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al(q)¢@ V2 < T((g + 1)/2),D7 is the standard Riemann-Liouville fractional derivative, and
f € C((0,1] x [0,+00), [0, +o0)), lim; .o f (t,) = +oo (ie., f is singular at t = 0). By using the
fixed-point index theory, the existence result of positive solutions is obtained.

Copyright © 2009 Y. Tian and A. Chen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by the
intensive development of the theory of fractional calculus itself and the applications of such
constructions in various sciences such as physics, mechanics, chemistry, and engineering. For
details, see [1-10] and the reference therein. However, up to our knowledge, most of those
papers have studied the existence and multiplicity of solution (or positive solution) to the
initial value problem of nonlinear fractional differential equations; see [1, 4, 10, 11].

Recently, there are a few paper considering the Dirichlet-type boundary value problem
for nonlinear ordinary differential equations of fractional order; see [12-14]. Delbosco [13]
has investigated the nonlinear Dirichlet-type problem

uT'DIu(t) = f(ut)), 0<t<1,1<g<2,
1.1
u(0) =u(1) =0. 4D
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He has proved that if f(u) is Lipschitizan function, then the problem has at least one solution
u(t) in a certain subspace of C[0,1] in which fractional derivative has a Holder property.
When f(t,u) is continuous on [0,1] x [0,+0c0), by the use of some fixed-point theorem on
cones, Bai and L [12] and Zhang [14] have given the existence of positive solutions to the
equation

Du(t) + f(t,u(t)) =0, 0<t<1, (1.2)
with boundary condition

u(0) =u(l) =0,
, , (1.3)
u(0) +u (0) = u(l) +u (1),

respectively.
This paper is to study the existence of positive solution for the three-point singular
boundary value problem of nonlinear fractional differential equation

Diu(t) + f(t,u(t)) =0, 0<t<l,

(1.4)
u(0)=0,  u(l) = aD¥ I 2y(t) .

By using the fixed-point index theory, where 1 < g < 2 is a real number, ¢ € (0,1/2],
a € (0,+c0) satisfy that al'(g)¢@1/2 < T'((g + 1)/2), D1 is the standard Riemann-Liouville
fractional derivative, and the function f satisfies the following condition:

(Hy) f € C((0,1] x [0, +00), [0, +00)), lim;_, 4o f (t,-) = +oo, there exists a constant b : 0 <
b < 1 such that # f (, u(t)) is continuous function on [0, 1] x [0, +o0).

The organization of this paper is as follows. In Section 2, we present some necessary
definitions and Preliminary results that will be used to prove our main results. The proof of
our main result is given in Section 3. In Section 4, we will give an example to ensure our main
result.

2. Preliminaries

The material in this section is basic in some sense. For the reader’s convenience, we present
some necessary definitions from fractional calculus theory and preliminary results.

Definition 2.1. The fractional integral of order g > 0 of a function x : (0,+o0) — R s given by

Ix(t F( )j (t—s)T'x(s)ds, (2.1)

provided that the right side is pointwise defined on (0, o).
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Definition 2.2. The fractional derivative of order q > 0 of a continuous function x : (0, +o0) —
Ris given by

__ L AN x(s)
i)~ e ()] 02

where n = [g] + 1, provided that the right side is pointwise defined on (0, o).
Lemma 2.3 (see [7]). (1) Ifx € L(0,1), p > 0 > 0, then D°IPx(t) = IP%x(t).
2) Ifp>0,1>0, then DPt*"! = (T(A) /T (A - p))t*P7L.

Lemma 2.4 (see [12]). Assume that x € C(0,1) N L(0, 1) with a fractional derivative of order q > 0
that belongs to C(0,1) N L(0,1). Then

IDx(t) = x(t) + At + AptT72 + ..+ ANtTN, (2.3)

AieR i=1,2,...,N, where N is the smallest integer greater than or equal to q.

