a maximal
monotone operator, then A−10 = {z ∈ D(A) : 0 ∈ Az} is closed and convex. The following
theorem is well known.

Lemma 2.5 (Rockafellar [21]). Let E be a smooth, strictly convex, and reflexive Banach space and
letA ⊂ E ×E∗ be a monotone operator. ThenA is maximal if and only if R(J + rA) = E∗ for all r > 0.

Let E be a smooth, strictly convex, and reflexive Banach space, let C be a nonempty
closed convex subset of E and let A ⊂ E × E∗ be a monotone operator satisfying

D(A) ⊂ C ⊂ J−1
(
⋂

r>0

R(J + rA)

)

. (2.5)

Then we can define the resolvent Jr : C → D(A) of A by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz}, ∀x ∈ C. (2.6)

We know that Jrx consists of one point. For r > 0, the Yosida approximation Ar : C → E∗ is
defined by Arx = (Jx − JJrx)/r for all x ∈ C.

Lemma 2.6 (Kohsaka and Takahashi [22]). LetE be a smooth, strictly convex, and reflexive Banach
space, let C be a nonempty closed convex subset of E and let A ⊂ E × E∗ be a monotone operator
satisfying

D(A) ⊂ C ⊂ J−1
(
⋂

r>0

R(J + rA)

)

. (2.7)

Let r > 0 and let Jr andAr be the resolvent and the Yosida approximation ofA, respectively. Then, the
following hold:

(i) φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x), for all x ∈ C, u ∈ A−10;

(ii) (Jrx,Arx) ∈ A, for all x ∈ C;

(iii) F(Jr) = A−10.

Lemma 2.7 (Zălinescu [23] and Xu [24]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0,∞) → [0,∞) such
that g(0) = 0 and

∥∥tx + (1 − t)y
∥∥2 ≤ t‖x‖2 + (1 − t)

∥∥y
∥∥2 − t(1 − t)g

(∥∥x − y
∥∥) (2.8)

for all x, y ∈ Br(0) and t ∈ [0, 1], where Br(0) = {z ∈ E : ‖z‖ ≤ r}.
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3. Main Results

In this section, we prove a strong convergence theorem for finding a common element of
the zero point set of a maximal monotone operator and the fixed point set of two relatively
nonexpansive mappings in a Banach space by using the hybrid method.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let A ⊂ E × E∗ be a maximal monotone operator satisfying
D(A) ⊂ C and let Jr = (J + rA)−1J for all r > 0. Let S and T be relatively nonexpansive mappings
from C into itself such thatΩ = F(S) ∩ F(T) ∩A−10/= ∅. Let {xn} be a sequence generated by x0 ∈ C
and

un = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JSJrnxn

)
,

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

(3.1)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for
some a > 0 . If lim infn→∞(1−αn) > 0 and lim infn→∞βn(1−βn) > 0, then {xn} converges strongly
to ΠΩx0, where ΠΩ is the generalized projection of E onto Ω.

Proof. We first show thatCn andQn are closed and convex for each n ≥ 0. From the definitions
of Cn andQn, it is obvious that Cn is closed andQn is closed and convex for each n ≥ 0. Next,
we prove that Cn is convex. Since φ(z, un) ≤ φ(z, xn) is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈z, Jxn − Jun〉, (3.2)

which is affine in z, and hence Cn is convex. So, Cn ∩ Qn is a closed and convex subset of E
for all n ≥ 0. Next, we show that Ω ⊂ Cn for all n ≥ 0. Indeed, let u ∈ Ω and yn = Jrnxn for all
n ≥ 0. Since Jrn are relatively nonexpansive mappings, we have

φ(u, zn) = φ
(
u, J−1

(
βnJxn +

(
1 − βn

)
JSyn

))

= ‖u‖2 − 2〈u, βnJxn +
(
1 − βn

)
JSyn〉 +

∥∥βnJxn + (1 − βn)JSyn

∥∥2

≤ ‖u‖2 − 2βn〈u, Jxn〉 − 2
(
1 − βn

)〈u, JSyn〉 + βn‖xn‖2 +
(
1 − βn

)∥∥Syn

∥∥2

= βnφ(u, xn) +
(
1 − βn

)
φ
(
u, Syn

)

≤ βnφ(u, xn) +
(
1 − βn

)
φ
(
u, yn

)

= βnφ(u, xn) +
(
1 − βn

)
φ(u, Jrnxn)

≤ βnφ(u, xn) +
(
1 − βn

)
φ(u, xn)

= φ(u, xn).

(3.3)
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It follows that

φ(u, un) = φ
(
u, J−1(αnJxn + (1 − αn)JTzn)

)

= ‖u‖2 − 2〈u, αnJxn + (1 − αn)JTzn〉 + ‖αnJxn + (1 − αn)JTzn‖2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)〈u, JTzn〉 + αn‖xn‖2 + (1 − αn)‖Tzn‖2

= αnφ(u, xn) + (1 − αn)φ(u, Tzn)

≤ αnφ(u, xn) + (1 − αn)φ(u, zn)

≤ αnφ(u, xn) + (1 − αn)φ(u, xn)

= φ(u, xn).

(3.4)

So, u ∈ Cn for all n ≥ 0, which implies that Ω ⊂ Cn. Next, we show that Ω ⊂ Qn for all n ≥ 0.
We prove by induction. For n = 0, we have Ω ⊂ C = Q0. Assume that Ω ⊂ Qn. Since xn+1 is
the projection of x0 onto Cn ∩Qn, by Lemma 2.3 we have

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn ∩Qn. (3.5)

As Ω ⊂ Cn ∩Qn by the induction assumptions, we have

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Ω. (3.6)

This together with definition ofQn+1 implies thatΩ ⊂ Qn+1 and henceΩ ⊂ Qn for all n ≥ 0. So,
we have thatΩ ⊂ Cn ∩Qn for all n ≥ 0. This implies that {xn} is well defined. From definition
of Qn that xn = ΠQnx0 and xn+1 = ΠCn∩Qnx0 ∈ Cn ∩Qn ⊂ Qn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.7)

Therefore, {φ(xn, x0)} is nondecreasing. It follows from Lemma 2.4 and xn = ΠQnx0 that

φ(xn, x0) = φ
(
ΠQnx0, x0

) ≤ φ(u, x0) − φ
(
u,ΠQnx0

) ≤ φ(u, x0) (3.8)

for all u ∈ Ω ⊂ Qn. Therefore, {φ(xn, x0)} is bounded. Moreover, by definition of φ, we know
that {xn} is bounded. So, we have {yn} and {zn} are bounded. So, the limit of {φ(xn, x0)}
exists. From xn = ΠQnx0 and Lemma 2.4, we have

φ(xn+1, xn) = φ
(
xn+1,ΠQnx0

) ≤ φ(xn+1, x0) − φ
(
ΠQnx0, x0

)
= φ(xn+1, x0) − φ(xn, x0) (3.9)
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for all n ≥ 0. This implies that limn→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn∩Qnx0 ∈ Cn, we have

φ(xn+1, un) ≤ φ(xn+1, xn). (3.10)

Therefore, we have limn→∞φ(xn+1, un) = 0.
Since limn→∞φ(xn+1, xn) = limn→∞φ(xn+1, un) = 0 and E is uniformly convex and

smooth, we have from Lemma 2.1 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0. (3.11)

So, we have limn→∞‖xn−un‖ = 0. Since J is uniformly norm-to-norm continuous on bounded
sets, we have

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jun‖ = lim
n→∞

‖Jxn − Jun‖ = 0. (3.12)

On the other hand, we have

‖Jxn+1 − Jun‖ = ‖Jxn+1 − αnJxn − (1 − αn)JTzn‖
= ‖αn(Jxn+1 − Jxn) + (1 − αn)(Jxn+1 − JTzn)‖
= ‖(1 − αn)(Jxn+1 − JTzn) − αn(Jxn − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JTzn‖ − αn‖Jxn − Jxn+1‖.