Lemma 25. If y € C(0,1) N L(0,1) and 1 < q < 2,¢ € (0,1), « € R satisfy that
al(q)¢@ /22T ((q +1)/2), then the problems

Diu(t)+y(t) =0, O0<t<l,

(24)
u(0)=0,  u(l) = aD¥ D/ 2y(t) e
have the unique solution
f(t-9)T!
u(t) = ———y(s)ds
I'(a)
-1 1)/2 1(1-g)9! $(x_ g)a1/2
((4+1)/2) (O as-of Co02 ]
[((q+1)/2) - al(q)§@ D/ I'(q) oI'((g+1)/2)
(2.5)
Proof. By applying Lemma 2.4, we may reduce (2.4) to an equivalent integral equation
u(t) = Iy (t) + At + Ayt772 (2.6)
for some Aj, A, € R. Consequently the general solution of (2.4) is
t—s)T!
u(t) = J‘ ( i_)( )y(S) ds + At + At (2.7)
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Note that #(0) = 0, we have A; = 0 and

1
f A=9" ¥y a, (2.8)

T'(q)
On the other hand, by (2.6) and Lemma 2.3, we have

D@D/ 2y(t) = -DU D217y (t) + A, DD/ 244!

(2.9)
_ _1(g+1)/2 I'(q) $a-1)/2
YOGy
Therefore
14 (g-1)/2
(g-1)/2 _ (§-5) I'(q) (g-1)/2
il u(t)| - O—F((q+1)/2)y(s)ds+Al—r((q+1)/2)§‘7 : (2.10)

By u(1) = aDPu(t)|i=¢, combine with (2.8) and (2.10), we obtain

I'((g+1)/2) {J-l (1- )" E(g—s)anr2

~ T e R g - @

So, the unique solution of problem (2.4) is

ft-s)"

r() y(s)ds
tT((9+1)/2) (1-9)! N R A
F((q+1)/2)—al‘(q)g(q—l)ﬁ{J‘ T(q) y(s)ds —a 01,((1”1)/2)]/(5)015 .

(2.12)

The proof is completed. O
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Lemma 2.6. If y € C((0,1),[0,+00)) NL(0,1) and 1 < g <2,¢ € (0,1/2], a € (0, +0) satisfy that
al(g)¢av/2 <T((q +1)/2), then the unique solution of the problem (2.4)

~ t (t— S)qfl
u(t) = - ) T y(s)ds
T ((g+1)/2) H(1-s)! t(g-5) /2
T((g+1)/2) —al(g)é /2 {Io I'(q) y(s)ds—a O—r((q +1)/2) y(s)ds
(¢ d at!”
- IO (t,s)y(s)ds + (a7 1)/2) al (g) 572

13
. {j (-2 g oY y(s)ds + [ (1 s)q‘léw-“”y(s)ds}.
0 ¢

(2.13)
is nonnegative on [0, 1], where
[t1-9)]"" = (t-5)"" 0<s<t<l1
g e
Glt,s) = 1 (2.14)
L T(@@) ST
Proof. By Lemma 2.5, the unique solution of problem (2.4) is
__((¢=9"
u(t) = - ) T() y(s)ds
(T ((9+1)/2) fa-s)™ I i
"T((q+1)/2) - al ()&@ D72 Io ) V9% Ty )Y
Et—s)T?
== d
0 F(UI) 3/(5) 5

dmu (R TE MY LCLE R
0

I((g+1)/2) —al(q)¢4"/2 I'(q)
_ et ((g+1)/2) { (e s)TD2
T((g+1)/2) - al(q)@72) yT((g + 1)/2)

y(s)ds
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_ t(t—S)tFl
o T'(q)

al’ (q-1)/2 11 g1
' <1 (g 1)/(;))f “F(q)é("‘”/z>tq1fo( r(q)) ye)ds
ati !
I((q+1)/2) —aT(q)¢an/
' -1 1 19—
- _fo ¢ ;(2); y(s)ds + J‘O%y(s)ds
atd-1¢@-1)/2
' I'((g+1)/2) —al(g)&a/2
ati !
" T((q+1)/2) - al(q)eD/
_ J‘t [t(1-5)]"" = (t-s)""
0 I'(q)

ati1
TT((q+1)/2) —al(q)2@ 7

y(s)ds

¢
[ @ 2y(sas

1
f (1-5)""y(s)ds
0

¢
[ @-sr2y(sas

1 _ q-1
y(s)ds + L %y(s)ds

14
{f(l — )17/ 2y (5)ds - j = s)”‘l)/zy(s)ds}
0 0

! ati!