(3.13)

This follows that

‖Jxn+1 − JTzn‖ ≤ 1
1 − αn

(‖Jxn+1 − Jun‖ + αn‖Jxn − Jxn+1‖). (3.14)

From (3.12) and lim infn→∞(1 − αn) > 0, we obtain that limn→∞‖Jxn+1 − JTzn‖ = 0.
Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Tzn‖ = 0. (3.15)

From

‖xn − Tzn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tzn‖, (3.16)

we have

lim
n→∞

‖xn − Tzn‖ = 0. (3.17)
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Since {xn} and {yn} are bounded, we also obtain that {Jxn} and {JSyn} are bounded. So,
there exists r > 0 such that {Jxn}, {JSyn} ⊂ Br(0). Therefore Lemma 2.7 is applicable and we
observe that

φ(u, zn) = φ
(
u, J−1

(
βnJxn +

(
1 − βn

)
JSyn

))

= ‖u‖2 − 2〈u, βnJxn +
(
1 − βn

)
JSyn〉 +

∥
∥βnJxn + (1 − βn)JSyn

∥
∥2

≤ ‖u‖2 − 2βn〈u, Jxn〉 − 2
(
1 − βn

)〈u, JSyn〉 + βn‖xn‖2 +
(
1 − βn

)∥∥Syn

∥
∥2

− βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥
∥)

= βnφ(u, xn) +
(
1 − βn

)
φ
(
u, Syn

) − βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥
∥)

= βnφ(u, xn) +
(
1 − βn

)
φ(u, SJrnxn) − βn

(
1 − βn

)
g
(∥∥Jxn − JSyn

∥∥)

≤ βnφ(u, xn) +
(
1 − βn

)
φ(u, xn) − βn

(
1 − βn

)
g
(∥∥Jxn − JSyn

∥∥)

= φ(u, xn) − βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥∥),

(3.18)

where g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function with
g(0) = 0. That is

βn
(
1 − βn

)
g
(∥∥Jxn − JSyn

∥∥) ≤ φ(u, xn) − φ(u, zn). (3.19)

Let {‖xnk − Synk‖} be any subsequence of {‖xn − Syn‖}. Since {xnk} is bounded, there
exists a subsequence {xn′

j
} of {xnk} such that

lim
j→∞

φ
(
u, xn′

j

)
= lim sup

k→∞
φ(u, xnk) = a, (3.20)

where u ∈ Ω. By (2) and (3), we have

φ
(
u, xn′

j

)
= φ
(
u, Tzn′

j

)
+ φ
(
Tzn′

j
, xn′

j

)
+ 2〈u − Tzn′

j
, JTzn′

j
− Jxn′

j
〉

≤ φ
(
u, zn′

j

)
+
∥∥∥Tzn′

j

∥∥∥
∥∥∥JTzn′

j
− Jxn′

j

∥∥∥ +
∥∥∥Tzn′

j
− xn′

j

∥∥∥
∥∥∥xn′

j

∥∥∥

+ 2
∥∥∥u − Tzn′

j

∥∥∥
∥∥∥JTzn′

j
− Jxn′

j

∥∥∥.

(3.21)
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Since limn→∞‖xn − Tzn‖ = 0 and hence limn→∞‖Jxn − JTzn‖ = 0, it follows that

a = lim inf
j→∞

φ
(
u, xn′

j

)
≤ lim inf

j→∞
φ
(
u, zn′

j

)
. (3.22)

We also have from (3.3) that

lim sup
j→∞

φ
(
u, zn′

j

)
≤ lim sup

j→∞
φ
(
u, xn′

j

)
= a, (3.23)

and hence

lim
j→∞

φ
(
u, xn′

j

)
= lim

j→∞
φ
(
u, zn′

j

)
= a. (3.24)

Since lim infn→∞βn(1 − βn) > 0, it follows from (3.19) that limj→∞g(‖Jxn′
j
− JSyn′

j
‖) = 0. By

properties of the function g, we have limj→∞‖Jxn′
j
− JSyn′

j
‖ = 0. Since J−1 is also uniformly

norm-to-norm continuous on bounded sets, we obtain limj→∞‖xn′
j
− Syn′

j
‖ = 0 and then

lim
n→∞

∥∥xn − Syn

∥∥ = 0. (3.25)

So, we have limn→∞‖Jxn − JSyn‖ = 0. Since

‖Jzn − Jxn‖ =
∥∥βnJxn +

(
1 − βn

)
JSyn − Jxn

∥∥

=
(
1 − βn

)∥∥JSyn − Jxn

∥∥ ≤ ∥∥JSyn − Jxn

∥∥,
(3.26)

it follows that limn→∞‖Jzn − Jxn‖ = 0, and hence

lim
n→∞

‖xn − zn‖ = 0. (3.27)

From (3.3), we have

1
1 − βn

(
φ(u, zn) − βnφ(u, xn)

) ≤ φ
(
u, yn

)
. (3.28)

Using yn = Jrnxn and Lemma 2.6, we have

φ
(
yn, xn

)
= φ(Jrnxn, xn) ≤ φ(u, xn) − φ(u, Jrnxn) = φ(u, xn) − φ

(
u, yn

)
. (3.29)
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It follows that

φ
(
yn, xn

) ≤ φ(u, xn) − φ
(
u, yn

)

≤ φ(u, xn) − 1
1 − βn

(
φ(u, zn) − βnφ(u, xn)

)

=
1

1 − βn

(
φ(u, xn) − φ(u, zn)

)

=
1

1 − βn

(
‖xn‖2 − ‖zn‖2 − 2〈u, Jxn − Jzn〉

)

≤ 1
1 − βn

(∣∣
∣‖xn‖2 − ‖zn‖2

∣
∣
∣ + 2|〈u, Jxn − Jzn〉|

)

≤ 1
1 − βn

(|‖xn‖ − ‖zn‖|(‖xn‖ + ‖zn‖) + 2‖u‖‖Jxn − Jzn‖)

≤ 1
1 − βn

(‖xn − zn‖(‖xn‖ + ‖zn‖) + 2‖u‖‖Jxn − Jzn‖).

(3.30)

Since lim infn→∞βn(1 − βn) > 0, we have that lim infn→∞(1 − βn) > 0. So, we have
limn→∞φ(yn, xn) = 0. Since E is uniformly convex and smooth, we have from Lemma 2.1
that

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.31)

Since

‖zn − Tzn‖ ≤ ‖zn − xn‖ + ‖xn − Tzn‖,
∥∥yn − Syn

∥∥ ≤ ∥∥yn − xn

∥∥ +
∥∥xn − Syn

∥∥,
(3.32)

from (3.17), (3.25), (3.27), and (3.31), we obtain that

lim
n→∞

‖zn − Tzn‖ = lim
n→∞

∥∥yn − Syn

∥∥ = 0. (3.33)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ v. From
limn→∞‖xn − yn‖ = 0 and limn→∞‖xn − zn‖ = 0, we have ynk ⇀ v and znk ⇀ v. Since S and
T are relatively nonexpansive, we have that v ∈ F̂(S) ∩ F̂(T) = F(S) ∩ F(T). Next, we show
v ∈ A−10. Since J is uniformly norm-to-norm continuous on bounded sets, from (3.31) we
have

lim
n→∞

∥∥Jxn − Jyn

∥∥ = 0. (3.34)
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From rn ≥ a, we have

lim
n→∞

1
rn

∥∥Jxn − Jyn

∥∥ = 0. (3.35)

Therefore, we have

lim
n→∞

‖Arnxn‖ = lim
n→∞

1
rn

∥
∥Jxn − Jyn

∥
∥ = 0. (3.36)

For (p, p∗) ∈ A, from the monotonicity of A, we have 〈p − yn, p
∗ − Arnxn〉 ≥ 0 for all n ≥ 0.

Replacing n by nk and letting k → ∞, we get 〈p − v, p∗〉 ≥ 0. From the maximallity of A, we
have v ∈ A−10, that is, v ∈ Ω.

Finally, we show that xn → ΠΩx0. Let w = ΠΩx0. From xn+1 = ΠCn∩Qnx0 and w ∈ Ω ⊂
Cn ∩Qn, we obtain that

φ(xn+1, x0) ≤ φ(w,x0). (3.37)

Since the norm is weakly lower semicontinuous, we have

φ(v, x0) = ‖v‖2 − 2〈v, Jx0〉 + ‖x0‖2

≤ lim inf
k→∞

(
‖xnk‖2 − 2〈xnk , Jx0〉 + ‖x0‖2

)

= lim inf
k→∞

φ(xnk , x0) ≤ lim sup
k→∞

φ(xnk , x0) ≤ φ(w,x0).