- G e e

¢
. {f (918072 - T yopas + 1 - s)q*g(q-””y(s)ds}.
0 ¢

(2.15)

Observing the expression of G(t, s), it is clear that G(t,s) > 0 for s,t € (0,1). On the
other hand, by ¢ € (0,1/2], we have

(1-s)?2> (1 - g) Vs € [0,¢]. (2.16)
Hence
(g-1)/2
1-s)7"> (1 - g) . (2.17)
It implies that
(1-5)771g@ /2 > (g - 5)@ /2, (2.18)

Therefore u(t) is nonnegative on [0, 1]. O
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Lemma 2.7. Let 1 < g <2,¢ € (0,1/2], a € (0, +00) satisfy that al(q)¢ 9 V/2 < T((g +1)/2) and
y : (0,1] — [0, +o0) is continuous, and lim;_, .oy (t) = +oo. Suppose that there exists a constant
b:0<b < 1such that t*y(t) is continuous function on [0,1]. Then the unique solution of (2.4)

q-1
f ¢ r(s)) y(s)ds

t7'T((q+1)/2) {fl (1-5)7"
"T((q+1)/2) - al(q)e0 7 I'(q)

14 (& - S)(q—l)/Z
oT((9+1)/2)

y(s)ds —a y(s)ds}.

(2.19)

is continuous on [0, 1].

Proof. Since tPy(t) is continuous in [0, 1], thus there exists a constant L > 0 such that [Py (t)| <
Lforallte [0,1] and

1 ~1.-b b
u(t):—mjo(t—s)q s -s"y(s)ds

. FIT((g+1)/2)
[[((g+1)/2) - al ()24 V72T (g)

at?” ‘ (g-1)/2 _-b _b
T((q+1)/2) —ar(q)g<q—1>/zj0(§‘5) D257 gby(s)ds

fl(l —5)T s sby(s)ds (2.20)
0

For any ty € [0,1], we will prove u(t) — u(ty) (t — to, t € [0,1]). For the convenience, the
proof is divided into three cases.

Case 1 (tg = 0). Itis easy to know that 1(0) = 0. For all € (0,1], we have

|u(t) — u(to)| <

%J‘;(t ~5)7 s sby(s)ds

11 ((g+1)/2)
[T((q+1)/2) - al(q)§ /2T (q)

atd1 é v b
’ 'I’((q+1)/2) —ar(q)g(ql)/zfo(g‘s) 17012570 - 57y (s)ds

f (1-5)T"'s7 . sby(s)ds
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L ( -1_b
Smfo(t—s)q s °ds

LT ((g+1)/2) L
+ (7 +1)/2) - al (q)2@ V72T (q) fo(l s)T s7"ds
aLi?”! ‘ (g-1)/2 b
R a4 e
Lt Lt"T((g+1)/2)
T( )B(l b,q) + [[((g+1)/2) - al (q)&@D72]T(q)
[XLg(l b+(g- 1)/2)tq 1
" T((q+1)/2) —al (g)ea D2
CLT(-b) ., LT(1-b)T((q+1)/2) -
CT(1-b+q) [[((q+1)/2) - al (q)¢@ V2T (1-b+q)
aLT(1-b)[((g+1)/2)¢0-b+a-D/2)
"9+ 1)/2) - al (@)@ 2T+ (q+ 1)/2)

B(1-b,q)

B(1-b,(q+1)/2)

—0 (t—0),
(2.21)

where B denotes beta function.