(3.38)

From the definition of ΠΩ, we obtain v = w. This implies that

lim
k→∞

φ(xnk , x0) = φ(w,x0). (3.39)

Therefore we have

0 = lim
k→∞

(
φ(xnk , x0) − φ(w,x0)

)

= lim
k→∞

(
‖xnk‖2 − ‖w‖2 − 2〈xnk −w, Jx0〉

)

= lim
k→∞

(
‖xnk‖2 − ‖w‖2

)
.

(3.40)

Since E has the Kadec-Klee property, we obtain that xnk → w = ΠΩx0. Since {xnk} is
an arbitrary weakly convergent subsequence of {xn}, we can conclude that {xn} converges
strongly to ΠΩx0. This completes the proof.
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As direct consequences of Theorem 3.1, we can obtain the following corollaries.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let A ⊂ E × E∗ be a maximal monotone operator satisfying
D(A) ⊂ C and let Jr = (J + rA)−1J for all r > 0. Let T be a relatively nonexpansive mapping from C
into itself such that Ω = F(T) ∩A−10/= ∅. Let {xn} be a sequence generated by x0 ∈ C and

un = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTJrnxn

)
,

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

(3.41)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {αn}, {βn} ⊂ [0, 1], and {rn} ⊂ [a,∞) for
some a > 0 . If lim infn→∞(1−αn) > 0 and lim infn→∞βn(1−βn) > 0, then {xn} converges strongly
to ΠΩx0, where ΠΩ is the generalized projection of E onto Ω.

Proof. Putting S = T in Theorem 3.1, we obtain Corollary 3.2.

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let A ⊂ E × E∗ be a maximal monotone operator satisfying
D(A) ⊂ C and let Jr = (J + rA)−1J for all r > 0. Let S : C → C be a relatively nonexpansive
mapping such that Ω = F(S) ∩A−10/= ∅. Let {xn} be a sequence generated by x0 ∈ C and

un = J−1
(
βnJxn +

(
1 − βn

)
JSJrnxn

)
,

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

(3.42)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {βn} ⊂ [0, 1], and {rn} ⊂ [a,∞) for
some a > 0. If lim infn→∞βn(1 − βn) > 0, then {xn} converges strongly to ΠΩx0, where ΠΩ is the
generalized projection of E onto Ω.

Proof. Putting T = I and αn = 0 in Theorem 3.1, we obtain Corollary 3.3.

Let E be a Banach space and let f : E → (−∞,∞] be a proper lower semicontinuous
convex function. Define the subdifferential of f as follows:

∂f(x) =
{
x∗ ∈ E : f

(
y
) ≥ 〈y − x, x∗〉 + f(x), ∀y ∈ E

}
(3.43)

for each x ∈ E. Then, we know that ∂f is a maximal monotone operator; see [18] for more
details.
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Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let S and T be relatively nonexpansive mappings from C into
itself such that Ω = F(S) ∩ F(T)/= ∅. Let {xn} be a sequence generated by x0 ∈ C and

un = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JSxn

)
,

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

(3.44)

for all n ∈ N ∪ {0}, where J is the duality mapping on E and {αn}, {βn} ⊂ [0, 1]. If lim infn→∞(1 −
αn) > 0 and lim infn→∞βn(1 − βn) > 0, then {xn} converges strongly to ΠΩx0, where ΠΩ is the
generalized projection of E onto Ω.

Proof. Set A = ∂iC in Theorem 3.1, where iC is the indicator function; that is,

iC(x)

⎧
⎨

⎩

0, x ∈ C,

∞, otherwise.
(3.45)

Then, we have that A is a maximal monotone operator and Jr = ΠC for r > 0. In fact, for any
x ∈ E and r > 0, we have from Lemma 2.3 that

z = Jrx ⇐⇒ Jz + r∂iC(z) � Jx

⇐⇒ Jx − Jz ∈ r∂iC(z)

⇐⇒ iC
(
y
) ≥
〈
y − z,

Jx − Jz

r

〉
+ iC(z), ∀y ∈ E

⇐⇒ 0 ≥ 〈y − z, Jx − Jz〉, ∀y ∈ C

⇐⇒ z = argmin
y∈C

φ
(
y, x
)

⇐⇒ z = ΠCx.