Case 2 (tg € (0,1), for all t € (t9,1]). We have

|u(t) — u(to)]

(to s)7 'y (s)ds

F( )f (t-s)7 ly(s)ds+ ( 7)o

-1 — ¢\ 1)/2 107 oyg-1 & (@12
( 0 ) ((9+1)/2) { (1-s)7 y(s)ds - a Lo’ y(S)ds}

T+ 1)72) —ar (@& 72 o T() oT((q+1)/2)

(t s)T s sby(s)ds

1 (o _ .
< ‘mfo <(t—s)q L (k- 9)1 1) Py (s)ds + —— ( 3

(11~ 1 (g +1) /2) . o
' [r((q+1)/2)—af(q)§<q—1)/2]r(q)jo(1_5) s s"y(s)ds

(tq_l_ttﬂ) (@-1)/25-b
q-
: I'((q+1)/2) - ar(q)gwl/zf (€-s) -sty(s)ds




Abstract and Applied Analysis 9

to
< r(L_q)JO ((t-s)q*1 ~(t - s)q-1> sds + ﬂ to(t )7 157 ds

(1 =T ((g+1)/2)L
T ((q+1)/2) - al ()24 72T (g)

“(t‘H - tg_1>L :
_ N\(g-1)/2 b
: T((g+1)/2) - al(g)¢ln/2 fo(é s) /%57 g

1
’[ (1-s)"sds
0

L (=M (g +1)/2)L
T [T((g+1)/2) - al (q)§@ 2|1 (q)

zx(tq—l - tg‘1> Le(1-0+a-D/2) o a1
i I'((g+1)/2) —al'(g)¢la-1/2 < 'T)

B(1-b,q)

(1 -1 )B(1 - b,q) +

CLTA-b) /oy g LT(1-b)I((9+1)/2) 1
oo ) Ty —ame e )
1-b+(g-1)/2

ALA-BI(G+ D8 ey oy,

[T((q+1)/2) al'(q)¢@ V2T (1-b+(q+1)/2)
(2.22)

Case 3 (to € (0,1], for all t € [0,tp)). The proof is similar to the step 2. Here, we omit it. m

The main tool of this paper is the following well-known fixed-point index theorem
(see [15]).

Lemma 2.8. Let E be a Banach space, P C E is a cone. For r > 0, define Q, = {u € P | |lu|]| < r}.
Assume that T : Q, — P is a completely continuous such that Tu#u for u € 0Q, = {u € P | ||u|| =
r}.

1) If|ITull > ||l for u € 3Q,, then i(T,Q,, P) = 0

2) If || Tul| < ||lul| for u € 0Q,, then i(T,Q,,P) = 1.

3. Main Results

For the convenience we introduce the following notations:

T(1-b)

Cr=—— ",
""T(1-b+q)
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_ TA-b)I((g+1)/2) 1 ag(1-b+@-1)/2)
2T T((q+1)/2) —al (q)ee D2\ T(1-b+q) T(A-b+(q+1)/2) )

O\ Gl el < I r((q+1>/2>é”>
T T((g+1)/2) —al(q)¢@ V2 \T(1-b+q) T(1-b+(qg+1)/2) )

(3.1)

Remark3.1. If 1<q<2,0<b<1,0<¢<1/2,a>0,andI'((g+1)/2) > aT(q)g(q’l)/z, then

$
G = [r((q +1)/2) b_r ar(q)é(q—l)/z] {IO<(1 - S)q—lé(q—l)ﬁ . S)(q—l)/2> st ds

1
+ f (1-s)7 @bz, s‘bds} (3.2)
14

T T((g+1)/2) - al ()& )

aT (1 - b))/ < (q)  T((g+1)/2)8" >>0
M-brq) (-br@:17/2)) "

Let E = CJ[0,1] be a Banach spaces with the maximum norm |[u|| = maxo<<i1|u(t)|.
Define the cone P C E by

P={ucE|ut)>0,0<t<1). (3.3)

The positive solution which we consider in this paper is the form u(0) = 0, u(t) > 0,
0<t<1l,u€ekE.
Define an operator T : P — E by

~ t (t _ S)q—l
Tu(t) = —J‘wa(s,u(s))ds

-1 1 -1
1T ((q+1)/2) {’[ (1-s)" f(s,u(s))ds (34)
0

I'((q+1)/2) —al(g)sl )/ I'(q)
¢ (& - S)(fi—l)/2

—a| =——————f(s,u(s))ds .
(@72’

Lemma 3.2. Assume that condition (Hy) holds. Then the operator T : P — P is completely

continuous.

Proof. If condition (H;) holds, by Lemmas 2.6 and 2.7, we have T(P) C P. Let uy € P and
luoll = ao; if u € P and || — uo|| < 1, then |lu|| < 1 + ao := a. By the continuous of # f (t, x), we
know that ¢ f (t,x) is uniformly continuous on [0, 1] x [0, a]. Thus, for all € > 0, there exists a
6 >0 (6 < 1) such that

2

—_— 3.5
C1 + C2 ( )

| £t x) = £ F (tx2) | <
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forallt € [0,1] and x1, x; € [0, a] with |x;—x;| < 6. Obviously, if ||u—ug|| < 6, then uy(t), u(t) €
[0, a] and |u(t) — ug(t)| < 6 for each t € [0,1]. Hence, we have

2

£t u(t)) — 2 £t uo(1)] < e

(3.6)

forall t € [0,1],u € P with ||u — ug|| < 6. It follows from (3.6) that

T2 — T
= max|Tu(t) — Tup(t)|
0<t<1

1 o
. Brsltas)l({ T'(q) fo(t -5)"s b|5bf(51”(5)) - Sbf(s,uo(s))'ds

. FIT((g+1)/2)
(9 +1)/2) - al (g)5 V2|1 (g)

1
x J‘ (1- s)q_ls"b|sbf(s,u(s)) - s"f(s, uo(s))|ds
0

ati!
"T((g+1)/2) - a ()7

¢
xj (& - s)(q_l)/2s_b|sbf(s,u(s)) - sbf(s, up(s)) |ds}
0

t
< max ;J‘ (t-s)T1s7bds
0<t<1 F(q) (C1 + Cz) 0

et T ((q+1)/2) 1 .
’ [r((‘“l)/z)-“r(q)é“’1>/2](C1+c2)r(q)jo(1_s)q sds

q-1 ¢
" act f - s)(q1>/2sbds}
0

I'((q+1)/2) —al(q)ga /2] (Ci + C2)

et T ((q+1)/2)B(1-b,q)
[T((g+1)/2) - al(g)&@/2](C1 + C2)T'(q)

= maX ;
0<t<1 { F(q) (C1 + Cz)

t1PB(1-b,q) +

agtq—lé(l—m(q—l)/z) ) q+1
"T((q+1)/2) —al (g)2@D2](Cy + CZ)B<1 b, T)
<] _rfa-v I'((g+1)/2)T(1-b)
“(r(-b+q) [((9+1)/2) -al(q)s V2T (1-b+q)
al(1-b)T((q+1)/2)¢"0+@D/2) € ~
"TT((q+1)/2) —al (@& V2 T(1-b+ (g +1)/2) | (C1+Cy)

(3.7)

By the arbitrariness of 1, we have that T : P — P is continuous.
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Let Q C P be bounded; that is, there exists a positive constant M such that Q € {u €
P | |lull £ M}. Since #* £ (t,u(t)) is continuous on [0, 1] x [0, +c0), we let

N = tb t, t 4 1. 3.8
(t,u)e%,lﬁ)x([o,M] f(tu(t)) (3.8)

For all u € Q, we have

ITu(t)] <

1 t
mfo(t —8)T sV st f(t,u(t))ds

HI (g +1)/2)
(g +1)/2) - al ()50

atd1

I((g+1)/2) —al(q)gl/2

1
mhwwfﬁl—@*%*'ﬁﬂ&u@»ds

4
f (& -5) V2570 P f(s,u(s))ds
0

+ ‘

Nt11T((g+1)/2) 1 -
I'((g+1)/2) —al(q)¢@ /2T (q) Io(l s)s7ds
aNti!