(3.46)

So, from Theorem 3.1, we obtain Corollary 3.4.

4. Applications

In this section, we discuss the problem of strong convergence concerning a maximal
monotone operator and two nonexpansive mappings in a Hilbert space. Using Theorem 3.1,
we obtain the following results.
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Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let A ⊂ H × H be
a monotone operator satisfying D(A) ⊂ C and let Jr = (I + rA)−1 for all r > 0. Let S and T be
nonexpansive mappings from C into itself such that Ω = F(S) ∩ F(T) ∩ A−10/= ∅. Let {xn} be a
sequence generated by x0 ∈ C and

un = αnxn + (1 − αn)Tzn,

zn = βnxn +
(
1 − βn

)
SJrnxn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0

(4.1)

for all n ∈ N ∪ {0}, where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If lim infn→∞(1 −
αn) > 0 and lim infn→∞βn(1−βn) > 0, then {xn} converges strongly to PΩx0, where PΩ is the metric
projection of H onto Ω.

Proof. We know that every nonexpansive mapping with a fixed point is a relatively
nonexpansive one. We also know that φ(x, y) = ‖x − y‖2 for all x, y ∈ H. Using Theorem 3.1,
we are easily able to obtain the desired conclusion by putting J = I. This completes the
proof.

The following corollary follows from Theorem 4.1.

Corollary 4.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let A ⊂ H ×H be a
monotone operator satisfyingD(A) ⊂ C and let Jr = (I + rA)−1 for all r > 0. Let T be a nonexpansive
mapping fromC into itself such thatΩ = F(T)∩A−10/= ∅. Let {xn} be a sequence generated by x0 ∈ C
and

un = αnxn + (1 − αn)Tzn,

zn = βnxn +
(
1 − βn

)
TJrnxn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0

(4.2)

for all n ∈ N ∪ {0}, where {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If lim infn→∞(1 −
αn) > 0 and lim infn→∞βn(1−βn) > 0, then {xn} converges strongly to PΩx0, where PΩ is the metric
projection of H onto Ω.

Proof. Putting S = T in Theorem 4.1, we obtain Corollary 4.2.

Corollary 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let A ⊂ H × H be
a maximal monotone operator satisfying D(A) ⊂ C and let Jr = (I + rA)−1 for all r > 0. Let S be
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a nonexpansive mapping from C into itself such that Ω = F(S) ∩ A−10/= ∅. Let {xn} be a sequence
generated by x0 ∈ C and

un = βnxn +
(
1 − βn

)
SJrnxn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0

(4.3)

for all n ∈ N∪{0}, where {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If lim infn→∞βn(1−βn) > 0
then {xn} converges strongly to PΩx0, where PΩ is the metric projection of H onto Ω.

Proof. Putting T = I and αn = 0 in Theorem 4.1, we obtain Corollary 4.3.

Corollary 4.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let S and T be
nonexpansive mappings from C into itself such that Ω = F(S) ∩ F(T)/= ∅. Let {xn} be a sequence
generated by x0 = x ∈ C and

un = αnxn + (1 − αn)Tzn,

zn = βnxn +
(
1 − βn

)
Sxn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0

(4.4)

for all n ∈ N∪{0}, where {αn}, {βn} ⊂ [0, 1]. If lim infn→∞(1−αn) > 0 and lim infn→∞βn(1−βn) >
0, then {xn} converges strongly to PΩx0, where PΩ is the metric projection of H onto Ω.

Proof. Set A = ∂iC in Theorem 4.1, where iC is the indicator function; that is,

iC(x)

⎧
⎨

⎩

0, x ∈ C,

∞, otherwise.
(4.5)

Then, we have that A is a maximal monotone operator and Jr = PC for r > 0. In fact, for any
x ∈ E and r > 0, we have that

z = Jrx ⇐⇒ z + r∂iC(z) � x

⇐⇒ x − z ∈ r∂iC(z)

⇐⇒ iC
(
y
) ≥
〈
y − z,

x − z

r

〉
+ iC(z), ∀y ∈ E

⇐⇒ 0 ≥ 〈y − z, x − z〉, ∀y ∈ C

⇐⇒ z = PCx.

(4.6)

So, from Theorem 4.1, we obtain Corollary 4.4.
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