‘ -1)/2 b
' I'((g+1)/2) —al'(g)éla1/2 —[o(é ~5)@ V257 g
N#'T((9+1)/2)
[F((q + 1)/2) - txr(q)g(q—l)/Z]r(q>

1-b+(g-1)/2) pq-
+ aNé( ! i B(l—b,ﬂ)
T((4+1)/2) - ar ()7 2

S NIA-b) NT((q+1)/2)I(1-b)
“T(A-b+q) [[((q+1)/2) -al(q)¢@ V2T (1-b+q)
aNT(1-b)T((g+1)/2)g0-b+@-D/2)

T+ 1)/2) - al (DRI (1= b+ (g +1)/2)
= (C1 + Cz)N

ﬁt _g)ilgb
Sf(q)J‘o(t s)T's ds+[

(3.9)

= itq-l’B(l -b,q) +

I'(q)

B(1-b,q)

Hence T(Q) is bounded.
On the other hand, given ¢ > 0, set

1 £ 1/(a-b) 1 £ 1/(q-1) £
= min{ - - £t 1
0 mm{z(zu\rcl) ’2<2NC2> "ANGC, (3.10)

For each u € Q, we will prove thatif t1,¢, € [0,1] and 0 <, — ; < §, then

ITu(ts) - Tu(t)| < e. (3.11)
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In fact, similar to the proof of Lemma 2.7, we have

[Tu(ts) - Tu(ty) < LD (b 1)

I(1-b+q)
. NT((g+1)/2)L(1-b) <q_1 _tq_1>
[[((a+1)/2) = aT (@) DT ~brg) \* (6.12)
aNTQ-DI((G /DUy
+ —_
[F((g+1)/2) —al(q)g D2 T(1-b+ (g +1)/2)\?
= NG ({7 -7") + NG(87 - 1),
In the following, the proof is divided into three cases.
Casel (6<ti<thb<1l,q-b-1<0).
ITu(t,) - Tu(t)| < NGy (tg‘b - tf‘b) + ch(t;"l - t?*)
< NCi(g-b)87 1ty —t1) + NCa(q - 1)892(t2 — 1)
<2NC1677 + NC697
£ £ (3.13)
<2NC;- ————— +NCp - ——————
= ANHU NGt T NG
_ 2 + I3
T 2x29b 2% 2471
<E.
Case2 (6 <t <tp<1l,g-b-1>0).
ITu(ty) - Tu(t)| < NC (tg"’ - t‘{’”) + NG, (tg’l - t‘1H>
< NC1 (q - b) (tz - t1) + NC2<(/] - 1)6q_2(t2 - tl)
<2NC;16 + NG9
¢ e (3.14)
<2NCj+ —— £
SINGgRe P NC NG
_E, ¢
2 2x241
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Case3 (0<t; <6, 1t <206).

—b —b _ —
ITu(ts) - Tu(t)| < NC; (tg —t7 ) + ch(tg Lo 1)
< NG+ NG

< NC1(26)70 + NC,(26)77!

<NCy—— +NCy-—2— 15
= UUNG 2'ONG,

_E£. ¢

T4 02

<€

Therefore, T(€Q) is equicontinuous. The Arzela-Ascoli Theorem implies that T(€) is
compact. Thus, the operator T : P — P is completely continuous. O

We obtain the following existence results of the positive solution for problem (1.4).
Theorem 3.3. If condition (Hi) holds and assume further that there exist two positive constants

R > r > 0 such that

(Ho) t°f(t,u) > r/Cs, for (t,u) € [0,1] x [0, 7];

(Hs) £ (t,u) < R/(Cy + Cy), for (t,u) € [0,1] x [0, R],

then problem (1.4) has at least one positive solution u such that r < |ju|| < R.

Proof. Problem (1.4) has a solution u = u(t) if and only if u is a solution of the operator
equation u = Tu. In order to apply Lemma 2.8, we separate the proof into the following two
steps.

Step 1. Let Q, := {u € P | ||lu|| < r}. For any u € 0Q,, we have ||u|| = r and 0 < u(t) < r for
all t € [0,1]. Observing the expression of G(t,s) (see (2.14)), it is clear that G(1,s) = 0. By
assumption (H;), we have

Tu(l) = j:G(l, s)f(s,u(s))ds

a
"T((q+1)/2) —al(q)2@ 7

13
{ j ((1=9)7180D/2 = ¢ = )T/ f(s,u(s))ds
0

+f1(1 — )12 f (s, u(S))dS}
:
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>

T((q+1)/2) - al(q)g@D/2

S
{f (=P a0 = = )TVt (1, u(t) ds
0

+J‘1(1 — )i lglan/2 b tbf(t,u(t))ds}
¢
ar
[T((g+1)/2) - al ()@ D72]Cs
x {F ((1 — )@ D2 _ g _ s)(q—1)/2> s ds + J‘l(l _g)ilgla /2, S_bds}
’ ¢

! ¢
ar (g-1)/2 _ -1 b 3 CN@D2b
[[((g+1)/2) —al(g)¢W/2]Cs {é q ,[0(1 s)T'sds fo(é 5)@ /2 ds}

ar

(g-1)/2 _ _ 3l-b+(g-1)/2 B u
[[((g+1)/2) —al(q)¢@D/2]C, {é ™V2B(1-b,q) - ¢4 B(l b, 7 )}

al (1-p)glr /2 < 0) F(<q+1)/2)§1-b> ro_

['((g+1)/2) —al(q)¢@V/2\T(1-b+q) T(1-b+(q+1)/2) G
(3.16)
So
ITu|| > ||lull, Yu € oQ,. (3.17)
By Lemma 2.8, we have
i(T,Q,,P) =0. (3.18)

Step 2. Let Qg := {u € P | |lu|]| < R}. For any u € 0Qg, we have |ju|| = Rand 0 < u(t) < R for
all t € [0,1]. By assumption (Hs), for t € [0,1], we get

[Tu(t)| <

1 ! -1_-b b
mf()(t—s)" s s f(tu(t))ds

111 ((g+1)/2)
[T((q+1)/2) - al(q)§ /2] (q)

atd1
' ’ I'((q+1)/2) —al(q)g4/2

f(l —5)T st 5P f(s,u(s))ds
0

14
f (& -5) V2570 P £ (s,u(s))ds
0
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- _ o\q1 7b
()G +Cz)f (o s e
Rt7T((q+1)/2)
" T((g+1)/2) — T (g)dT 2T (q)(C + Co)
aRt”] _@D/2 b
T4+ 1)/2) - al (@)§AC ] KA
3 R
T T(g)(Cr+Cy)

1
I (1-s)"'sds

t1B(1-b,q)

RIT((q+1)/2)

(@ D/2) e @ g @ Gy )
aN§(1 b+(q-1)/2) 491 ) g+1
" T((q+1)/2) - al (@& (Cr + Co) ( ) T)
< I'(1-b) . I'((g+1)/2)I(1-D)
[A-b+q)  [[((g+1)/2)—al()e™ V7] (1-b+q)
al (1-b)T((g+1)/2)¢tbHa-b/2) R
"+ 1)/2) ~al (g)ee2T(A b+ (q+1)/2) | Ci+C
(3.19)
Therefore
ITull < [lull, Vu € 0Qg. (3.20)
By Lemma 2.8, we have
i(T,Qg, P) = 1. (3.21)
Combine with (3.18) and (3.21), we have
i<T, o \ﬁr,P> =i(T,Qx,P) —i(T,Q,,P)=1-0=1. (3.22)

Therefore, T has a fixed point u € Qg \ Q,. Then problem (1.4) has at least one positive
solution u such that r < ||u|| < R.

O
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4. Example

Let g =3/2, a = ¢ =1/2. We consider the following boundary value problem:

D¥2u(t) + f(t,u(t)) =0, 0<t<1,

1 n (4.1)
u(0) =0, u(l)=zD""u®|
2 t=1/2
where
f(t,u) = el Lpo,min). (4.2)
’ 4 18
Let b = 1/2. By simple computation, we have
C1 = 1.7724, C, = 3.9824, C; = 0.2635. (4.3)
Choosing R = 6, r = 1/16, we have
1/2 Ll o
Erefbu)==(-<su +t"+1) <1< =~ 1.0426, (t,u) €[0,1] x[0,6],
4\ 18 1+0Co (4 4)

1/1 1 r 1 1
1/2 - - ( — 2 4 > = -~ —.
£ef(tu) 4(18“ +t +1> _4>C3 T (t,u) € [0,1] x [0, 16]

By Theorem 3.3, problem (4.1) has at least one solution u such that 1/16 < ||u|| < 6.

Acknowledgments

This work was supported by the Scientific Research Foundation of Hunan Provincial
Education Department (05A057, 08C826) was also supported by the Aid Program for Science
and Technology Innovative Research Team in Higher Educational Institutions of Hunan
Province, and the Construct Program of the Key Discipline in Hunan Province.

References

[1] A. Babakhani and V. Daftardar-Gejji, “Existence of positive solutions of nonlinear fractional
differential equations,” Journal of Mathematical Analysis and Applications, vol. 278, no. 2, pp. 434442,
2003.

[2] C.-Z. Bai and ]J.-X. Fang, “The existence of a positive solution for a singular coupled system of
nonlinear fractional differential equations,” Applied Mathematics and Computation, vol. 150, no. 3, pp.
611-621, 2004.

[3] A. M. A. El-Sayed, “Nonlinear functional-differential equations of arbitrary orders,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 33, no. 2, pp. 181-186, 1998.

[4] V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,”
Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511-522, 2004.

[5] A. A. Kilbas and ]. J. Trujillo, “Differential equations of fractional order: methods, results and
problems—I,” Applicable Analysis, vol. 78, no. 1-2, pp. 153-192, 2001.



18 Abstract and Applied Analysis

[6] A. A. Kilbas and J. J. Trujillo, “Differential equations of fractional order: methods, results and
problems—II,” Applicable Analysis, vol. 81, no. 2, pp. 435-493, 2002.
[7] 1. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,
Academic Press, San Diego, Calif, USA, 1999.
[8] C.Yuand G. Gao, “Existence of fractional differential equations,” Journal of Mathematical Analysis and
Applications, vol. 310, no. 1, pp. 26-29, 2005.
[9] S.Zhang, “The existence of a positive solution for a nonlinear fractional differential equation,” Journal
of Mathematical Analysis and Applications, vol. 252, no. 2, pp. 804-812, 2000.
[10] S.Zhang, “Existence of positive solution for some class of nonlinear fractional differential equations,”
Journal of Mathematical Analysis and Applications, vol. 278, no. 1, pp. 136-148, 2003.
[11] D. Delbosco and L. Rodino, “Existence and uniqueness for a nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 204, no. 2, pp. 609-625, 1996.
[12] Z. Bai and H. L1, “Positive solutions for boundary value problem of nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495-505, 2005.
[13] D. Delbosco, “Fractional calculus and function spaces,” Journal of Fractional Calculus, vol. 6, pp. 45-53,
1994.
[14] S. Zhang, “Positive solutions for boundary-value problems of nonlinear fractional differential
equations,” Electronic Journal of Differential Equations, no. 36, pp. 1-12, 2006.
[15] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.



